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Some mysterious Mal’tsev conditions

Theorem [Hagemann & Mitschke, On n-permutable congruences, 1973]
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2 every reflexive relation R on A satisfies R < R"~1;

3 every reflexive relation R on A satisfies R < R"™1. O
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Some mysterious Mal’tsev conditions

Theorem [Hagemann & Mitschke, On n-permutable congruences, 1973]

For any equational class V and any A € 'V, the following are equivalent:
1 the congruence relations on A are n-permutable;
2 every reflexive relation R on A satisfies R < R"~1;
3 every reflexive relation R on A satisfies R < R"™1. O
The mystery
» Conditions 2 and 3 do not appear in [Carboni, Kelly & Pedicchio,
Some remarks on Maltsev and Goursat categories, 1993]
Nevertheless, all three conditions are purely categorical!
» We could, however, not find a categorical argument, and
» the proof Hagemann and Mitschke refer to was never published:

[Hagemann, Grundlagen der allgemeinen topologischen Algebra, in preparation]

What's going on?
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The associated imaginary co-operations

Hagemann and Mitschke’s result is correct

» 1< 2 is treated in [Martins—Ferreira & VdL, 2010]
2 < 3 is also true for varieties

But what about general categories?
» the result holds in regular categories with finite sums
» proof technique mimics the varietal proof,

» based on Dominique Bourn and Zurab Janelidze’s
approximate or imaginary co-operations
[Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

Basic idea [Bourn & Janelidze, 2008]
A Mal'tsev theory contains a Mal'tsev term p(x, y, z).
A regular Mal'tsev category has approximate Mal’tsev co-operations

X< AX) -2 X+ X+ X
which may be considered as imaginary co-operations p: X v~ 3X.
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The Mal'tsev case: 2-permutability n=2

Theorem [Mal'tsev, 1954]

For any variety of algebras 'V, the following are equivalent:

1 2-permutability of congruences: RS = SR
. . )Py y) = x
2 existence of a ternary operation p satisfying O
p(x;x,y) =y
Such a 'V is called a Mal’tsev variety.
Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek & Pedicchio, 1990]
For any regular category A, the following are equivalent:
1 2-permutability of congruences: RS = SR
2 every reflexive relation R is symmetric: R°P < R; RoP < R™L
3 every reflexive relation R is transitive: R? < R. RT< R O

Such an A is called a (regular) Mal’tsev category.



The Goursat case: 3-permutability
Theorem [Schmidt, 1969; Grotzer, Wille, 1970; Hagemann & Mitschke, 1973]
For any variety of algebras 'V, the following are equivalent:
1 3-permutability of congruences: RSR = SRS;
2 existence of quaternary operations p and q satisfying
p(vauyuz):Xv p(X7X7y7y)ZQ(X7X7y7y)) q(X)y)y’Z):Z;
3 existence of ternary operations r and s satisfying
r(x.y,y) = x, r(xx,y) = s(xy,y), s(x,xy) =y;
4 every reflexive relation R satisfies R < R?;

every reflexive relation R satisfies R < R?. O

9}

Such a Vis called a 3-permutable or Goursat variety.

A regular category with 3-permutable congruences
is called a (regular) Goursat category
[Carboni, Lambek & Pedicchio, 1990; Carboni, Kelly & Pedicchio, 1993].
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n-permutable categories

Theorem [Schmidt, 1969; Grotzer, Wille, 1970; Hagemann & Mitschke, 1973]

V is n-permutable when the following equivalent conditions hold:
n n

. —
1 n-permutability of congruences: RSRS - -+ = SRSR- - -;

2 existence of (n + 1)-ary operations vy, ..., v, satisfying
vo(X0y -+ -5 Xn) = X0, Vo (X0y - -+ s Xn) = X,

vi—1(x0, X0, X2, X2, . . . ) = Vi(X0, X0, X2, X2, . . . ), i even,

Vi1 (X0, X1, X1, X3, X3, . . . ) = Vi(X0, X1, X1, X3,X3, ... ), iodd;

w

existence of ternary operations wi, ..., w,_1 satisfying
Wl(Xv)/?)/):Xv anl()@xa)/):)/a
wi(X, X, y) = wit1(x, ¥, ¥), forie{l,...,n—2};

