# Tensor products of finitely cococomplete and abelian categories<sup>1</sup>

Ignacio López Franco

University of Cambridge Gonville and Caius College

Coimbra, 11 July 2012

<sup>1</sup>With thanks to P. Deligne.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ──○へで

#### Plan

Deligne's tensor product

Questions we answer

Existence of Deligne's tensor

Counterexample to the existence

イロト イヨト イヨト イ

э

## Deligne's tensor product of abelian categories

# *k* commutative ring. All the categories and functors will be enriched in k-Mod.

In *Catégories tannakiennes* (1990) Deligne introduced and used:

## Deligne's tensor product of abelian categories

*k* commutative ring. All the categories and functors will be enriched in k-Mod.

In *Catégories tannakiennes* (1990) Deligne introduced and used:

## Deligne's tensor product of abelian categories

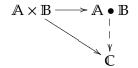
#### **Definition** (Deligne)

Given  $\mathbb{A}, \mathbb{B}$  abelian categories, their tensor product is an abelian category  $\mathbb{A} \bullet \mathbb{B}$  with a bilinear *rex* in each variable

 $\mathbb{A} \times \mathbb{B} \to \mathbb{A} \bullet \mathbb{B}$ 

that induces equivalences for all abelian  ${\mathbb C}$ 

 $\operatorname{\mathsf{Rex}}[\mathbb{A} \bullet \mathbb{B}, \mathbb{C}] \simeq \operatorname{\mathsf{Rex}}[\mathbb{A}, \mathbb{B}; \mathbb{C}]$ 



《曰》《聞》《臣》《臣》

## Deligne's tensor product of abelian categories

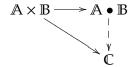
Definition (?,Kelly, well-known)

Given  $\mathbb{A}, \mathbb{B}$  fin. cocomplete categories, their tensor product is an fin. cocomplete category  $\mathbb{A} \boxtimes \mathbb{B}$  with a bilinear *rex* in each variable

$$\mathbb{A} \times \mathbb{B} \to \mathbb{A} \boxtimes \mathbb{B}$$

that induces equivalences for all fin. cocomplete  ${\mathbb C}$ 

$$\operatorname{Rex}[\mathbb{A} \boxtimes \mathbb{B}, \mathbb{C}] \simeq \operatorname{Rex}[\mathbb{A}, \mathbb{B}; \mathbb{C}]$$



Example For k-algebras *R*, *S*,

$$R\operatorname{-Mod}_f \times S\operatorname{-Mod}_f \xrightarrow{\otimes_k} R \otimes S\operatorname{-Mod}_f$$

gives

# $R \otimes S-\operatorname{Mod}_{f} \simeq R-\operatorname{Mod}_{f} \boxtimes S-\operatorname{Mod}_{f}$ $\simeq R-\operatorname{Mod}_{f} \bullet S-\operatorname{Mod}_{f} \quad \text{if abelian}$

ヘロト ヘアト ヘヨト ヘ

Deligne's tensor product has been used in

- Representations and classification of Hopf algebras.
- Tannaka-type reconstruction results.
- Invariants of manifolds.

Example For k-algebras *R*, *S*,

$$R\operatorname{-Mod}_f \times S\operatorname{-Mod}_f \xrightarrow{\otimes_k} R \otimes S\operatorname{-Mod}_f$$

gives

$$R \otimes S-\operatorname{Mod}_{f} \simeq R-\operatorname{Mod}_{f} \boxtimes S-\operatorname{Mod}_{f}$$
$$\simeq R-\operatorname{Mod}_{f} \bullet S-\operatorname{Mod}_{f} \quad \text{if abelian}$$

Deligne's tensor product has been used in

Representations and classification of Hopf algebras.

ヘロト ヘアト ヘヨト ヘ

э

- Tannaka-type reconstruction results.
- Invariants of manifolds.

#### Example (Existence of ⊠)

For fin. cocomplete  $\mathbb{A}, \mathbb{B}$ , the tensor  $\mathbb{A} \boxtimes \mathbb{B}$  exists.

