The ultra-quasi-metrically injective hull of a T_0 -ultra-quasi-metric space

Hans-Peter A. Künzi

hans-peter.kunzi@uct.ac.za

Olivier Olela Otafudu

olivier.olelaotafudu@uct.ac.za

Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa Let X be a set and $u : X \times X \rightarrow [0, \infty)$ be a function mapping into the set $[0, \infty)$ of non-negative reals. Then u is an *ultra-quasi-pseudometric* on X if

(i) u(x, x) = 0 for all $x \in X$, and (ii) $u(x, z) \le \max\{u(x, y), u(y, z)\}$ whenever $x, y, z \in X$.

Note that the so-called *conjugate* u^{-1} of u, where $u^{-1}(x, y) = u(y, x)$ whenever $x, y \in X$, is an ultra-quasi-pseudometric, too.

The set of open balls

 $\{\{y \in X : u(x, y) < \epsilon\} : x \in X, \epsilon > 0\}$

yields a base for the topology $\tau(u)$ induced by u on X.

If u also satisfies the condition

(iii) for any $x, y \in X$, u(x, y) = 0 = u(y, x) implies that x = y, then u is called a T_0 -ultra-quasi-metric.

Observe that then $u^s = u \vee u^{-1}$ is an *ultra-metric* on X.

We next define a canonical T_0 -ultra-quasimetric on $[0, \infty)$.

Example 1 Let $X = [0, \infty)$ be equipped with n(x, y) = x if $x, y \in X$ and x > y, and n(x, y) = 0 if $x, y \in X$ and $x \leq y$.

It is easy to check that (X, n) is a T_0 ultra-quasi-metric space.

Note also that for $x, y \in [0, \infty)$ we have $n^s(x, y) = \max\{x, y\}$ if $x \neq y$ and n(x, y) = 0 if x = y.

Observe that the ultra-metric n^s is complete on $[0, \infty)$ (compare Example 2 below).

Furthermore 0 is the only non-isolated point of $\tau(n^s)$.

Indeed $A = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is a compact subspace of $([0, \infty), n^s)$.

In some cases we need to replace $[0, \infty)$ by $[0, \infty]$ (where for an ultra-quasi-pseudometric u attaining the value ∞ the strong triangle inequality (ii) is interpreted in the obvious way).

In such a case we shall speak of an *ex*tended ultra-quasi-pseudometric.

In the following we sometimes apply concepts from the theory of (ultra-)quasipseudometrics to extended (ultra-)quasipseudometrics (without changing the usual definitions of these concepts). A map $f: (X, u) \to (Y, v)$ between two (ultra-)quasi-pseudometric spaces (X, u)and (Y, v) is called *non-expansive* provided that $v(f(x), f(y)) \leq u(x, y)$ whenever $x, y \in X$.

It is called an *isometric map* provided that v(f(x), f(y)) = u(x, y) whenever $x, y \in X$.

Two (ultra-)quasi-pseudometric spaces (X, u)and (Y, v) will be called *isometric* provided that there exists a bijective isometric map $f: (X, u) \to (Y, v)$.

Lemma 1 Let $a, b, c \in [0, \infty)$. Then the following conditions are equivalent:

(a) $n(a,b) \leq c$.

(b) $a \leq \max\{b, c\}.$

Corollary 1 Let (X, u) be an ultraquasi-pseudometric space. Consider f: $X \to [0, \infty)$ and let $x, y \in X$. Then the following are equivalent:

(a) $n(f(x), f(y)) \le u(x, y);$

(b) $f(x) \le \max\{f(y), u(x, y)\}.$

Corollary 2 Let (X, u) be an ultraquasi-pseudometric space.

(a) Then $f : (X, u) \to ([0, \infty), n)$ is a contracting map if and only if $f(x) \leq \max\{f(y), u(x, y)\}$ whenever $x, y \in X$.

(b) Then $f : (X, u) \to ([0, \infty), n^{-1})$ is a contracting map if and only if $f(x) \leq \max\{f(y), u(y, x)\}$ whenever $x, y \in X$.

Strongly tight function pairs

Definition 1 Let (X, u) be a T_0 -ultraquasi-metric space and let $\mathcal{FP}(X, u)$ be the set of all pairs $f = (f_1, f_2)$ of functions where $f_i : X \to [0, \infty)$ (i = 1, 2).

