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Let A be an abelian category, A and C objects of A.
Short exact sequences with kernel A and cokernel C form a groupoid
EXT(C ,A). Equivalence classes form an abelian group:

Ext(C ,A) .

Any morphism c : C ′ → C determines a functor

c∗ : EXT(C ,A) → EXT(C ′,A)
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Let A be an abelian category, A and C objects of A.
Short exact sequences with kernel A and cokernel C form a groupoid
EXT(C ,A). Equivalence classes form an abelian group:

Ext(C ,A) .

Any morphism c : C ′ → C determines a functor

c∗ : EXT(C ,A) → EXT(C ′,A)

by means of the pullback along c :

0 // A // B ′ //

��

y

C ′ //

c

��

0

0 // A // B // C // 0
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A particular case

Let A be an abelian category, A and C objects of A.
Short exact sequences with kernel A and cokernel C form a groupoid
EXT(C ,A). Equivalence classes form an abelian group:

Ext(C ,A) .

Any morphism c : C ′ → C determines a functor

c∗ : EXT(C ,A) → EXT(C ′,A)

by means of the pullback along c :

0 // A // B ′ //

��

y

C ′ //

c

��

0

0 // A // B // C // 0

And this gives a group homomorphism

Ext(C ,A) → Ext(C ′,A) .
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Dually, any morphism a : A → A′ determines a functor:

a∗ : EXT(C ,A) → EXT(C ,A′)
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Dually, any morphism a : A → A′ determines a functor:

a∗ : EXT(C ,A) → EXT(C ,A′)

by means of the pushout along a:

0 // A //

a

�� p

B //

��

C // 0

0 // A′ // B ′ // C // 0
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Dually, any morphism a : A → A′ determines a functor:

a∗ : EXT(C ,A) → EXT(C ,A′)

by means of the pushout along a:

0 // A //

a

�� p

B //

��

C // 0

0 // A′ // B ′ // C // 0

And this gives a group homomorphism

Ext(C ,A) → Ext(C ,A′) .
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The non-abelian setting is more complicated.
Example: groups.
Any short exact sequence of abelian kernel A and cokernel G determines
an action of G on A:

φ : G × A 99K A

Short exact sequences inducing the same action of G on A form a
groupoid OPEXT(G ,A, φ).
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The non-abelian setting is more complicated.
Example: groups.
Any short exact sequence of abelian kernel A and cokernel G determines
an action of G on A:

φ : G × A 99K A

Short exact sequences inducing the same action of G on A form a
groupoid OPEXT(G ,A, φ). Equivalence classes form an abelian group:

Opext(G ,A, φ) ∼= H2
φ(G ,A) .
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A particular case

The non-abelian setting is more complicated.
Example: groups.
Any short exact sequence of abelian kernel A and cokernel G determines
an action of G on A:

φ : G × A 99K A

Short exact sequences inducing the same action of G on A form a
groupoid OPEXT(G ,A, φ). Equivalence classes form an abelian group:

Opext(G ,A, φ) ∼= H2
φ(G ,A) .

Again, for any group homomorphism g : G ′ → G , the pullback
construction determines a functor:

g∗ : OPEXT(G ,A, φ) → OPEXT(G ′,A, g∗(φ)) ,
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where g∗(φ) is given by the composite:

G ′ × A
g∗(φ) //________

g×1 %%JJJJJJJJJ A

G × A

φ

<<y
y

y
y
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where g∗(φ) is given by the composite:

G ′ × A
g∗(φ) //________

g×1 %%JJJJJJJJJ A

G × A

φ

<<y
y

y
y

And again a group homomorphism:

H2
φ(G ,A) → H2

g∗(φ)(G
′,A) .
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Problems:

the pushout of a normal mono is not a normal mono in general;
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A particular case

The pushout contruction no longer works.
Problems:

the pushout of a normal mono is not a normal mono in general;

a morphism a : A → A′ does not determine an action of G on A′ in a
canonical way.