#### $\mathbb{A} \boxtimes \mathbb{B} \simeq \mathsf{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k\text{-}\mathrm{Mod}]_f$

- 1. Does Deligne's tensor product always exist? No.
- 2. For fin. cocomplete categories A,B, is A 
  B always abelian whenever A,B are so? No
- For abelian A,B, their Deligne tensor product A 

   B exists iff A 
   B is abelian. Yes

$$2 + 3 \Rightarrow 1$$

```
Example (Existence of ⊠)
```

For fin. cocomplete  $\mathbb{A},\mathbb{B}$ , the tensor  $\mathbb{A} \boxtimes \mathbb{B}$  exists.

```
\mathbb{A} \boxtimes \mathbb{B} \simeq \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]_{f}
```

- 1. Does Deligne's tensor product always exist? No.
- 2. For fin. cocomplete categories A,B, is A ⊠ B always abelian whenever A,B are so? No.
- 3. For abelian A,B, their Deligne tensor product A B exists iff A ⊠ B is abelian. Yes.

$$2 + 3 \Rightarrow 1$$

```
Example (Existence of ⊠)
```

For fin. cocomplete  $\mathbb{A},\mathbb{B}$ , the tensor  $\mathbb{A} \boxtimes \mathbb{B}$  exists.

```
\mathbb{A} \boxtimes \mathbb{B} \simeq \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]_{f}
```

- 1. Does Deligne's tensor product always exist? No.
- 2. For fin. cocomplete categories A,B, is A ⊠ B always abelian whenever A,B are so? No.
- 3. For abelian A,B, their Deligne tensor product A B exists iff A ⊠ B is abelian. Yes.

$$\mathbf{2}+\mathbf{3} \Rightarrow \mathbf{1}$$

```
Example (Existence of ⊠)
```

For fin. cocomplete  $\mathbb{A},\mathbb{B}$ , the tensor  $\mathbb{A} \boxtimes \mathbb{B}$  exists.

```
\mathbb{A} \boxtimes \mathbb{B} \simeq \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]_{f}
```

- 1. Does Deligne's tensor product always exist? No.
- For fin. cocomplete categories A,B, is A 
   B always abelian whenever A,B are so? No.
- 3. For abelian A,B, their Deligne tensor product A B exists iff A ⊠ B is abelian. Yes.

$$\mathbf{2}+\mathbf{3} \Rightarrow \mathbf{1}$$

```
Example (Existence of ⊠)
```

For fin. cocomplete  $\mathbb{A},\mathbb{B}$ , the tensor  $\mathbb{A} \boxtimes \mathbb{B}$  exists.

```
\mathbb{A} \boxtimes \mathbb{B} \simeq \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]_{f}
```

Deligne does not show that his tensor product exists in general. We may ask:

- 1. Does Deligne's tensor product always exist? No.
- 2. For fin. cocomplete categories A,B, is A ⊠ B always abelian whenever A,B are so? No.
- For abelian A,B, their Deligne tensor product A B exists iff A 
   B is abelian. Yes.

#### $\mathbf{2}+\mathbf{3} \Rightarrow \mathbf{1}$

```
Example (Existence of ⊠)
```

For fin. cocomplete  $\mathbb{A},\mathbb{B}$ , the tensor  $\mathbb{A} \boxtimes \mathbb{B}$  exists.

```
\mathbb{A} \boxtimes \mathbb{B} \simeq \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]_{f}
```

Deligne does not show that his tensor product exists in general. We may ask:

- 1. Does Deligne's tensor product always exist? No.
- 2. For fin. cocomplete categories A,B, is A ⊠ B always abelian whenever A,B are so? No.
- For abelian A,B, their Deligne tensor product A B exists iff A 
   B is abelian. Yes.