For any such pairs (f_1, f_2) and (g_1, g_2) set

 $N((f_1, f_2), (g_1, g_2)) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.$

It is obvious that N is an extended T_0 ultra-quasi-metric on the set $\mathcal{FP}(X, u)$ of these function pairs.

Let (X, u) be a T_0 -ultra-quasi-metric space.

We shall say that a pair $f \in \mathcal{FP}(X, u)$ is *strongly tight* if for all $x, y \in X$, we have $u(x, y) \leq \max\{f_2(x), f_1(y)\}.$

The set of all strongly tight function pairs of a T_0 -ultra-quasi-metric space (X, u)will be denoted by $\mathcal{UT}(X, u)$. **Lemma 2** Let (X, u) be a T_0 -ultra-quasimetric space. For each $a \in X$, $f_a(x) :=$ (u(a, x), u(x, a)) whenever $x \in X$, is a strongly tight pair belonging to $\mathcal{UT}(X, u)$.

Let (X, u) be a T_0 -ultra-quasi-metric space.

We say that a function pair $f = (f_1, f_2)$ is *minimal* among the strongly tight pairs on (X, u) if it is a strongly tight pair and if $g = (g_1, g_2)$ is strongly tight on (X, u)and for each $x \in X$, $g_1(x) \leq f_1(x)$ and $g_2(x) \leq f_2(x)$, then f = g.

Minimal strongly tight function pairs are also called *extremal strongly tight function pairs*.

By $\nu_q(X, u)$ (or more briefly, $\nu_q(X)$) we shall denote the set of all minimal strongly tight function pairs on (X, u) equipped with the restriction of N to $\nu_q(X)$, which we shall denote again by N. We note that the restriction of N to $\nu_q(X)$ is indeed a T_0 -ultra-quasi-metric on $\nu_q(X, u)$.

In the following we shall call $(\nu_q(X), N)$ the *ultra-quasi-metrically injective hull* of (X, u).

Corollary 3 Let (X, u) be a T_0 -ultraquasi-metric space. If $f = (f_1, f_2)$ is minimal strongly tight, then

$$f_1(x) \le \max\{f_1(y), u(y, x)\}$$

and

$$f_2(x) \le \max\{f_2(y), u(x, y)\}$$

whenever $x, y \in X$. Thus

$$f_1: (X, u) \to ([0, \infty), n^{-1})$$

and

$$f_2: (X, u) \to ([0, \infty), n)$$

are contracting maps.

Lemma 3 Suppose that (f_1, f_2) is a minimal strongly tight pair on a T_0 ultra-quasi-metric space (X, u). Then $f_2(x) =$ $\sup\{u(x, y) : y \in X \text{ and}$ $u(x, y) > f_1(y)\}$ and $f_1(x) =$ $\sup\{u(y, x) : y \in X \text{ and } u(y, x) > f_2(y)\}$ whenever $x \in X$.

Lemma 4 Let $(f_1, f_2), (g_1, g_2)$ be minimal strongly tight pairs of functions on a T_0 -ultra-quasi-metric space (X, u). Then

 $N((f_1, f_2), (g_1, g_2))$ = $\sup_{x \in X} n(f_1(x), g_1(x)) = \sup_{x \in X} n(g_2(x), f_2(x)).$ **Corollary 4** Let (X, u) be a T_0 -ultraquasi-metric space. Any minimal strongly tight function pair $f = (f_1, f_2)$ on X satisfies the following conditions:

$$f_1(x) = \sup_{y \in X} n(u(y, x), f_2(y)) =$$
$$\sup_{y \in X} n(f_1(y), u(x, y))$$
$$y \in X$$

and

$$\begin{split} f_2(x) &= \sup_{y \in X} n(u(x,y),f_1(y)) = \\ &\sup_{y \in X} n(f_2(y),u(y,x)) \\ & whenever \; x \in X. \end{split}$$

Proposition 1 Let $f = (f_1, f_2)$ be a strongly tight function pair on a T_0 ultra-quasi-metric space (X, u) such that

 $f_1(x) \le \max\{f_1(y), u(y, x)\} \text{ and}$ $f_2(x) \le \max\{f_2(y), u(x, y)\}$ whenever $x, y \in X$.

