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Some	mysterious	Mal’tsev	conditions

Theorem [Hagemann	&	Mitschke, On n-permutable	congruences, 1973]

For	any	equational	class V and	any A P V, the	following	are	equivalent:

1 the	congruence	relations	on A are n-permutable;

2 every	reflexive	relation R on A satisfies Rop ď Rn´1;

3 every	reflexive	relation R on A satisfies Rn ď Rn´1.

The	mystery

§ Conditions 2 and 3 do	not	appear	in [Carboni, Kelly	&	Pedicchio,

Some	remarks	on	Maltsev	and	Goursat	categories, 1993]

Nevertheless, all	three	conditions	are	purely	categorical!

§ We	could, however, not	find	a	categorical	argument, and

§ the	proof	Hagemann	and	Mitschke	refer	to	was	never	published:
[Hagemann, Grundlagen	der	allgemeinen	topologischen	Algebra, in	preparation]

What’s	going	on?
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The	associated	imaginary	co-operations

Hagemann	and	Mitschke’s	result	is	correct

§ 1 ô 2 is	treated	in [Martins–Ferreira	&	VdL,	2010]

2 ô 3 is	also	true for	varieties

But	what	about	general	categories?

§ the	result	holds	in	regular	categories with	finite	sums

§ proof	technique	mimics	the	varietal	proof,

§ based	on	Dominique	Bourn	and	Zurab	Janelidze’s
approximate or imaginary co-operations
[Bourn	&	Janelidze, Approximate	Mal’tsev	operations, 2008]

Basic	idea [Bourn	&	Janelidze, 2008]

A Mal’tsev	theory	contains	a Mal’tsev	term p(x, y, z).

A regular	Mal’tsev	category	has approximate	Mal’tsev	co-operations

X A(X)
αXlr lr pX ,2 X+ X+ X

which	may	be	considered	as imaginary	co-operations pX : X ù 3X.
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Overview
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The	Mal’tsev	case: 2-permutability

Theorem [Mal’tsev, 1954]

For	any	variety	of	algebras V, the	following	are	equivalent:

1 2-permutability	of	congruences: RS = SR

2 existence	of	a	ternary	operation p satisfying

#

p(x, y, y) = x

p(x, x, y) = y

Such	a V is	called	a Mal’tsev	variety.

Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek	&	Pedicchio, 1990]

For	any	regular	category A, the	following	are	equivalent:

1 2-permutability	of	congruences: RS = SR

2 every	reflexive	relation R is	symmetric: Rop ď R;

3 every	reflexive	relation R is	transitive: R2 ď R.

Such	an A is	called	a	(regular) Mal’tsev	category.
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The	Mal’tsev	case: 2-permutability n = 2

Theorem [Mal’tsev, 1954]

For	any	variety	of	algebras V, the	following	are	equivalent:

1 2-permutability	of	congruences: RS = SR

2 existence	of	a	ternary	operation p satisfying

#

p(x, y, y) = x

p(x, x, y) = y

Such	a V is	called	a Mal’tsev	variety.

Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek	&	Pedicchio, 1990]

For	any	regular	category A, the	following	are	equivalent:

1 2-permutability	of	congruences: RS = SR

2 every	reflexive	relation R is	symmetric: Rop ď R; Rop ď Rn´1

3 every	reflexive	relation R is	transitive: R2 ď R. Rn ď Rn´1

Such	an A is	called	a	(regular) Mal’tsev	category.



The	Goursat	case: 3-permutability
Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann	&	Mitschke, 1973]

For	any	variety	of	algebras V, the	following	are	equivalent:

1 3-permutability	of	congruences: RSR = SRS;

2 existence	of	quaternary	operations p and q satisfying

p(x, y, y, z) = x, p(x, x, y, y) = q(x, x, y, y), q(x, y, y, z) = z;

3 existence	of	ternary	operations r and s satisfying

r(x, y, y) = x, r(x, x, y) = s(x, y, y), s(x, x, y) = y;

4 every	reflexive	relation R satisfies Rop ď R2;

5 every	reflexive	relation R satisfies R3 ď R2.

