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An Indexed Central Limit Theorem

Standard triangular arrays

Standard triangular array (STA): a triangular array of real square
integrable random variables

ξ1,1
ξ2,1 ξ2,2
ξ3,1 ξ3,2 ξ3,3

...

satisfying the following properties.

(a) ∀n : ξn,1, . . . , ξn,n are independent

(b) ∀n, k : E [ξn,k ] = 0

(c) ∀n :
n∑

k=1

σ2n,k = 1, where σ2n,k = E
[
ξ2n,k
]

(d)
n

max
k=1

σ2n,k → 0
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The Lindeberg-Feller CLT

Theorem

Given an STA (ξn,k )n,k and a normally distributed random variable
ξ: if

∀ε > 0 :
n∑

k=1

E
[
ξ2n,k ; |ξn,k | ≥ ε

]
→ 0

then
n∑

k=1

ξn,k
w→ ξ.
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Lindeberg index

Lin ({ξn,k}) = sup
ε>0

lim sup
n→∞

n∑
k=1

E
[
ξ2n,k ; |ξn,k | ≥ ε

]

Fix 0 < α < 1, let β = α
1−α and put

s2n = (1 + β)n − β
n∑

k=1

k−1 = n + β

n∑
k=1

(
1− k−1

)
P [ηα,n,k = −1/sn] = P [ηα,n,k = 1/sn] =

1

2

(
1− βk−1

)
P
[
ηα,n,k = −

√
k/sn

]
= P

[
ηα,n,k =

√
k/sn

]
=

1

2
βk−1

Lin ({ηα,n,k}) = α
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Steps in the proof

K
(
η, η′

)
= sup

x∈R

∣∣P[η ≤ x ]− P[η′ ≤ x ]
∣∣

Stein’s method (Stein 1986), Chen, Goldstein, Shao (Normal
approximation by Stein’s method, Springer 2011)

H: all strictly decreasing functions h : R→ R, bounded first and
second derivatives and a bounded and piecewise continuous third
derivative, lim

x→−∞
h(x) = 1 and lim

x→∞
h(x) = 0.

Step 1

If η is continuously distributed, then the formula

lim sup
n→∞

K (η, ηn) = sup
h∈H

lim sup
n→∞

|E [h(η)− h(ηn)]|

is valid for any sequence (ηn)n
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Step 2

Let h : R→ R be measurable and bounded. Put

fh(x) = ex2/2

∫ x

−∞
(h(t)− E[h(ξ)]) e−t2/2dt

(Basic points of Stein’s method)
(1) For any x ∈ R

E [h(ξ)]− h(x) = xfh(x)− f ′h(x).

(2) Moreover, ∥∥f ′′h

∥∥
∞ ≤ 2

∥∥h′
∥∥
∞ ,

(3) If hz = 1]−∞,z] for z ∈ R, then for all x , y ∈ R∣∣f ′hz
(x)− f ′hz

(y)
∣∣ ≤ 1.
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Step 3

Let h ∈ H and put

δn,k = fh

∑
i 6=k

ξn,i + ξn,k

− fh

∑
i 6=k

ξn,i

− ξn,k f ′h

∑
i 6=k

ξn,i


εn,k = f ′h

∑
i 6=k

ξn,i + ξn,k

− f ′h

∑
i 6=k

ξn,i

− ξn,k f ′′h

∑
i 6=k

ξn,i


Then

E

[(
n∑

k=1

ξn,k

)
fh

(
n∑

k=1

ξn,k

)
− f ′h

(
n∑

k=1

ξn,k

)]

=
n∑

k=1

E [ξn,kδn,k ]−
n∑

k=1

σ2n,kE [εn,k ]
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Step 4

Let f : R→ R have a bounded derivative and a bounded and
piecewise continuous second derivative. Then for any a, x ∈ R∣∣f (a + x)− f (a)− f ′(a)x