Furthermore suppose that there is a sequence $(a_n)_{n \in \mathbb{N}}$ in X with

$$\lim_{n \to \infty} f_1(a_n) = 0$$

and

$$\lim_{n \to \infty} f_2(a_n) = 0.$$

Then f is a minimal strongly tight pair.

Envelopes or hulls of T_0 -ultra-quasimetric spaces

Lemma 5 Let (X, u) be a T_0 -ultra-quasimetric space. For each $a \in X$, the pair f_a belongs to $\nu_q(X, u)$.

Theorem 1 Let (X, u) be a T_0 -ultraquasi-metric space.

For each $f \in \nu_q(X, u)$ and $a \in X$ we have that $N(f, f_a) = f_1(a)$ and $N(f_a, f) = f_2(a)$.

The map $e_X : (X, u) \rightarrow (\nu_q(X, u), N)$ defined by $e_X(a) = f_a$ whenever $a \in X$ is an isometric embedding.

Corollary 5 Let (X, u) be a T_0 -ultraquasi-metric space.

Then N is indeed a T_0 -ultra-quasi-metric on $\nu_q(X)$. **Lemma 6** Suppose that (X, u) is a T_0 ultra-quasi-metric space and $(f_1, f_2) \in \nu_q(X, u)$ such that $f_1(a) = 0 = f_2(a)$ for some $a \in X$.

Then $(f_1, f_2) = e_X(a)$.

Lemma 7 Let (X, u) be a T_0 -ultra-quasimetric space. Then for any $f, g \in \nu_q(X, u)$ we have that

 $N(f,g) = \sup\{u(x_1, x_2) : x_1, x_2 \in X, \\ u(x_1, x_2) > f_2(x_1) \text{ and } u(x_1, x_2) > g_1(x_2)\}.$

Remark 1 It follows from the distance formula in Lemma 7 that for any T_0 ultra-quasi-metric space (X, u) the isometric map $e_X : (X, u) \to (\nu_q(X), N)$ has the following tightness property :

If q is any ultra-quasi-pseudometric on $\nu_q(X, u)$ such that $q \leq N$ and $q(e_X(x), e_X(y)) = N(e_X(x), e_X(y))$ whenever $x, y \in X$, then N(f, g) = q(f, g)whenever $f, g \in \nu_q(X, u)$.

15

q-spherical completeness

Let (X, u) be an ultra-quasi-pseudometric space and for each $x \in X$ and $r \in [0, \infty)$ let

$$C_u(x,r) = \{ y \in X : u(x,y) \le r \}$$

be the $\tau(u^{-1})$ -closed ball of radius r at x.

Lemma 8 Let (X, u) be an ultra-quasipseudometric space.

Moreover let $x, y \in X$ and $r, s \ge 0$.

 $\begin{array}{l} \textit{Then } C_u(x,r) \cap C_{u^{-1}}(y,s) \neq \emptyset \textit{ if and} \\ \textit{only if } u(x,y) \leq \max\{r,s\}. \end{array}$

Definition 2 Let (X, u) be an ultraquasi-pseudometric space. Let $(x_i)_{i \in I}$ be a family of points in X and let $(r_i)_{i \in I}$ and $(s_i)_{i \in I}$ be families of nonnegative reals. We say that

 $(C_u(x_i, r_i), C_{u^{-1}}(x_i, s_i))_{i \in I}$

has the strong mixed binary intersection property provided that $u(x_i, x_j) \leq \max\{r_i, s_j\}$ whenever $i, j \in I$.

We say that (X, u) is q-spherically complete provided that each family

 $(C_u(x_i, r_i), C_{u^{-1}}(x_i, s_i))_{i \in I}$

possessing the strong mixed binary intersection property satisfies

 $\cap_{i \in I} (C_u(x_i, r_i) \cap C_{u^{-1}}(x_i, s_i)) \neq \emptyset.$

Remark 2 It is important to note that in Definition 2 we can assume without loss of generality that the points $x_i \ (i \in I)$ are pairwise distinct.

Hence that seemingly weaker condition is equivalent to our definition. **Example 2** The T_0 -ultra-quasi-metric space $([0, \infty), n)$ is q-spherically complete.

Remark An ultra-metric space (X, m)is called *spherically complete* if for any family $(x_i)_{i \in I}$ of points of X and any family of positive reals $(r_i)_{i \in I}$ such that

 $m(x_i, x_j) \le \max\{r_i, r_j\}$

whenever $i, j \in I$ we have that

$$\bigcap_{i \in I} C_m(x_i, r_i) \neq \emptyset.$$

Let (X, m) be an ultra-metric space.