#### $\mathbf{2}+\mathbf{3} \Rightarrow \mathbf{1}$

```
Example (Existence of ⊠)
```

For fin. cocomplete  $\mathbb{A},\mathbb{B}$ , the tensor  $\mathbb{A} \boxtimes \mathbb{B}$  exists.

```
\mathbb{A} \boxtimes \mathbb{B} \simeq \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]_{f}
```

- 1. Does Deligne's tensor product always exist? No.
- 2. For fin. cocomplete categories A,B, is A ⊠ B always abelian whenever A,B are so? No.
- For abelian A,B, their Deligne tensor product A B exists iff A 
   B is abelian. Yes.

$$2 + 3 \Rightarrow 1$$

# Existence of Deligne's product

#### Lemma

For abelian  $\mathbb{A},\mathbb{B}$ , if  $\mathbb{A} \boxtimes \mathbb{B}$  is abelian then  $\mathbb{A} \bullet \mathbb{B}$  exists and is (equivalent to)  $\mathbb{A} \boxtimes \mathbb{B}$ .

Proof. Need  $\mathbb{A} \times \mathbb{B} \to \mathbb{A} \boxtimes \mathbb{B}$  to induce

 $\operatorname{Rex}[\mathbb{A} \boxtimes \mathbb{B}, \mathbb{C}] \simeq \operatorname{Rex}[\mathbb{A}, \mathbb{B}; \mathbb{C}]$ 

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

for all **abelian**  $\mathbb{C}$ . But by definition of  $\boxtimes$  this is true for any fin. cocomplete  $\mathbb{C}$ .

# Existence of Deligne's product

#### Lemma

For abelian  $\mathbb{A}, \mathbb{B}$ , if  $\mathbb{A} \boxtimes \mathbb{B}$  is abelian then  $\mathbb{A} \bullet \mathbb{B}$  exists and is (equivalent to)  $\mathbb{A} \boxtimes \mathbb{B}$ .

#### Proof.

Need  $\mathbb{A}\times\mathbb{B}\to\mathbb{A}\boxtimes\mathbb{B}$  to induce

```
\mathsf{Rex}[\mathbb{A} \boxtimes \mathbb{B}, \mathbb{C}] \simeq \mathsf{Rex}[\mathbb{A}, \mathbb{B}; \mathbb{C}]
```

for all **abelian**  $\mathbb{C}$ . But by definition of  $\boxtimes$  this is true for any fin. cocomplete  $\mathbb{C}$ .

## Existence of Deligne's product

For a fin. cocomplete  $\mathbb{A}$ , write  $\hat{\mathbb{A}} = \text{Lex}[\mathbb{A}^{op}, k \text{-Mod}]$ Lemma If  $\mathbb{A} \bullet \mathbb{B}$  exists, then  $\widehat{\mathbb{A} \bullet \mathbb{B}}$  is cocomplete abelian and

$$\mathbb{A} \times \mathbb{B} \to \mathbb{A} \bullet \mathbb{B} \to \widehat{\mathbb{A} \bullet \mathbb{B}}$$

induces

$$Cocts[\widehat{\mathbb{A} \bullet \mathbb{B}}, \mathbb{C}] \simeq Rex[\mathbb{A}, \mathbb{B}; \mathbb{C}]$$

< □ > < □ > < □ > < □ >

for all cocomplete abelian  $\mathbb{C}$ .

# Existence of Deligne's product

Theorem For abelian A,B, TFAE

- 1.  $\mathbb{A} \bullet \mathbb{B}$  exists.
- 2.  $\mathbb{A} \boxtimes \mathbb{B}$  is abelian.

#### Proof. (2 $\Rightarrow$ 1) Lemma. (1 $\Rightarrow$ 2) By Lemma, enough to prove $\widehat{A \circ B} \simeq \widehat{A \boxtimes B}$ , i.e.,

 $\widehat{\mathbb{A} \boxtimes \mathbb{B}} \simeq \mathsf{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k\text{-}\mathrm{Mod}]$ 

has the universal property of  $\widehat{\mathbb{A} \circ \mathbb{B}}$  and it is **abelian**.