So we need an action of G on A′:

φ′ : G × A′
99K A′

and we require that a is equivariant, i.e.:

G × A
φ //___

1×a

��

A

a

��
G × A′

φ′

//___ A′
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These data allow to construct the so called push forward along a:

0 // A
k //

a

��
p.f .

E
f //

e

��

G // 0

0 // A′
k′

// E ′
f ′

// G // 0
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These data allow to construct the so called push forward along a:

0 // A
k //

a

��
p.f .

E
f //

e

��

G // 0

0 // A′
k′

// E ′
f ′

// G // 0

which determines a functor:

a∗ : OPEXT(G ,A, φ) → OPEXT(G ,A′, φ′)
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A particular case

These data allow to construct the so called push forward along a:

0 // A
k //

a

��
p.f .

E
f //

e

��

G // 0

0 // A′
k′

// E ′
f ′

// G // 0

which determines a functor:

a∗ : OPEXT(G ,A, φ) → OPEXT(G ,A′, φ′)

and a group homomorphism:

H2
φ(G ,A) → H2

φ′(G ,A′) .
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Construction of the push forward (for groups):

E
iE

++
A

k //

a
//

E ⋊f ∗(φ′) A
′ q // // E ′

A′
iA′

33

where q = coeq(iEk , iA′a).
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Construction of the push forward (for groups):

E
iE

++
A

k //

a
//

E ⋊f ∗(φ′) A
′ q // // E ′

A′
iA′

33

where q = coeq(iEk , iA′a).
Universal property:

0 // A
k //

a

��
p.f .

E
f //

��

G // 0

0 // A′
k′

// E ′
f ′

// G // 0
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Construction of the push forward (for groups):

E
iE

++
A

k //

a
//

E ⋊f ∗(φ′) A
′ q // // E ′

A′
iA′

33

where q = coeq(iEk , iA′a).
Universal property:

0 // A
k //

a

��
p.f .

E
f //

��

		

G // 0

0 // A′
k′

// E ′
f ′

// G // 0

0 // A′
k′′

// E ′′
f ′′

// G // 0
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A particular case

Construction of the push forward (for groups):

E
iE

++
A

k //

a
//

E ⋊f ∗(φ′) A
′ q // // E ′

A′
iA′

33

where q = coeq(iEk , iA′a).
Universal property:

0 // A
k //

a

��
p.f .

E
f //

��

		

G // 0

0 // A′
k′

// E ′
f ′

//

∃!
��
�
�
� G // 0

0 // A′
k′′

// E ′′
f ′′

// G // 0
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Questions:

Is there a push forward construction for extensions with non-abelian
kernel?

Is there an internal version of this construction?
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A particular case

Questions:

Is there a push forward construction for extensions with non-abelian
kernel?

Is there an internal version of this construction?

Can it be extended to crossed modules?

Alan Cigoli A push forward construction



Introduction
A push forward construction

A particular case

A push forward construction in semi-abelian categories
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A particular case

Let C be a semi-abelian category.
A precrossed module in C is a morphism

∂ : H → H0 ,

together with an internal action

ξ : H0♭H → H ,

such that the following diagram commutes:

H0♭H
ξ //

1♭∂
��

H

∂

��
H0♭H0 χ

// H0
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A particular case

Let C be a semi-abelian category.
A precrossed module in C is a morphism

∂ : H → H0 ,

together with an internal action

ξ : H0♭H → H ,

such that the following diagram commutes:

H0♭H
ξ //

1♭∂
��

H

∂

��
H0♭H0 χ

// H0

If we want ∂ to be a crossed module, we need a further condition, which
is not in general the straightforward generalization of the Peiffer
condition for crossed modules of groups.
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G. Janelidze in ’03 gave a definition of internal crossed module, showing
the equivalence with internal groupoids.
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A particular case

G. Janelidze in ’03 gave a definition of internal crossed module, showing
the equivalence with internal groupoids.
However, if C satisfies the “Smith is Huq” property, the Peiffer condition:

H♭H
χ //

∂♭1
��

H

H0♭H ξ
// H

turns out to be sufficient to characterize internal crossed modules among
precrossed modules (Martins-Ferreira and Van der Linden, ’10).
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Hartl (unpublished preprint ’10): push forward of a normal
monomorphism in semi-abelian setting with conditions expressed in
terms of cross effects;
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Hartl (unpublished preprint ’10): push forward of a normal
monomorphism in semi-abelian setting with conditions expressed in
terms of cross effects;

He should have presented here a generalization of his result to
crossed modules;
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A particular case

Hartl (unpublished preprint ’10): push forward of a normal
monomorphism in semi-abelian setting with conditions expressed in
terms of cross effects;

He should have presented here a generalization of his result to
crossed modules;

Meanwhile we reinterpreted conditions in terms of internal actions
and semi-direct products, obtaining, for push forward of (pre)crossed
modules, an equivalent result.
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Let C be a semi-abelian category, ∂ and p two morphisms in C:

H
∂ //

p

��

H0

G

satisfying the following conditions:
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Let C be a semi-abelian category, ∂ and p two morphisms in C:

H
∂ //

p

��

H0

G

satisfying the following conditions:

1) there is an action ξ : H0♭H → H such that (∂, ξ) is a precrossed
module;
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A particular case

Let C be a semi-abelian category, ∂ and p two morphisms in C:

H
∂ //

p

��

H0

G

satisfying the following conditions:

1) there is an action ξ : H0♭H → H such that (∂, ξ) is a precrossed
module;

2) there is an action α : H0♭G → G , and p is equivariant:

H0♭H
ξ //

1♭p

��

H

p

��
H0♭G α

// G
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3) the following diagram commutes:

(H ⋊ξ H0)♭G
ϕ♭1 //

(p⋊1)♭1

��

H0♭G

α

��
(G ⋊α H0)♭G χ

// G
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A particular case

3) the following diagram commutes:

(H ⋊ξ H0)♭G
ϕ♭1 //

(p⋊1)♭1

��

H0♭G

α

��
(G ⋊α H0)♭G χ

// G

where ϕ is defined by the universal property of semi-direct product:

H
iH //

∂ ##HH
HH

HH
HH

H ⋊ξ H0

ϕ
��

H0

iH0oo

1zzuu
uu

uu
uu

H0
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3) the following diagram commutes:

(H ⋊ξ H0)♭G
ϕ♭1 //

(p⋊1)♭1

��

H0♭G

α

��
(G ⋊α H0)♭G χ

// G

where ϕ is defined by the universal property of semi-direct product:

H
iH //

∂ ##HH
HH

HH
HH

H ⋊ξ H0

ϕ
��

H0

iH0oo

1zzuu
uu

uu
uu

H0

These conditions are sufficient to obtain a push forward construction.
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Theorem

There exists an object G ⋊
H H0, together with a crossed module

∂̃ : G → G ⋊
H H0, with coker(∂̃) ∼= coker(∂), and a morphism

p̃0 : H0 → G ⋊
H H0, such that the following diagram is a morphism of

precrossed modules:

H
∂ //

p

��

H0

p̃0
��

G
∂̃ // G ⋊

H H0
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A particular case

Theorem

There exists an object G ⋊
H H0, together with a crossed module

∂̃ : G → G ⋊
H H0, with coker(∂̃) ∼= coker(∂), and a morphism

p̃0 : H0 → G ⋊
H H0, such that the following diagram is a morphism of

precrossed modules:

H
∂ //

p

��

H0

p̃0
�� p0

��

G
∂̃ //

∂′

,,

G ⋊
H H0

G0

which is universal in the following sense: for any other morphism (p, p0)
of precrossed modules, where (∂′, ξ′) is a crossed module and p∗0 (ξ

′) = α,
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A particular case

Theorem

There exists an object G ⋊
H H0, together with a crossed module

∂̃ : G → G ⋊
H H0, with coker(∂̃) ∼= coker(∂), and a morphism

p̃0 : H0 → G ⋊
H H0, such that the following diagram is a morphism of

precrossed modules:

H
∂ //

p

��

H0

p̃0
�� p0

��

G
∂̃ //

∂′

,,

G ⋊
H H0

t

$$H
H

H
H

H

G0

which is universal in the following sense: for any other morphism (p, p0)
of precrossed modules, where (∂′, ξ′) is a crossed module and p∗0 (ξ

