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k commutative ring. All the categories and functors will be
enriched in k–Mod.

In Catégories tannakiennes (1990) Deligne introduced and
used:
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Deligne’s tensor product of abelian categories
Definition (Deligne)
Given A,B abelian categories, their tensor product is an
abelian category A • B with a bilinear rex in each variable

A × B→ A • B

that induces equivalences for all abelian C

Rex[A • B,C] ' Rex[A,B;C]

A × B //

%%KKKKKKKKKK A • B
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Definition (?,Kelly, well-known)
Given A,B fin. cocomplete categories, their tensor product is
an fin. cocomplete category A � B with a bilinear rex in each
variable

A × B→ A � B

that induces equivalences for all fin. cocomplete C

Rex[A � B,C] ' Rex[A,B;C]

A × B //

%%KKKKKKKKKK A • B
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Example
For k-algebras R, S,

R–Modf × S–Modf
⊗k
−−→ R ⊗ S–Modf

gives

R ⊗ S–Modf 'R–Modf � S–Modf

'R–Modf • S–Modf if abelian

Deligne’s tensor product has been used in
I Representations and classification of Hopf algebras.
I Tannaka-type reconstruction results.
I Invariants of manifolds.
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Questions
Example (Existence of �)
For fin. cocomplete A,B, the tensor A � B exists.

A � B ' Lex[Aop ,Bop; k -Mod]f

Deligne does not show that his tensor product exists in general.
We may ask:

1. Does Deligne’s tensor product always exist? No.
2. For fin. cocomplete categories A,B, is A � B always

abelian whenever A,B are so? No.
3. For abelian A,B, their Deligne tensor product A • B exists

iff A � B is abelian. Yes.
2 + 3⇒ 1
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Existence of Deligne’s product

Lemma
For abelian A,B, if A � B is abelian then A • B exists and is
(equivalent to) A � B.

Proof.
Need A × B→ A � B to induce

Rex[A � B,C] ' Rex[A,B;C]

for all abelian C. But by definition of � this is true for any fin.
cocomplete C. �
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Existence of Deligne’s product

For a fin. cocomplete A, write Â = Lex[Aop , k -Mod]

Lemma
If A • B exists, then Â • B is cocomplete abelian and

A × B→ A • B→ Â • B

induces
Cocts[Â • B,C] ' Rex[A,B;C]

for all cocomplete abelian C.
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Existence of Deligne’s product
Theorem
For abelian A,B, TFAE

1. A • B exists.
2. A � B is abelian.

Proof.
(2⇒1) Lemma.
(1⇒ 2) By Lemma, enough to prove Â • B ' Â � B, i.e.,

Â � B ' Lex[Aop ,Bop; k -Mod]

has the universal property of Â • B and it is abelian.

Cocts[Â � B,C] ' Rex[A � B,C] ' Rex[A,B;C]

�



Deligne’s tensor product
Questions we answer

Existence of Deligne’s tensor
Counterexample to the existence

Existence of Deligne’s product
Theorem
For abelian A,B, TFAE

1. A • B exists.
2. A � B is abelian.

Proof.
(2⇒1) Lemma.
(1⇒ 2) By Lemma, enough to prove Â • B ' Â � B, i.e.,
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Proof cont.
Theorem
The reflection

[(A ⊗ B)op , k-Mod]→ Lex[Aop ,Bop; k-Mod]

is exact if A,B are abelian.

Proof.
I Follows from: the reflection
[Aop , k -Mod]→ Lex[Aop , k -Mod] is lex.

I Follows from:

Lex[Aop , k -Mod] = Sh(A, J) ⊂ [Aop , k -Mod]

J generated by {e : A ′ → A epi} (because A is abelian).
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Summary

We showed, for a pair of abelian categories TFAE
I Their Deligne tensor product exists.
I Their tensor as fin. cocomplete categories is abelian.
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Counterexample to existence of Deligne’s product
Enough to find two abelian A,B with A � B not abelian.

Definition/Theorem (Chase, Bourbaki, 1960s)
A k -algebra R is left coherent iff R–Modf is abelian iff every f.g.
left ideal is f.p.

Theorem (Soublin, 1968)
There exist two commutative coherent Q-algebras R ,S with
R ⊗ S not coherent.

Proof.
Set R = Q[x], S = (QN)[[u, t ]]. �

So R-Modf � S-Modf is not abelian, and the Deligne’s tensor
R-Modf • S-Modf does not exist.
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Conclusion

I Deligne’s tensor A • B does not always exist.
I When A • B exists it is (equivalent to) A � B.
I Better use the product of fin. cocomplete categories �.
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