On some mysterious Mal'tsev conditions and the associated imaginary co-operations

dedicated to George Janelidze

Tim Van der Linden
joint work with Diana Rodelo

Fonds de la Recherche Scientifique-FNRS
Université catholique de Louvain

Workshop on Category Theory
Coimbra, 13th July 2012

Some mysterious Mal'tsev conditions

Theorem [Hagemann \& Mitschke, On n-permutable congruences, 1973]
For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:
1 the congruence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
3 every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.

- Conditions 2 and 3 do not appear in [Carboni, Kelly \& Pedicchio, Some remarks on Maltsev and Goursat categories, 1993]
Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published:
[Hagemann, Grundlagen der allgemeinen topologischen Algebra, in preparation]

Some mysterious Mal'tsev conditions

Theorem [Hagemann \& Mitschke, On n-permutable congruences, 1973]
For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:
1 the congruence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
3 every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.
The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly \& Pedicchio, Some remarks on Maltsev and Goursat categories, 1993]
Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published: [Hagemann, Grundlagen der allgemeinen topologischen Algebra, in preparation]

Some mysterious Mal'tsev conditions

Theorem [Hagemann \& Mitschke, On n-permutable congruences, 1973]
For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:
1 the congruence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
3 every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.
The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly \& Pedicchio, Some remarks on Maltsev and Goursat categories, 1993]
Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument
* the proof Hagemann and Mitschke refer to was never published: [Hagemann, Grundlagen der allgemeinen topologischen Algebra, in preparation]

Some mysterious Mal'tsev conditions

Theorem [Hagemann \& Mitschke, On n-permutable congruences, 1973]

For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:
1 the congruence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
3 every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.
The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly \& Pedicchio, Some remarks on Maltsev and Goursat categories, 1993]
Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published:
[Hagemann, Grundlagen der allgemeinen topologischen Algebra, in preparation]
What's going on?

Some mysterious Mal'tsev conditions

Theorem [Hagemann \& Mitschke, On n-permutable congruences, 1973]

For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:
1 the congruence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
3 every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.
The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly \& Pedicchio, Some remarks on Maltsev and Goursat categories, 1993]
Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published:
[Hagemann, Grundlagen der allgemeinen topologischen Algebra, in preparation]
What's going on?

The associated imaginary co-operations

Hagemann and Mitschke's result is correct

- $1 \Leftrightarrow 2$ is treated in [Martins-Ferreira \& VdL, 2010]
$2 \Leftrightarrow 3$ is also true
But what about general categories?
- the result holds in regular categories with finite sums
- nroof technique mimics the varietal nroof
- based on Dominique Bourn and Zurab Janelidze's
approximate or imaginary co-operations
[Bourn \& Janelidze, Approximate Mal'tsev operations, 2008]

Basic idea [Bourn \& Janelidze, 2008]
A Mal'tsev theory contains a Mal'tsev term p (x, y, z).
A regular Mal'tsev category has approximate Mal'tsev co-operations

which may be considered as imaginary co-operations $p_{x}: X \leadsto 3 X$.

The associated imaginary co-operations

Hagemann and Mitschke's result is correct

- $1 \Leftrightarrow 2$ is treated in [Martins-Ferreira \& VdL, 2010]
$2 \Leftrightarrow 3$ is also true for varieties
But what about general categories?
* the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze's
approximate or imaginary co-operations
[Bourn \& Janelidze, Approximate Mal'tsev operations, 2008]

Basic idea [Bourn \& Janelidze, 2008]
A Mal'tsev theory contains a Mal'tsev term p (x, y, z).
A regular Mal'tsev category has approximate Mal'tsev co-operations

which may be considered as imaginary co-operations $p_{X}: X \leadsto 3 X$.

The associated imaginary co-operations

Hagemann and Mitschke's result is correct

- $1 \Leftrightarrow 2$ is treated in [Martins-Ferreira \& VdL, 2010]
$2 \Leftrightarrow 3$ is also true for varieties

But what about general categories?