We recall that the ultra-metrically injective hull $(\nu_s(X), E)$ of X is constructed as follows:

Call a function $f: X \to [0, \infty)$ strongly tight provided that $m(x, y) \leq \max\{f(x), f(y)\}$ whenever $x, y \in X$.

It is *minimal strongly tight* if it is minimal with respect to the point-wise order on the strongly tight functions on X.

Note that such a function f satisfies

 $f(x) \le \max\{f(y), m(x, y)\}$

whenever $x, y \in X$.

Let $\nu_s(X)$ be the set of all minimal strongly tight functions on (X, m) equipped with

$$E(f,g) = \sup_{x \in X} n^s(f(x),g(x))$$

whenever $f, g \in \nu_s(X)$.

Then the ultra-metric space $(\nu_s(X), E)$ yields the ultra-metrically injective hull of (X, m) with isometric embedding $x \mapsto$ $m(x, \cdot)$ where $x \in X$. Let us observe that there is a different, but equivalent definition of the ultra-metric distance E, namely

 $E(f,g) = \inf_{x \in X} \max\{f(x), g(x)\}$ whenever $f, g \in \nu_s(X)$ and $f \neq g$. **Proposition 2** (a) Let (X, u) be an ultra-quasi-pseudometric space.

Then (X, u) is q-spherically complete if and only if (X, u^{-1}) is q-spherically complete.

(b) Let (X, u) be a T_0 -ultra-quasi-metric space.

If (X, u) is q-spherically complete, then (X, u^s) is spherically complete.

As usual, we shall call a quasi-pseudometric space (X, d) bicomplete provided that the pseudometric d^s on X is complete.

We recall that each T_0 -ultra-quasi-metric space (X, u) has an up-to-isometry unique T_0 -ultra-quasi-metric bicompletion $(\widetilde{X}, \widetilde{u})$, in which X is $\tau(\widetilde{u}^s)$ -dense.

Proposition 3 Each q-spherically complete T_0 -ultra-quasi-metric space (X, u)is bicomplete. A T_0 -ultra-quasi-metric space (Y, u_Y) is called *ultra-quasi-metrically injective* provided that for any T_0 -ultra-quasi-metric space (X, u_X) , any subspace A of (X, u_X) and any non-expansive map $f : A \rightarrow$ (Y, u_Y) , f can be extended to a nonexpansive map $g : (X, u_X) \rightarrow (Y, u_Y)$.

Theorem 2 A T_0 -ultra-quasi-metric space is q-spherically complete if and only if it is ultra-quasi-metrically injective. **Proposition 4** Let (X, u) be a T_0 -ultraquasi-metric space. Then $(f_1, f_2) \in \nu_q(X, u)$ implies that $(f_2, f_1) \in \nu_q(X, u^{-1})$.

It follows that

 $s: (\nu_q(X, u), N) \to (\nu_q(X, u^{-1}), N^{-1})$ where s is defined by s((f, g)) = (g, f)whenever $(f, g) \in \nu_q(X, u)$ is a bijective isometric map.

(Indeed the ultra-quasi-metrically injective hull $(\nu_q(X, u), N)$ of (X, u) is isometric to the conjugate space of the ultra-quasi-metrically injective hull

$$(\nu_q(X, u^{-1}), N)$$

 $of(X, u^{-1}).)$

Proposition 5 Let (X, m) be an ultrametric space.

Then p(f) = (f, f) defines an isometric embedding of

 $(\nu_s(X,m),E)$

into

 $(\nu_q(X,m),N).$

Proposition 6 Let (X, u) be a T_0 -ultraquasi-metric space.

If $s = (s_1, s_2)$ is a minimal strongly tight pair of functions on the T_0 -ultraquasi-metric space $(\nu_q(X), N)$, then

 $s \circ e_X$

is a minimal strongly tight pair of functions on (X, u). **Lemma 9** Let A be a nonempty subset of a T_0 -ultra-quasi-metric space (X, u)and let

 $(r_1, r_2) : A \longrightarrow [0, \infty)$

be such that for all $x, y \in A$, $u(x, y) \le \max\{r_2(x), r_1(y)\}$.