 $Cocts[\widehat{A \boxtimes B}, \mathbb{C}] \simeq Rex[A \boxtimes B, \mathbb{C}] \simeq Rex[A, B; \mathbb{C}]$ 

# Existence of Deligne's product

Theorem For abelian A,B, TFAE

- 1.  $\mathbb{A} \bullet \mathbb{B}$  exists.
- 2.  $\mathbb{A} \boxtimes \mathbb{B}$  is abelian.

Proof. (2 $\Rightarrow$ 1) Lemma. (1 $\Rightarrow$  2) By Lemma, enough to prove  $\widehat{A \circ B} \simeq \widehat{A \otimes B}$ , i.e.,

 $\widehat{\mathbb{A} \boxtimes \mathbb{B}} \simeq \mathsf{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k\text{-}\mathrm{Mod}]$ 

has the universal property of  $\widehat{\mathbb{A} \circ \mathbb{B}}$  and it is **abelian**.

 $Cocts[\widehat{A \boxtimes B}, \mathbb{C}] \simeq Rex[A \boxtimes B, \mathbb{C}] \simeq Rex[A, B; \mathbb{C}]$ 

# Existence of Deligne's product

Theorem For abelian A,B, TFAE

- 1.  $\mathbb{A} \bullet \mathbb{B}$  exists.
- 2.  $\mathbb{A} \boxtimes \mathbb{B}$  is abelian.

#### Proof.

(2⇒1) Lemma.

 $(1 \Rightarrow 2)$  By Lemma, enough to prove  $\widehat{\mathbb{A} \bullet \mathbb{B}} \simeq \widehat{\mathbb{A} \boxtimes \mathbb{B}}$ , i.e.,

 $\widehat{\mathbb{A}\boxtimes\mathbb{B}}\simeq\mathsf{Lex}[\mathbb{A}^{op},\mathbb{B}^{op};k\text{-}\mathrm{Mod}]$ 

has the universal property of  $\widehat{\mathbb{A} \circ \mathbb{B}}$  and it is **abelian**.

 $Cocts[\overline{A \boxtimes B}, \mathbb{C}] \simeq Rex[\overline{A \boxtimes B}, \mathbb{C}] \simeq Rex[\overline{A}, \mathbb{B}; \mathbb{C}]$ 

# Existence of Deligne's product

Theorem For abelian A,B, TFAE

- 1.  $\mathbb{A} \bullet \mathbb{B}$  exists.
- 2.  $\mathbb{A} \boxtimes \mathbb{B}$  is abelian.

#### Proof.

 $(2 \Rightarrow 1)$  Lemma.

 $(1 \Rightarrow 2)$  By Lemma, enough to prove  $\widehat{\mathbb{A} \bullet \mathbb{B}} \simeq \widehat{\mathbb{A} \boxtimes \mathbb{B}}$ , i.e.,

$$\widehat{\mathbb{A} \boxtimes \mathbb{B}} \simeq \mathsf{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k\text{-}\mathrm{Mod}]$$

has the universal property of  $\widehat{\mathbb{A} \circ \mathbb{B}}$  and it is **abelian**.

$$Cocts[\widehat{\mathbb{A} \boxtimes \mathbb{B}}, \mathbb{C}] \simeq Rex[\mathbb{A} \boxtimes \mathbb{B}, \mathbb{C}] \simeq Rex[\mathbb{A}, \mathbb{B}; \mathbb{C}]$$

< ロ > < 同 > < 三 >

## Proof cont.

Theorem The reflection

#### $[(\mathbb{A} \otimes \mathbb{B})^{op}, k \operatorname{-Mod}] \to \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]$

is exact if A,B are abelian.

Proof.