′) = α,
there exists a unique factorization t, with tp̃0 = p0 and (1G , t) a
morphism of crossed modules.
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A particular case

A remark about the notation.
If H = 0, conditions 1)–3) reduce to the request of existence of the
action α, and the above construction is nothing but semi-direct product:

0 //

��

H0

iH0
��

G
iG // G ⋊α H0
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A particular case

A remark about the notation.
If H = 0, conditions 1)–3) reduce to the request of existence of the
action α, and the above construction is nothing but semi-direct product:

0 //

��

H0

iH0
�� p0

��

G
iG //

∂′

,,

G ⋊α H0

t

$$I
I

I
I

I

G0

The universal property reduces to the universal property of semi-direct
product.
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If the category C is moreover action accessible (e.g. groups, Lie algebras,
rings, any category of interest), we can replace condition 3) with the
following condition:
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A particular case

If the category C is moreover action accessible (e.g. groups, Lie algebras,
rings, any category of interest), we can replace condition 3) with the
following condition:

3′) H♭G
∂♭1 //

p♭1

��

H0♭G

α

��
G ♭G χ

// G
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A particular case

If the category C is moreover action accessible (e.g. groups, Lie algebras,
rings, any category of interest), we can replace condition 3) with the
following condition:

3′) H♭G
∂♭1 //

p♭1

��

H0♭G

α

��
G ♭G χ

// G

which is in fact weaker:

H♭G
iH♭1 //

p♭1

��

(H ⋊ξ H0)♭G
ϕ♭1 //

(p⋊1)♭1

��

H0♭G

α

��
G ♭G

iG ♭1
// (G ⋊α H0)♭G χ

// G

and we obtain the same result.
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Sketch of the proof (action accessible case).
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A particular case

Sketch of the proof (action accessible case).
As a consequence of condition 3’) the semi-direct product G ⋊p∗(χ) H is
isomorphic to the product G × H:
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A particular case

Sketch of the proof (action accessible case).
As a consequence of condition 3’) the semi-direct product G ⋊p∗(χ) H is
isomorphic to the product G × H:

G × H
πG

yyssssssssss
πH

%%KKKKKKKKKK

τ

��

G

iG $$JJJJJJJJJ

〈1,0〉

99ssssssssss
H

jzzttttttttt

〈0,1〉

eeKKKKKKKKKK

G ⋊p∗(χ) H

ρ
ddJJJJJJJJJ

πH

::ttttttttt
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Sketch of the proof (action accessible case).
As a consequence of condition 3’) the semi-direct product G ⋊p∗(χ) H is
isomorphic to the product G × H:

G × H
πG

yyssssssssss
πH

%%KKKKKKKKKK

τ

��

G

iG $$JJJJJJJJJ

〈1,0〉

99ssssssssss

iG

##

H

jzzttttttttt

〈0,1〉

eeKKKKKKKKKK

n

{{

G ⋊p∗(χ) H

ρ
ddJJJJJJJJJ

πH

::ttttttttt

1⋊∂

��
G ⋊α H0

Hence the morphisms n = (1⋊ ∂)j and iG cooperate in G ⋊α H0.
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Sketch of the proof (action accessible case).
As a consequence of condition 3’) the semi-direct product G ⋊p∗(χ) H is
isomorphic to the product G × H:

G × H
πG

yyssssssssss
πH

%%KKKKKKKKKK

τ

��

G

iG $$JJJJJJJJJ

〈1,0〉

99ssssssssss

iG

##

H

jzzttttttttt

〈0,1〉

eeKKKKKKKKKK

n

{{

G ⋊p∗(χ) H

ρ
ddJJJJJJJJJ

πH

::ttttttttt

1⋊∂

��
G ⋊α H0

Hence the morphisms n = (1⋊ ∂)j and iG cooperate in G ⋊α H0.
And consequently [n(H),G ] = 0.
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Since the category is action accessible:
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A particular case