Such	a V is	called	a 3-permutable or Goursat variety.

A regular	category	with 3-permutable	congruences
is	called	a	(regular) Goursat	category
[Carboni, Lambek	&	Pedicchio, 1990; Carboni, Kelly	&	Pedicchio, 1993].



The	Goursat	case: 3-permutability n = 3

Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann	&	Mitschke, 1973]

For	any	variety	of	algebras V, the	following	are	equivalent:

1 3-permutability	of	congruences: RSR = SRS;

2 existence	of	quaternary	operations p and q satisfying

p(x, y, y, z) = x, p(x, x, y, y) = q(x, x, y, y), q(x, y, y, z) = z;

3 existence	of	ternary	operations r and s satisfying

r(x, y, y) = x, r(x, x, y) = s(x, y, y), s(x, x, y) = y;

4 every	reflexive	relation R satisfies Rop ď R2; Rop ď Rn´1

5 every	reflexive	relation R satisfies R3 ď R2. Rn ď Rn´1

Such	a V is	called	a 3-permutable or Goursat variety.

A regular	category	with 3-permutable	congruences
is	called	a	(regular) Goursat	category
[Carboni, Lambek	&	Pedicchio, 1990; Carboni, Kelly	&	Pedicchio, 1993].



n-permutable	categories

Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann	&	Mitschke, 1973]

V is n-permutable when	the	following	equivalent	conditions	hold:

1 n-permutability	of	congruences:

n
hkkkikkkj

RSRS ¨ ¨ ¨ =

n
hkkkikkkj

SRSR ¨ ¨ ¨;

2 existence	of (n+ 1)-ary	operations v0, …, vn satisfying
$

’

&

’

%

v0(x0, . . . , xn) = x0, vn(x0, . . . , xn) = xn,

vi´1(x0, x0, x2, x2, . . . ) = vi(x0, x0, x2, x2, . . . ), i even,

vi´1(x0, x1, x1, x3, x3, . . . ) = vi(x0, x1, x1, x3, x3, . . . ), i odd;

3 existence	of	ternary	operations w1, …, wn´1 satisfying
#

w1(x, y, y) = x, wn´1(x, x, y) = y,

wi(x, x, y) = wi+1(x, y, y), for i P t1, . . . , n ´ 2u;

4 every	reflexive	relation R satisfies Rop ď Rn´1;

5 every	reflexive	relation R satisfies Rn ď Rn´1.

Notion	of n-permutable	category [Carboni, Kelly	&	Pedicchio, 1993].
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Approximate	Mal’tsev	co-operations
Natural approximate	Mal’tsev	co-operation on A:

X
ι1

z���
��
��
�� ι2

�$?
??

??
??

?

2X A(X)

αX

LR

pX
��

2X

3X

1X+∇X

Zd???????? ∇X+1X

:D��������

$

’

’

&

’

’

%

A x
x
y

E

˝pX = y˝αX

A x
y
y

E

˝pX = x˝αX

Universal means A(X) limit	of	outer	square

Theorem [Bourn	&	Janelidze, 2008]

Let A be	a	regular	category	with	binary	coproducts. TFAE:

1 If (α, p) is	universal, then α is	a	regular	epimorphism;

2 there	exists	an	approximate	Mal’tsev	co-operation	such	that
α : A ñ 1A is	a	regular	epimorphism;

3 A is	a	Mal’tsev	category.
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Approximate	Goursat	co-operations
Natural approximate	Goursat	co-operations on A:
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Theorem

Let A be	a	regular	category	with	binary	coproducts. TFAE:

1 If α or β is	universal, then	it	is	a	regular	epimorphism;

2 there	exist	approximate	Goursat	co-operations	such	that α and β
are	regular	epimorphisms;

3 A is	a	Goursat	category;

4 every	reflexive	relation R satisfies Rop ď R2.
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Let A be	a	regular	category	with	binary	coproducts. TFAE:

3 A is	a	Goursat	category;

4 every	reflexive	relation R satisfies Rop ď R2.

What	about	condition 5?