- the result holds in regular categories with finite sums
> - proof technique mimics the varietal proof,
> - based on Dominique Bourn and Zurab Janelidze's
> approximate or imaginary co-operations
> [Bourn \& Janelidze, Approximate Mal'tsev operations, 2008]

Basic idea [Bourn \& Janelidze, 2008]
A Mal'sev theory contains a Mal'sev term p (x, y, z).
A regular Mal'tsev category has approximate Mal'tsev co-operations

which may be considered as imaginary co-operations $p_{X}: X \leadsto 3 X$.

The associated imaginary co-operations

Hagemann and Mitschke's result is correct

- $1 \Leftrightarrow 2$ is treated in [Martins-Ferreira \& VdL, 2010]
$2 \Leftrightarrow 3$ is also true for varieties
But what about general categories?
- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze's approximate or imaginary co-operations
[Bourn \& Janelidze, Approximate Mal'tsev operations, 2008]
Basic idea [Bourn \& Janelidze, 2008]
A Mal'tsev theory contains a Mal'tsev term $p(x, y, z)$.
A regular Mal'tsev category has approximate Mal'tsev co-operations which may be considered as imaginary co-operations $p_{X}: X \leadsto 3 X$.

The associated imaginary co-operations

Hagemann and Mitschke's result is correct

- $1 \Leftrightarrow 2$ is treated in [Martins-Ferreira \& VdL, 2010]
$2 \Leftrightarrow 3$ is also true for varieties
But what about general categories?
- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze's approximate or imaginary co-operations [Bourn \& Janelidze, Approximate Mal'tsev operations, 2008]
"Whatever can be said about varieties can be proved categorically"
[Hans-E. Porst, yesterday]

The associated imaginary co-operations

Hagemann and Mitschke's result is correct

- $1 \Leftrightarrow 2$ is treated in [Martins-Ferreira \& VdL, 2010]
$2 \Leftrightarrow 3$ is also true for varieties
But what about general categories?
- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze's approximate or imaginary co-operations
[Bourn \& Janelidze, Approximate Mal'tsev operations, 2008]
Basic idea [Bourn \& Janelidze, 2008]
A Mal'tsev theory contains a Mal'tsev term $p(x, y, z)$.
A regular Mal'tsev category has approximate Mal'tsev co-operations
which may be considered as imaginary co-operations $p_{x}: X \leadsto 3 X$.

The associated imaginary co-operations

Hagemann and Mitschke's result is correct

- $1 \Leftrightarrow 2$ is treated in [Martins-Ferreira \& VdL, 2010]
$2 \Leftrightarrow 3$ is also true for varieties
But what about general categories?
- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze's approximate or imaginary co-operations
[Bourn \& Janelidze, Approximate Mal'tsev operations, 2008]

Basic idea [Bourn \& Janelidze, 2008]

A Mal'tsev theory contains a Mal'tsev term $p(x, y, z)$.
A regular Mal'tsev category has approximate Mal'tsev co-operations

$$
X \lll \ll \alpha_{X} A(X) \xrightarrow{p_{X}} X+X+X
$$

which may be considered as imaginary co-operations $p_{X}: X \leadsto 3 X$.

Overview

o Introduction
1 Mal'tsev conditions

- The Mal'tsev case: 2 -permutability
- The Goursat case: 3-permutability
- n-permutable categories

2 Imaginary co-operations

- Approximate Mal'tsev co-operations
- Approximate Goursat co-operations
- Main theorem: n-permutability

3 Conclusion
4 Further questions

The Mal'tsev case: 2-permutability

Theorem [Mal'tsev, 1954]

For any variety of algebras \mathcal{V}, the following are equivalent:
1 2-permutability of congruences: $R S=S R$
2 existence of a ternary operation p satisfying $\left\{\begin{array}{l}p(x, y, y)=x \\ p(x, x, y)=y\end{array}\right.$
Such a \mathcal{V} is called a Mal'tsev variety.
Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek \& Pedicchio, 1990]
For any regular category \mathcal{A}, the following are equivalent:
1 2-permutability of congruences: $R S=S R$
2 every reflexive relation R is symmetric: $R^{0 P} \leqslant R$;
${ }_{3}$ every reflexive relation R is transitive: $R^{2} \leqslant R$.
Such an \mathcal{A} is called a (regular) Mal'tsev category.