Then there exists $(R_1, R_2) : X \longrightarrow [0, \infty)$ which extends the pair (r_1, r_2) such that for all

 $x, y \in X, u(x, y) \le \max\{R_2(x), R_1(y)\}.$

Moreover, there exists a minimal strongly tight pair (f_1, f_2) of functions defined on X such that for all $x \in X$, $f_1(x) \leq R_1(x)$ and $f_2(x) \leq R_2(x)$.

Proposition 7 The following statements are true for any T_0 -ultra-quasi-metric space (X, u).

(a) $(\nu_q(X), N)$ is q-spherically complete.

(b) $(\nu_q(X), N)$ is an ultra-quasi-metrically

injective hull of X, i.e. no proper subset of $\nu_q(X)$ which contains X as a subspace is q-spherically complete.

The ultra-quasi-metrically injective hull of the T_0 -ultra-quasi-metric space (X, u)is unique up to isometry. **Corollary 6** The following statements are equivalent for a T_0 -ultra-quasi-metric space (X, u):

(a) (X, u) is q-spherically complete. (b) For each $f \in \nu_q(X)$ there is $x \in X$ such that $f_1 = (f_x)_1$ and $f_2 = (f_x)_2$. (c) For each $f \in \nu_q(X)$ there is $x \in X$ such that $f_1(x) = 0 = f_2(x)$. **Remark 3** Let (X, u) be a T_0 -ultraquasi-metric space and let $\nu_q(X, u)$ be its ultra-quasi-metrically injective hull.

Since $\nu_q(X, u)$ is bicomplete, the $\tau(N^s)$ closure of $e_X(X)$ in $\nu_q(X, u)$ yields a subspace of $\nu_q(X, u)$ that is isometric to the (quasi-metric) bicompletion of (X, u).

Of course, $f \in \nu_q(X, u)$ belongs to the $\tau(N^s)$ -closure of $e_X(X)$ if and only if there is a sequence $(a_n)_{n \in \mathbb{N}}$ in X such that $\lim_{n \to \infty} N^s(f_{a_n}, f) = 0$.

In the light of the distance formula proved above, this statement is equivalent to the existence of a sequence $(a_n)_{n\in\mathbb{N}}$ in X such that $\lim_{n\to\infty} f_1(a_n) =$ 0 and $\lim_{n\to\infty} f_2(a_n) = 0.$

Total boundedness in T_0 -ultra-quasimetric spaces

Recall that a quasi-pseudometric space (X, d) is called *totally bounded* provided that the pseudometric space (X, d^s) is totally bounded.

Lemma 10 Let (X, u) be a T_0 -ultraquasi-metric space that is totally bounded and let $\epsilon > 0$.

Then there is a finite subset E of X such that

 $\{f_1(x) : f \in \nu_q(X), x \in X, f_1(x) > \epsilon\} \cup \\ \{f_2(x) : f \in \nu_q(X), x \in X, f_2(x) > \epsilon\} = \\ \{u(e, e') : e, e' \in E, u(e, e') > \epsilon\}.$

It is known that each totally bounded T_0 -quasi-metric space (X, d) has a totally bounded Isbell-hull $\epsilon_q(X, d)$. Next we establish a similar result for T_0 -ultraquasi-metric spaces. **Proposition 8** If (X, u) is a totally bounded T_0 -ultra-quasi-metric space, then the T_0 -ultra-quasi-metric space $(\nu_q(X, u), N)$ is totally bounded, too.

Recall that a compact ultra-metric space (X, m) is spherically complete.

Corollary 7 Let (X, m) be a totally bounded ultra-metric space. Then the completion of (X, m) is isometric to $(\nu_s(X), E)$.

As usual, we shall call an ultra-quasipseudometric space (X, u) joincompact if $\tau(u^s)$ is compact. It is readily seen that a joincompact T_0 -ultra-quasi-metric space need not be q-spherically complete.