5 Every	reflexive	relation R satisfies R3 ď R2.

Follows	from	the	characterisation	of 4-permutability!



Approximate	Goursat	co-operations
Natural approximate	Goursat	co-operations on A:

X
ι1

s{ooo
ooo

oo ι3

#+OO
OOO

OOO

3X 3X

A(X)

αX

LR

pX
s{

qX
#+

4X

1X+∇X+1X

LR

∇X+∇X #+OO
OOO

OOO
4X

1X+∇X+1X

LR

∇X+∇Xs{ooo
ooo

oo

2X
quaternary

X
ι1

s{ooo
ooo

oo ι2

#+OO
OOO

OOO

2X 2X

B(X)

βX

LR

rX
s{

sX
#+

3X

1X+∇X

LR

∇X+1X #+OO
OOO

OOO
3X

∇X+1X

LR

1X+∇Xs{ooo
ooo

oo

2X
ternary

Theorem

Let A be	a	regular	category	with	binary	coproducts. TFAE:

3 A is	a	Goursat	category;

4 every	reflexive	relation R satisfies Rop ď R2.

What	about	condition 5?

5 Every	reflexive	relation R satisfies R3 ď R2.

Follows	from	the	characterisation	of 4-permutability!



Main	theorem: n-permutability
Natural approximate	ternary	co-operations on A, for n ě 2:

X
ι1

pwhhhhh
hhhhh

hhhhh
hhhhh ι2

'.VVVV
VVVVV

VVVVV
VVVVV

V

2X 2X

B(X)

βX

LR

(w1)X

pw (w2)X

y�
(w3)X

��

(wn´2)X

�%

(wn´1)X

'.3X

1X+∇X

LR

∇X+1X ��

3X

∇X+1X

LR

1X+∇X��
2X 3X

1X+∇X

lr

��

3X
∇X+1X

,2 2X

2X 3Xlr
¨ ¨ ¨

Theorem

Let A be	a	regular	category	with	binary	coproducts. TFAE:

1 If α or β is	universal, then	it	is	a	regular	epimorphism;

2 there	exist	approximate	co-operations	with α and β regular	epi;

3 A is	an n-permutable	category.
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Main	theorem: n-permutability

Theorem

A regular	category	with	binary	coproducts	is n-permutable	if	and	only	if
every	reflexive	relation R satisfies Rop ď Rn´1.

Lemma

If	every	reflexive	relation R in A satisfies Rn ď Rn´1 then
A is (2n ´ 2)-permutable.

Theorem

A regular	category A with	binary	coproducts	is n-permutable	if	and
only	if	every	reflexive	relation R satisfies Rn ď Rn´1.

Proof	of ð in	the	Goursat	case, n = 3.

R3 ď R2 implies	that A is 2 ¨ 3 ´ 2 = 4-permutable, so
Rop ď R4´1 = R3 ď R2 = R3´1,
which	gives 3-permutability.
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Conclusion

§ Hagemann	and	Mitschke’s	theorem	has	a	categorical	counterpart:

Theorem [Rodelo	&	VdL,	2012]

For	any	regular	category	with	binary	sums A and	any A P A, TFAE:

1 the	equivalence	relations	on A are n-permutable;

2 every	reflexive	relation R on A satisfies Rop ď Rn´1;

3 every	reflexive	relation R on A satisfies Rn ď Rn´1.

§ n-permutable	categories	with	finite	sums	can	be	characterised
in	terms	of	approximate	co-operations

§ but	most	importantly:

Dominique	Bourn	and	Zurab	Janelidze’s	technique	works!
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Further	questions

§ Do	we	really	need	binary	sums?
§ Counterexamples	seem	hard	to	construct:

§ varieties	have	sums
§ just	“taking	all	finite	algebras”	or	so	will	not	work

§ Embedding	theorem	for n-permutable	categories?

§ Direct	and	simple	“purely	categorical”	proof?
§ Closedness	properties	of	relations

§ How	general	is	this	technique?
§ I tried	to	do	homotopy	of	chain	complexes
in	semi-abelian	categories…	and	failed
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