The Mal'tsev case: 2-permutability

Theorem [Mal'tsev, 1954]

For any variety of algebras \mathcal{V}, the following are equivalent:
1 2-permutability of congruences: $R S=S R$
2 existence of a ternary operation p satisfying $\left\{\begin{array}{l}p(x, y, y)=x \\ p(x, x, y)=y\end{array}\right.$
Such a \mathcal{V} is called a Mal'tsev variety.
Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek \& Pedicchio, 1990]
For any regular category \mathcal{A}, the following are equivalent:
1 2-permutability of congruences: $R S=S R$
2 every reflexive relation R is symmetric: $R^{\mathrm{op}} \leqslant R$;
${ }_{3}$ every reflexive relation R is transitive: $R^{2} \leqslant R$.
Such an \mathcal{A} is called a (regular) Mal'tsev category.

The Mal'tsev case: 2-permutability $\quad n=2$

Theorem [Mal'tsev, 1954]

For any variety of algebras \mathcal{V}, the following are equivalent:
1 2-permutability of congruences: $R S=S R$
2 existence of a ternary operation p satisfying $\left\{\begin{array}{l}p(x, y, y)=x \\ p(x, x, y)=y\end{array}\right.$
Such a \mathcal{V} is called a Mal'tsev variety.
Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek \& Pedicchio, 1990]
For any regular category \mathcal{A}, the following are equivalent:
1 2-permutability of congruences: $R S=S R$
2 every reflexive relation R is symmetric: $R^{\mathrm{op}} \leqslant R ; \quad R^{\mathrm{op}} \leqslant R^{n-1}$
3 every reflexive relation R is transitive: $R^{2} \leqslant R . \quad R^{n} \leqslant R^{n-1} \quad \square$
Such an \mathcal{A} is called a (regular) Mal'tsev category.

The Goursat case: 3-permutability

Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann \& Mitschke, 1973]
For any variety of algebras \mathcal{V}, the following are equivalent:
1 3-permutability of congruences: $R S R=S R S$;
2 existence of quaternary operations p and q satisfying

$$
p(x, y, y, z)=x, \quad p(x, x, y, y)=q(x, x, y, y), \quad q(x, y, y, z)=z
$$

3 existence of ternary operations r and s satisfying

$$
r(x, y, y)=x, \quad r(x, x, y)=s(x, y, y), \quad s(x, x, y)=y
$$

4 every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{2}$;
5 every reflexive relation R satisfies $R^{3} \leqslant R^{2}$.
Such a \mathcal{V} is called a 3-permutable or Goursat variety.
A regular category with 3-permutable congruences is called a (regular) Goursat category
[Carboni, Lambek \& Pedicchio, 1990; Carboni, Kelly \& Pedicchio, 1993].

The Goursat case: 3-permutability $\quad n=3$

Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann \& Mitschke, 1973]
For any variety of algebras \mathcal{V}, the following are equivalent:
1 3-permutability of congruences: $R S R=S R S$;
2 existence of quaternary operations p and q satisfying

$$
p(x, y, y, z)=x, \quad p(x, x, y, y)=q(x, x, y, y), \quad q(x, y, y, z)=z
$$

3 existence of ternary operations r and s satisfying

$$
r(x, y, y)=x, \quad r(x, x, y)=s(x, y, y), \quad s(x, x, y)=y ;
$$

4 every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{2} ; \quad R^{\mathrm{op}} \leqslant R^{n-1}$
5 every reflexive relation R satisfies $R^{3} \leqslant R^{2} . \quad R^{n} \leqslant R^{n-1}$
Such a \mathcal{V} is called a 3-permutable or Goursat variety.
A regular category with 3-permutable congruences is called a (regular) Goursat category
[Carboni, Lambek \& Pedicchio, 1990; Carboni, Kelly \& Pedicchio, 1993].