Since the category is action accessible:

[n(H),G ] = 0 ⇒

[
n(H),G

]
= 0
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A particular case

Since the category is action accessible:

[n(H),G ] = 0 ⇒

[
n(H),G

]
= 0

and the “Smith is Huq” property holds.
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A particular case

Since the category is action accessible:

[n(H),G ] = 0 ⇒

[
n(H),G

]
= 0

and the “Smith is Huq” property holds.
These conditions allow to construct a split butterfly:

n(H)
�  )

%%KK
KK

K

n

��

G

∂̃

��

iG

wwppppppppp

G ⋊α H0
πH0

xxrrrrrrr

q '' ''OOOOOO

H0
iH0

88rrrrrrr
G ⋊

H H0
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A particular case

Since the category is action accessible:

[n(H),G ] = 0 ⇒

[
n(H),G

]
= 0

and the “Smith is Huq” property holds.
These conditions allow to construct a split butterfly:

n(H)
�  )

%%KK
KK

K

n

��

G

∂̃

��

iG

wwppppppppp

G ⋊α H0
πH0

xxrrrrrrr

q '' ''OOOOOO

H0
iH0

88rrrrrrr
G ⋊

H H0

which produces a morphism of crossed modules.
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A particular case

Since the category is action accessible:

[n(H),G ] = 0 ⇒

[
n(H),G

]
= 0

and the “Smith is Huq” property holds.
These conditions allow to construct a split butterfly:

H //

∂

��

n(H)
�  )

%%KK
KK

K

n

��

G

∂̃

��

iG

wwppppppppp

G ⋊α H0
πH0

xxrrrrrrr

q '' ''OOOOOO

H0 H0
iH0

88rrrrrrr
G ⋊

H H0

which produces a morphism of crossed modules.
By composition we get the required morphism of precrossed modules.
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A particular case
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A particular case

Let C be semi-abelian.
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A push forward construction

A particular case

Let C be semi-abelian. In the case p = 1:

H
∂ // H0

H
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A push forward construction

A particular case

Let C be semi-abelian. In the case p = 1:

H
∂ // H0

H

1) as before: (∂, ξ) is a precrossed module;

Alan Cigoli A push forward construction



Introduction
A push forward construction

A particular case

Let C be semi-abelian. In the case p = 1:

H
∂ // H0

H

1) as before: (∂, ξ) is a precrossed module;

2) disappears (equivariance of 1);
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A particular case

Let C be semi-abelian. In the case p = 1:

H
∂ // H0

H

1) as before: (∂, ξ) is a precrossed module;

2) disappears (equivariance of 1);

3) becomes:

(H ⋊ξ H0)♭H
ϕ♭1 // H0♭H

ξ

��
(H ⋊ξ H0)♭H χ

// H
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A particular case

Let C be semi-abelian. In the case p = 1:

H
∂ // H0

H

1) as before: (∂, ξ) is a precrossed module;

2) disappears (equivariance of 1);

3) becomes:

(H ⋊ξ H0)♭H
ϕ♭1 // H0♭H

ξ

��
(H ⋊ξ H0)♭H χ

// H

and gives a condition for a precrossed module to be a crossed
module (“Super-Peiffer”).
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A particular case

In the action accessible context, 3) is replaced by 3’) and the previous
condition reduces to Peiffer condition.

Alan Cigoli A push forward construction



Introduction
A push forward construction

A particular case

In the action accessible context, 3) is replaced by 3’) and the previous
condition reduces to Peiffer condition.
Conclusion:

Action accessible ⇒ 3’) instead of 3)

⇓ ⇓

“Smith is Huq” ⇔ Peiffer ⇒ “Super-Peiffer”
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A particular case

In the action accessible context, 3) is replaced by 3’) and the previous
condition reduces to Peiffer condition.
Conclusion:

Action accessible ⇒ 3’) instead of 3)

⇓ ⇓

“Smith is Huq” ⇔ Peiffer ⇒ “Super-Peiffer”

Observe that the implication on the top depends on the property:

[H,K ] = 0 ⇒
[
H,K

]
= 0
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