∣∣
≤ min

{(
sup

x1,x2∈R

∣∣f ′(x1)− f ′(x2)
∣∣) |x | , 1

2

∥∥f ′′
∥∥
∞ x2

}

Step 5

Let h ∈ H. Then for all x , y ∈ R∣∣f ′h(x)− f ′h(y)
∣∣ ≤ 1
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Step 6

|E[h(ξ)− h(
n∑

k=1

ξn,k )]| ≤ · · ·

≤ · · ·

≤ 1

2

∥∥f ′′h

∥∥
∞

n∑
k=1

E
[
|ξn,k |3 ; |ξn,k | < ε

]
+

(
sup

x1,x2∈R

∣∣f ′h(x1)− f ′h(x2)
∣∣) n∑

k=1

E
[
|ξn,k |2 ; |ξn,k | ≥ ε

]
+

(
sup

x1,x2∈R

∣∣f ′′h (x1)− f ′′h (x2)
∣∣) n∑

k=1

σ2n,kE [|ξn,k |]

≤ · · ·
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An inequality

Theorem

Given an STA (ξn,k )n,k and a normally distributed ξ the inequality

lim sup
n→∞

K

(
ξ,

n∑
k=1

ξn,k

)
≤ Lin ({ξn,k})

is valid.

?
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Enter approach theory

F : probability distributions
Fc : continuous probability distributions
∗: convolution

Bergström’s direct convolution method

ηn → η (weak) ⇔ ∀ζ ∈ Fc : ηn ∗ ζ → η ∗ ζ (uniformly)

In Top ((F , Tw )→ (F , TK ) : η 7→ η ∗ ζ)ζ∈Fc

In Met ((F , ?)→ (F ,K ) : η 7→ η ∗ ζ)ζ∈Fc
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Distance δw

δw (η,D) = sup
F0⊂Fc finite

inf
ψ∈D

sup
ζ∈F0

K (η ∗ ζ, ψ ∗ ζ)

Limit associated with δw

λw (ηn)(η) = sup
ζ∈Fc

lim sup
n→∞

K (η ∗ ζ, ηn ∗ ζ)

A sidestep concerning the naturality of δw

Tightness: a collection D of probability distributions is said to be
tight if for every ε > 0 there exists a constant M > 0 such that for
all F ∈ D

F(−M) ∨ (1−F(M)) ≤ ε
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Prohorov’s theorem

D is relatively compact in the weak topology if and only if it is
tight.

Index of compactness in approach spaces:

χc(A) := sup
U∈U(A)

inf
x∈A

λU(x)

Tychonoff : χc(
∏

j

Xj ) = sup
j
χc (Xj )

Kuratowski-Mrowka : χc (X ) = 0⇔ ∀Z : prZ : X × Z → Z closed

(Functional approach to topology, M.M. Clementino, E. Giuli, W.
Tholen, 2003, Cambridge University Press)
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Index of relative compactness:

χrc (A) := sup
U∈U(A)

inf
x∈X

λU(x)

Index of tightness:

e(D) = inf
M>0

sup
F∈D
F(−M) ∨ (1−F(M))

Indexed Prohorov theorem

In (F , δw ) for any D ⊂ F :

χrc (D) = e(D)
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Back to the CLT

j(η): the supremum of the discontinuity jumps of the distribution
of η

λw (ηn)(η) = sup
ζ∈Fc

lim sup
n→∞

K (η ∗ ζ, ηn ∗ ζ)

Step 7

For η ∈ F and (ηn)n in F

λw (ηn)(η) ≤ lim sup
n→∞

K (η, ηn) ≤ λw (ηn)(η) + j(η)

Consequence

For η ∈ Fc and (ηn)n in F

λw (ηn)(η) = lim sup
n→∞

K (η, ηn)
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K (η, ηn) ≤ λw (ηn)(η) + j(η)

Consequence

For η ∈ Fc and (ηn)n in F

λw (ηn)(η) = lim sup
n→∞

K (η, ηn)
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The Indexed Lindeberg-Feller CLT

Theorem

Given an STA (ξn,k )n,k and a normally distributed ξ the inequality

λw (
n∑

k=1

ξn,k )(ξ) ≤ Lin ({ξn,k})

is valid.
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