Example 3 Let $X = \{0, 1\}$ be equipped with the discrete metric u defined by u(x, y) = 1 if $x \neq y$, and u(x, y) = 0otherwise. Then (X, u) is not q-spherically complete, although it is spherically complete. We now compute the ultra-quasi-metrically injective hull of (X, u). If $f = (f_1, f_2) \in$ $\nu_q(X)$ is strongly tight, then we have $1 = u(0, 1) \leq \max\{f_2(0), f_1(1)\}$ and $1 = u(1, 0) \leq \max\{f_2(1), f_1(0)\}.$

If f is also minimal strongly tight, then we only find four pairs

$$((f_1(0), f_1(1)), (f_2(0), f_2(1)))$$

determined as follows:

$$((0, 1), (0, 1)), ((1, 1), (0, 0)),$$

 $((0, 0), (1, 1)), ((1, 0), (1, 0)).$

Identifying these points $f = (f_1, f_2)$ according to $(f_1(0), f_1(1)) = (\alpha, \beta)$ with $\alpha, \beta \in \{0, 1\}$

we obtain

$$N((\alpha, \beta), (\alpha', \beta')) = 1$$

if $(\alpha = 1 \text{ and } \alpha' = 0)$ or $(\beta = 1 \text{ and } \beta' = 0)$, and
 $N((\alpha, \beta), (\alpha', \beta')) = 0$

otherwise.

In particular the example shows that a spherically complete ultra-metric space need not be q-spherically complete.

Corollary 8 If (X, u) is a T_0 -ultraquasi-metric space such that $\tau(u^s)$ is compact, then N^s induces a compact topology on $\nu_q(X, u)$.

Lemma 11 Let (X, u) be a T_0 -ultraquasi-metric space. Let $f = (f_1, f_2) \in$ $\nu_q(X)$ be such that there is $a \in X$ with $f_1(a) \leq \inf_{x \in X} f_2(x)$. Then $f_1(a) = 0$.

(Note that the result remains true if f_1 and f_2 are interchanged in the statement.) **Lemma 12** Let (X, u) be a joincompact T_0 -ultra-quasi-metric space and let $f = (f_1, f_2) \in \nu_q(X)$. Then there is $x \in X$ such that $f_1(x) = 0$ or $f_2(x) =$ 0.

We note that in the case of an ultrametric Lemma 12 implies the afore-mentioned result that a compact ultra-metric space (X, m) is spherically complete, since all functions $f \in \nu_s(X)$ must be of the form $m(x, \cdot)$ for some $x \in X$ because they have a zero (compare Lemma 6).

On the other hand Example 3 yields two function pairs ((1, 1), (0, 0)) and ((0, 0), (1, 1))witnessing that joincompactness does not imply q-spherical completeness, since there is no $x \in X$ such that $f_1(x) = 0 =$ $f_2(x)$.

References:

[1] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405–439.

[2] J.M. Bayod and J. Martínez-Maurica,
Ultrametrically injective spaces, Proc. Amer.
Math. Soc. 101 (1987), 571–576.

[3] M.M. Bonsangue, F. van Breugel, J. J. M. M. Rutten, Generalized ultrametric spaces: completion, topology, and powerdomains via the Yoneda embedding (1995), CWIreports/AP/CS-R9560.

[4] A.W.M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), 321–402. [5] R. Espínola and M.A. Khamsi, Introduction to hyperconvex spaces, in: Handbook of metric fixed point theory, Kluwer, Dordrecht, 2001, 391–435.

[6] P. Fletcher and W.F. Lindgren, Quasiuniform Spaces, Dekker, New York, 1982.

[7] U. Heckmanns, Aspects of ultrametric spaces, Queen's Papers in Pure and Applied Mathematics, 109, Queen's University, Kingston, ON, 1998.

[8] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65–76. [9] E.M. Jawhari, M. Pouzet and D. Misane, Retracts: graphs and ordered sets from the metric point of view, Contemp. Math. 57 (1986), 175–226.

[10] E. Kemajou, H.-P.A. Künzi, O.O. Otafudu, The Isbell-hull of a di-space, Topology Appl. (to appear).

[11] M.A. Khamsi and W.A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, John Wiley, New York, 2001.

[12] H.-P.A. Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486 (2009), 239–304. [13] S. Priess-Crampe and P. Ribenboim, Generalized ultrametric spaces. II, Abh. Math. Sem. Univ. Hamburg 67 (1997), 19–31.

[14] S. Salbany, Injective objects and morphisms, in: Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988), World Sci. Publ., Teaneck, NJ, 1989, pp. 394–409.

[15] E. Schörner, Ultrametric fixed point theorems and applications, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), 353–359, Fields Inst. Commun., 33, Amer. Math. Soc., Providence, RI, 2003.