n-permutable categories

Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann \& Mitschke, 1973]
\mathcal{V} is n-permutable when the following equivalent conditions hold:
1 n-permutability of congruences: $\overbrace{R S R S \cdots}^{n}=\overbrace{S R S R \cdots}^{n}$;
2 existence of $(n+1)$-ary operations v_{0}, \ldots, v_{n} satisfying

$$
\begin{cases}v_{0}\left(x_{0}, \ldots, x_{n}\right)=x_{0}, & v_{n}\left(x_{0}, \ldots, x_{n}\right)=x_{n}, \\ v_{i-1}\left(x_{0}, x_{0}, x_{2}, x_{2}, \ldots\right)=v_{i}\left(x_{0}, x_{0}, x_{2}, x_{2}, \ldots\right), & i \text { even } \\ v_{i-1}\left(x_{0}, x_{1}, x_{1}, x_{3}, x_{3}, \ldots\right)=v_{i}\left(x_{0}, x_{1}, x_{1}, x_{3}, x_{3}, \ldots\right), & i \text { odd }\end{cases}
$$

3 existence of ternary operations w_{1}, \ldots, w_{n-1} satisfying

$$
\left\{\begin{array}{l}
w_{1}(x, y, y)=x, \quad w_{n-1}(x, x, y)=y \\
w_{i}(x, x, y)=w_{i+1}(x, y, y), \quad \text { for } i \in\{1, \ldots, n-2\}
\end{array}\right.
$$

4 every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
5 every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.
Notion of n-permutable category [Carboni, Kelly \& Pedicchio, 1993].

Overview

o Introduction
1 Mal'tsev conditions

- The Mal'tsev case: 2 -permutability
- The Goursat case: 3-permutability
- n-permutable categories

2 Imaginary co-operations

- Approximate Mal'tsev co-operations
- Approximate Goursat co-operations
- Main theorem: n-permutability

3 Conclusion
4 Further questions

Approximate Mal'tsev co-operations
Natural approximate Mal'sev co-operation on \mathcal{A} :

Universal means $A(X)$ limit of outer square
Theorem [Bourn \& Janelidze, 2008]
Let A be a regular category with binary coproducts. TFAE:
1 If (α, p) is universal, then α is a regular epimorphism;
2 there exists an approximate Mal'tsev co-operation such that $\alpha: A \Rightarrow 1_{\mathcal{A}}$ is a regular epimorphism;
${ }_{3} \mathcal{A}$ is a Mal'tsev category.

Approximate Mal'tsev co-operations

Natural approximate Mal'tsev co-operation on \mathcal{A} :

Universal means $A(X)$ limit of outer square
Theorem [Bourn \& Janelidze, 2008]
Let \mathcal{A} be a regular category with binary coproducts. TFAE:
1 If (α, p) is universal then α is a regular enimornhism.
2 there exists an approximate Mal'tsev co-operation such that $\alpha: A \Rightarrow 1_{\mathcal{A}}$ is a regular epimorphism;
$3 \mathcal{A}$ is a Mal'tsev category.

Approximate Mal'tsev co-operations

Natural approximate Mal'tsev co-operation on \mathcal{A} :

Universal means $A(X)$ limit of outer square
Theorem [Bourn \& Janelidze, 2008]
Let \mathcal{A} be a regular category with binary coproducts. TFAE:
1 If (α, p) is universal, then α is a regular epimorphism;
2 there exists an approximate Mal'tsev co-operation such that $\alpha: A \Rightarrow 1_{\mathcal{A}}$ is a regular epimorphism;
${ }_{3} \mathcal{A}$ is a Mal'tsev category.