- ► Follows from: the reflection  $[\mathbb{A}^{op}, k\text{-Mod}] \rightarrow \text{Lex}[\mathbb{A}^{op}, k\text{-Mod}]$  is *lex*.
- Follows from:

 $\mathsf{Lex}[\mathbb{A}^{op}, k\operatorname{-Mod}] = \mathsf{Sh}(\mathbb{A}, J) \subset [\mathbb{A}^{op}, k\operatorname{-Mod}]$ 

J generated by  $\{e : A' \rightarrow A \text{ epi}\}$  (because A is abelian).

# Proof cont.

Theorem The reflection

```
[(\mathbb{A} \otimes \mathbb{B})^{op}, k \operatorname{-Mod}] \to \operatorname{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k \operatorname{-Mod}]
```

is exact if  $\mathbb{A}, \mathbb{B}$  are abelian.

Proof.

- ► Follows from: the reflection  $[\mathbb{A}^{op}, k\text{-Mod}] \rightarrow \text{Lex}[\mathbb{A}^{op}, k\text{-Mod}]$  is *lex*.
- Follows from:

 $\mathsf{Lex}[\mathbb{A}^{op}, k\operatorname{-Mod}] = \mathsf{Sh}(\mathbb{A}, J) \subset [\mathbb{A}^{op}, k\operatorname{-Mod}]$ 

J generated by  $\{e : A' \rightarrow A \text{ epi}\}$  (because A is abelian).

# Proof cont.

```
Theorem
The reflection
```

```
[(\mathbb{A} \otimes \mathbb{B})^{op}, k\text{-Mod}] \to \text{Lex}[\mathbb{A}^{op}, \mathbb{B}^{op}; k\text{-Mod}]
```

is exact if  $\mathbb{A}, \mathbb{B}$  are abelian.

Proof.

- ► Follows from: the reflection  $[\mathbb{A}^{op}, k\text{-Mod}] \rightarrow \text{Lex}[\mathbb{A}^{op}, k\text{-Mod}]$  is *lex*.
- Follows from:

```
\text{Lex}[\mathbb{A}^{op}, k\text{-Mod}] = \text{Sh}(\mathbb{A}, J) \subset [\mathbb{A}^{op}, k\text{-Mod}]
```

*J* generated by  $\{e : A' \rightarrow A \text{ epi}\}$  (because  $\mathbb{A}$  is abelian).

# Summary

We showed, for a pair of abelian categories TFAE

- Their Deligne tensor product exists.
- Their tensor as fin. cocomplete categories is abelian.

< ロ > < 同 > < 三 >

ъ

#### Enough to find two abelian $\mathbb{A}, \mathbb{B}$ with $\mathbb{A} \boxtimes \mathbb{B}$ not abelian.

#### Definition/Theorem (Chase, Bourbaki, 1960s)

A *k*-algebra *R* is *left coherent* iff R-Mod<sub>f</sub> is abelian iff every f.g. left ideal is f.p.

#### Theorem (Soublin, 1968)

There exist two commutative coherent  $\mathbb{Q}$ -algebras R, S with R  $\otimes$  S not coherent.

#### Proof.

Set  $R = \mathbb{Q}[x]$ ,  $S = (\mathbb{Q}^{\mathbb{N}})[[u, t]]$ .

So R-Mod<sub>f</sub>  $\boxtimes$  S-Mod<sub>f</sub> is not abelian, and the Deligne's tensor R-Mod<sub>f</sub> • S-Mod<sub>f</sub> does not exist.

Enough to find two abelian  $\mathbb{A}, \mathbb{B}$  with  $\mathbb{A} \boxtimes \mathbb{B}$  not abelian.

#### Definition/Theorem (Chase, Bourbaki, 1960s)

A *k*-algebra *R* is *left coherent* iff R-Mod<sub>f</sub> is abelian iff every f.g. left ideal is f.p.

#### Theorem (Soublin, 1968)

There exist two commutative coherent  $\mathbb{Q}$ -algebras R, S with  $R\otimes S$  not coherent.

#### Proof.

Set  $R = \mathbb{Q}[x]$ ,  $S = (\mathbb{Q}^{\mathbb{N}})[[u, t]]$ .