4 every reflexive relation R satisfies R < R~ !;

5 every reflexive relation R satisfies R” < R"™1. O

Notion of n-permutable category [Carboni, Kelly & Pedicchio, 1993].
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Natural approximate Mal’tsev co-operation on A:

X
<;>°Px = yoax
y o — Xo
1x+;x\ p%-l-lx <y> Px = xoax

Universal means A(X) limit of outer square

Theorem [Bourn & Janelidze, 2008]
Let A be a regular category with binary coproducts. TFAE:
1 If (o, p) is universal, then « is a regular epimorphism;
2 there exists an approximate Mal’tsev co-operation such that
a: A= 1y is aregular epimorphism;

3 A is a Mal'tsev category.
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Approximate Goursat co-operations

Natural approximate Goursat co-operations on A:

X X
0 A '3 " A 2
3X / ax\ 3X 2X / ﬁx\ 92X

1x+Vx+1xT A(X) Tlx-ﬂ-VH—lx 1x+VXT B(X) TVH—U
PX/ - . 9x o L Sx

ax“ Sax 3~ 3
V% 9x LV/H-VX VHXX'\ 2y %x
quaternary ternary

Theorem
Let A be a regular category with binary coproducts. TFAE:
1 If a or B is universal, then it is a regular epimorphism;

2 there exist approximate Goursat co-operations such that o and 3
are regular epimorphisms;

3 A is a Goursat category;

4 every reflexive relation R satisfies R < R. O
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Approximate Goursat co-operations

Natural approximate Goursat co-operations on A:

X X
L1 A L3 L1 A L2
3X/ O‘X\‘\ 3X 2X / ﬂx\ 2X

1X+VX+IXT A(X) T1x+vx+1x 1x+vxT B(X) TVX“FIX
Px - L Ax rx o sx

ax* Cax 3x < S 3x
quaternary ternary
Theorem
Let A be a regular category with binary coproducts. TFAE:
3 A is a Goursat category;
a every reflexive relation R satisfies RP < R2. O

What about condition 5?
5 Every reflexive relation R satisfies R? < R2.

Follows from the characterisation of 4-permutability!
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Main theorem: n-permutability

Natural approximate ternary co-operations on A, for n > 2:

2X Bx 2X
1x+Vy B(X) . Vix+1x
(w1)y P . (wa—1)y
3X £ (w2) . ,(aniz)x N 3X
Vx-Hxl/ e (ws)y i \le+vx
2X <———3X X =—=>2X
Ix+Vx Vx+1x
Lo
2X<——3X

Theorem
Let A be a regular category with binary coproducts. TFAE:
1 If « or B is universal, then it is a regular epimorphism;
2 there exist approximate co-operations with o and /3 regular epi;

3 A is an n-permutable category.
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Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if
every reflexive relation R satisfies R < R"~1, O
Lemma

If every reflexive relation R in A satisfies R? < R"~1 then

Ais (2n — 2)-permutable. O
Theorem

A regular category A with binary coproducts is n-permutable if and
only if every reflexive relation R satisfies R” < R"~1.

Proof of < in the Goursat case, n = 3.

R3 < R% implies that A is 2 - 3 — 2 = 4-permutable, so
RP < R = R3 < R2 = R3-1,
which gives 3-permutability. O
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Conclusion

» Hagemann and Mitschke’s theorem has a categorical counterpart:
Theorem [Rodelo & VdL, 2012]

For any regular category with binary sums A and any A € A, TFAE:
1 the equivalence relations on A are n-permutable;
2 every reflexive relation R on A satisfies R < R"~1;

3 every reflexive relation R on A satisfies R” < R"~1. O

» n-permutable categories with finite sums can be characterised
in terms of approximate co-operations

» but most importantly:

Dominique Bourn and Zurab Janelidze’s technique works!
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Further questions

» Do we really need binary sums?
» Counterexamples seem hard to construct:

> varieties have sums
> just “taking all finite algebras” or so will not work

» Embedding theorem for n-permutable categories?
» Direct and simple “purely categorical” proof?
» Closedness properties of relations

» How general is this technique?

» | tried to do homotopy of chain complexes
in semi-abelian categories... and failed



1x+Vx 7 B(X) Vx+1x