Approximate Goursat co-operations

Natural approximate Goursat co-operations on \mathcal{A} :

Theorem
Let \mathcal{A} be a regular category with binary coproducts. TFAE:
1 If α or β is universal, then it is a regular epimorphism;
2 there exist approximate Goursat co-operations such that α and β are regular epimorphisms;
${ }^{3} \mathcal{A}$ is a Goursat category;
4 every reflexive relation R satisfies $R^{\circ p} \leqslant R^{2}$.

Approximate Goursat co-operations

Natural approximate Goursat co-operations on \mathcal{A} :

Theorem
Let \mathcal{A} be a regular category with binary coproducts. TFAE:
1 If α or β is universal, then it is a regular epimorphism;
2 there exist approximate Goursat co-operations such that α and β are regular epimorphisms;
${ }_{3} \mathcal{A}$ is a Goursat category;
4 every reflexive relation R satisfies $R^{\text {op }} \leqslant R^{2}$.

Approximate Goursat co-operations

Natural approximate Goursat co-operations on \mathcal{A} :

Theorem
Let \mathcal{A} be a regular category with binary coproducts. TFAE:
${ }_{3} \mathcal{A}$ is a Goursat category;
4 every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{2}$.
What about condition 5 ?
5 Every reflexive relation R satisfies $R^{3} \leqslant R^{2}$.

Approximate Goursat co-operations

Natural approximate Goursat co-operations on \mathcal{A} :

Theorem
Let \mathcal{A} be a regular category with binary coproducts. TFAE:
${ }_{3} \mathcal{A}$ is a Goursat category;
4 every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{2}$.
What about condition 5 ?
5 Every reflexive relation R satisfies $R^{3} \leqslant R^{2}$.
Follows from the characterisation of 4-permutability!

Main theorem: n-permutability

Natural approximate ternary co-operations on \mathcal{A}, for $n \geqslant 2$:

Theorem
Let \mathcal{A} be à regular category with binary coproducts. TFAE:
1 If α or β is universal, then it is a regular epimorphism;
2 'here exist approximate co-operations with α and' β regular epi;
$3 \mathcal{A}$ is an n-permutable category.

Main theorem: n-permutability

Natural approximate ternary co-operations on \mathcal{A}, for $n \geqslant 2$:

Theorem

Let \mathcal{A} be a regular category with binary coproducts. TFAE:
1 If α or β is universal, then it is a regular epimorphism;
2 there exist approximate co-operations with α and β regular epi;
з \mathcal{A} is an n-permutable category.

Main theorem: n-permutability

Theorem
A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma
If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then \mathcal{A} is $(2 n-2)$-permutable.

Theorem
A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$.
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable, so $R^{\text {op }} \leqslant R^{4-1}=R^{3} \leqslant R^{2}=R^{3-1}$, which gives 3 -permutability.

Main theorem: n-permutability

Theorem
A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma
If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then \mathcal{A} is $(2 n-2)$-permutable.

Theorem
A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$.
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable, so $R^{\text {op }} \leqslant R^{4-1}=R^{3} \leqslant R^{2}=R^{3-1}$, which gives 3 -permutability.

Main theorem: n-permutability

Theorem
A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma
If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then
\mathcal{A} is $(2 n-2)$-permutable.
Theorem
A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable, so which gives 3 -permutability.

Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then
\mathcal{A} is $(2 n-2)$-permutable.
Theorem
A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$.
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable

Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then \mathcal{A} is $(2 n-2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$.
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable, so $R^{\mathrm{op}} \leqslant R^{4-1}$

Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then \mathcal{A} is $(2 n-2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$.
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable, so
$R^{\mathrm{op}} \leqslant R^{4-1}=R^{3}$

Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then
\mathcal{A} is $(2 n-2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$.
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable, so
$R^{\mathrm{op}} \leqslant R^{4-1}=R^{3} \leqslant R^{2}=R^{3-1}$,

Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^{n} \leqslant R^{n-1}$ then
\mathcal{A} is $(2 n-2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{n} \leqslant R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n=3$.
$R^{3} \leqslant R^{2}$ implies that \mathcal{A} is $2 \cdot 3-2=4$-permutable, so
$R^{\mathrm{op}} \leqslant R^{4-1}=R^{3} \leqslant R^{2}=R^{3-1}$,
which gives 3 -permutability.

Conclusion

- Hagemann and Mitschke's theorem has a categorical counterpart:

Theorem [Rodelo \& VdL, 2012]
For any regular category with binary sums \mathcal{A} and any $A \in \mathcal{A}$, TFAE:
1 the equivalence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
${ }_{3}$ every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.

- n-permutable categories with finite sums can be characterised in terms of approximate co-operations
- but most importantly:

Dominique Bourn and Zurab Janelidze's technique works!

Conclusion

- Hagemann and Mitschke's theorem has a categorical counterpart:

Theorem [Rodelo \& VdL, 2012]

For any regular category with binary sums \mathcal{A} and any $A \in \mathcal{A}$, TFAE:
1 the equivalence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
${ }_{3}$ every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.

- n-permutable categories with finite sums can be characterised in terms of approximate co-operations

Dominique Bourn and Zurab Janelidze's technique works!

Conclusion

- Hagemann and Mitschke's theorem has a categorical counterpart:

Theorem [Rodelo \& VdL, 2012]

For any regular category with binary sums \mathcal{A} and any $A \in \mathcal{A}$, TFAE:
1 the equivalence relations on A are n-permutable;
2 every reflexive relation R on A satisfies $R^{\mathrm{op}} \leqslant R^{n-1}$;
${ }_{3}$ every reflexive relation R on A satisfies $R^{n} \leqslant R^{n-1}$.

- n-permutable categories with finite sums can be characterised in terms of approximate co-operations
- but most importantly:

Dominique Bourn and Zurab Janelidze's technique works!

Further questions

- Do we really need binary sums?

Counterexamples seem hard to construct:

- varieties have sums
- just "taking all finite algebras" or so will not work
- Embedding theorem for n-permutable categories?
- Direct and simple "purely categorical" proof?
- Closedness properties of relations
- How general is this technique?
- I tried to do homotopy of chain complexes
in semi-abelian categories... and failed

Further questions

- Do we really need binary sums?
- Counterexamples seem hard to construct:
- varieties have sums
" just "taking all finite algebras" or so will not work
Embedding theorem for n-permutable categories?
" Direct and simple "purely categorical" proof?
- Closedness properties of relations
-How general is this technique?
- I tried to do homotopy of chain complexes in semi-abelian categories... and failed

Further questions

- Do we really need binary sums?
- Counterexamples seem hard to construct:
- varieties have sums
" just "taking all finite algebras" or so will not work
- Embedding theorem for n-permutable categories?
* Direct and simple "purely categorical" proof?
- Closedness properties of relations
-How general is this technique?
- I tried to do homotopy of chain complexes in semi-abelian categories... and failed

Further questions

- Do we really need binary sums?
- Counterexamples seem hard to construct:
- varieties have sums
" just "taking all finite algebras" or so will not work
- Embedding theorem for n-permutable categories?
- Direct and simple "purely categorical" proof?
- Closedness properties of relations
-How general is this technique?
- I tried to do homotopy of chain complexes in semi-abelian categories... and failed

Further questions

- Do we really need binary sums?
- Counterexamples seem hard to construct:
- varieties have sums
" just "taking all finite algebras" or so will not work
- Embedding theorem for n-permutable categories?
- Direct and simple "purely categorical" proof?
- Closedness properties of relations
- How general is this technique?
- I tried to do homotopy of chain complexes in semi-abelian categories... and failed