So R-Mod<sub>f</sub>  $\boxtimes$  S-Mod<sub>f</sub> is not abelian, and the Deligne's tensor R-Mod<sub>f</sub> • S-Mod<sub>f</sub> does not exist.

Enough to find two abelian  $\mathbb{A}, \mathbb{B}$  with  $\mathbb{A} \boxtimes \mathbb{B}$  not abelian.

#### Definition/Theorem (Chase, Bourbaki, 1960s)

A *k*-algebra *R* is *left coherent* iff  $R-Mod_f$  is abelian iff every f.g. left ideal is f.p.

#### Theorem (Soublin, 1968)

There exist two commutative coherent  $\mathbb{Q}$ -algebras R, S with  $R \otimes S$  not coherent.

#### Proof.

Set  $R = \mathbb{Q}[x], S = (\mathbb{Q}^{\mathbb{N}})[[u, t]].$ 

So R-Mod<sub>f</sub>  $\boxtimes$  S-Mod<sub>f</sub> is not abelian, and the Deligne's tensor R-Mod<sub>f</sub> • S-Mod<sub>f</sub> does not exist.

Enough to find two abelian  $\mathbb{A}, \mathbb{B}$  with  $\mathbb{A} \boxtimes \mathbb{B}$  not abelian.

#### Definition/Theorem (Chase, Bourbaki, 1960s)

A *k*-algebra *R* is *left coherent* iff  $R-Mod_f$  is abelian iff every f.g. left ideal is f.p.

#### Theorem (Soublin, 1968)

There exist two commutative coherent  $\mathbb{Q}$ -algebras R, S with  $R \otimes S$  not coherent.

#### Proof.

Set  $R = \mathbb{Q}[x]$ ,  $S = (\mathbb{Q}^{\mathbb{N}})[[u, t]]$ .

So R-Mod<sub>f</sub>  $\boxtimes$  S-Mod<sub>f</sub> is not abelian, and the Deligne's tensor R-Mod<sub>f</sub> • S-Mod<sub>f</sub> does not exist.

イロン 不得 とくほ とくほとう

Enough to find two abelian  $\mathbb{A}, \mathbb{B}$  with  $\mathbb{A} \boxtimes \mathbb{B}$  not abelian.

#### Definition/Theorem (Chase, Bourbaki, 1960s)

A *k*-algebra *R* is *left coherent* iff  $R-Mod_f$  is abelian iff every f.g. left ideal is f.p.

#### Theorem (Soublin, 1968)

There exist two commutative coherent  $\mathbb{Q}$ -algebras R, S with  $R \otimes S$  not coherent.

#### Proof.

Set  $R = \mathbb{Q}[x]$ ,  $S = (\mathbb{Q}^{\mathbb{N}})[[u, t]]$ .

So R-Mod<sub>f</sub>  $\boxtimes$  S-Mod<sub>f</sub> is not abelian, and the Deligne's tensor R-Mod<sub>f</sub> • S-Mod<sub>f</sub> does not exist.

## Conclusion

- Deligne's tensor A B does not always exist.
- When  $\mathbb{A} \bullet \mathbb{B}$  exists it is (equivalent to)  $\mathbb{A} \boxtimes \mathbb{B}$ .
- ► Better use the product of fin. cocomplete categories ⊠.

# Bibliography

- P. Deligne Catégories tannakiennes The Grothendieck Festschrift, Vol. II. Progr. Math. 87, 111–195. Birkhäuser Boston, 1990
- G. M. Kelly Structures defined by finite limits in the enriched context. I Cahiers Topologie Géom. Différentielle, 23. 1982.
- T. Kerler and V. Lyubashenko Non-semisimple topological guantum field theories for 3-manifolds with corners LNM 1765, Springer-Verlag, Berlin, 2001.



N. Lyubashenko Squared Hopf algebras Mem. Amer. Math. Soc. 142, 1999.

J-P. Soublin Anneaux et modules cohérents J. Algebra, 15. 1970