Generalised higher Hopf formulae for homology

Mathieu Duckerts-Antoine

Université catholique de Louvain

Workshop on Category Theory Coimbra, July 2012

2 A wider context



Given a "good" adjunction

one can associate with any object B of \mathcal{A} an invariant :

- With a NORMAL EXTENSION $p: E \rightarrow B$ of B, one associates an object of \mathcal{B} : Gal(E, p, 0).
- **2** If p has a kind of UNIVERSAL PROPERTY, Gal(E, p, 0) is an invariant of B : $\pi_1(B)$ the abstract fundamental group of B.

Given a "good" adjunction

one can associate with any object B of \mathcal{A} an invariant :

- With a NORMAL EXTENSION $p: E \rightarrow B$ of B, one associates an object of \mathcal{B} : Gal(E, p, 0).
- **2** If p has a kind of UNIVERSAL PROPERTY, Gal(E, p, 0) is an invariant of B : $\pi_1(B)$ the abstract fundamental group of B.

Given a "good" adjunction

one can associate with any object B of \mathcal{A} an invariant :

- With a NORMAL EXTENSION $p: E \rightarrow B$ of B, one associates an object of \mathcal{B} : Gal(E, p, 0).
- **2** If p has a kind of UNIVERSAL PROPERTY, Gal(E, p, 0) is an invariant of B : $\pi_1(B)$ the abstract fundamental group of B.

For the adjunction

$$Ab \underbrace{\stackrel{ab}{\perp}}_{\subseteq} Grp$$
$$\pi_1(B) \cong \frac{K \cap [P, P]}{[K, P]} \cong H_2(B, \mathbb{Z})$$

(for $K \to P \to B$ is a projective presentation of B) .

Galois structure [G. Janelidze]

Definition

- A Galois structure is given by :
 - **1** ${\mathcal B}$ a full replete reflective subcategory of ${\mathcal A}$

2 & a class of morphisms in A which contains the isomorphisms of A and has some stability properties :

I(ɛ) ⊆ ɛ;
 A has pullback along morphisms in ɛ;
 ɛ is closed under composition and pullback stable

Galois structure [G. Janelidze]

Definition

- A Galois structure is given by :
 - **1** ${\mathcal B}$ a full replete reflective subcategory of ${\mathcal A}$

$$\mathcal{B} \underbrace{\stackrel{\mathsf{I}}{\underbrace{}}}_{\subseteq} \mathcal{A};$$

2 & a class of morphisms in A which contains the isomorphisms of A and has some stability properties :

$$I(\mathcal{E}) \subseteq \mathcal{E};$$

2 A has pullback along morphisms in \mathcal{E} ;

3 *E* is closed under composition and pullback stable.

For a given Galois structure.

Definition

 $f: E \rightarrow B$ in \mathcal{E} is a (\mathcal{B} -)trivial extension if

is a pullback.

Definition

An extension f: $A \rightarrow B$ is a (B-)normal extension if in

 π_1 and π_2 are trivial.

Extensions

For

A regular epimorphism f: $A \rightarrow B$ is Ab-trivial iff

A regular epimorphism f: $A \rightarrow B$ is Ab-normal iff it is central, i.e. if

Ker $f \subseteq Z(A)$.

Extensions

For

Ab
$$\overbrace{\subseteq}^{ab}$$
 Grp

A regular epimorphism f: $A \rightarrow B$ is Ab-trivial iff

A regular epimorphism f: $A \rightarrow B$ is Ab-normal iff it is central, i.e. if

Ker $f \subseteq Z(A)$.

Extensions

For

Ab
$$\overbrace{\subseteq}^{ab}$$
 Grp

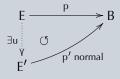
A regular epimorphism f: $A \rightarrow B$ is Ab-trivial iff

A regular epimorphism f: $A \rightarrow B$ is Ab-normal iff it is central, i.e. if

 $\text{Ker}\, f\subseteq Z(A).$

Definition

A normal extension $p: E \rightarrow B$ is weakly universal if it factors through every other normal extension with the same codomain :



The abstract fundamental group [G. Janelidze, 1984]

For a Galois structure with $\mathcal A$ semi-abelian

$$\mathcal{B} \underbrace{\overset{\mathsf{I}}{\underset{\subseteq}{\overset{}}{\overset{}}}}_{\overset{\mathsf{I}}{\overset{}}} \mathcal{A}$$

and $p : E \rightarrow B$ a normal extension.

Definition

The Galois groupoid of p is :

$$I((E \times_B E) \times_E (E \times_B E)) \xrightarrow{I(\tau)} I(E \times_B E) \xrightarrow{I(\pi_1)} I(E)$$

The abstract fundamental group

Definition

The Galois group of p is defined via the following pullback :

The abstract fundamental group

Definition

The abstract fundamental group of an object B of B of A is the Galois group of any weakly universal normal extension of B.

A composite adjunction

One works with an adjunction

$$\mathcal{F} \xrightarrow{\stackrel{\mathsf{F}}{\underbrace{\perp}}} \mathcal{B} \xrightarrow{\stackrel{\mathsf{G}}{\underbrace{\perp}}} \mathcal{A} \tag{A}$$

where

- **1** \mathcal{A} is semi-abelian;
- **2** \mathcal{B} is a Birkhoff subcategory of \mathcal{A} ;
- **3** \mathcal{F} is a regular epi-reflective subcategory of \mathcal{B} ;
- F is protoadditive [T. Everaert and M. Gran, 2010] :
 F preserves split short exact sequences

$$0 \longrightarrow \mathsf{K} \triangleright \xrightarrow{\mathsf{k}} \mathsf{A} \xrightarrow{\overset{\mathsf{s}}{\longleftarrow}} \mathsf{B} \longrightarrow 0;$$

and with $\mathcal{E} = \text{RegEpi}(\mathcal{A})$.

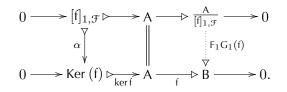
Induced adjuncion

Theorem

One has an induced adjunction :

$$\mathsf{NExt}_{\mathcal{F}}(\mathcal{A}) \xrightarrow{\stackrel{\mathsf{F}_1 \circ \mathsf{G}_1}{\sqsubseteq}} \mathsf{Ext}(\mathcal{A}).$$

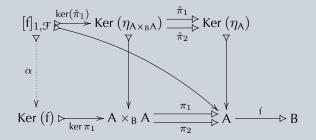
The reflection is given by



Fröhlich construction

Construction

The Fröhlich construction is :



where η is the unit.

Fröhlich construction

For

and f: A \rightarrow B a regular epimorphism, one has

$$[f]_{1,Ab} = [Ker (f), A]_{Ab} = \langle kak^{-1}a^{-1} | k \in Ker f, a \in A \rangle = [Ker f, A].$$

For

and f: A \rightarrow B a regular epimorphism, one has

 $[f]_{1,CRng} = [ker(f), A]_{CRng} = \langle ak - ka \mid k \in \text{Ker } f, a \in A \rangle.$

Fröhlich construction

For

and f: A \rightarrow B a regular epimorphism, one has

$$[f]_{1,Ab} = [Ker (f), A]_{Ab} = \langle kak^{-1}a^{-1} | k \in Ker f, a \in A \rangle = [Ker f, A].$$

For

$$\operatorname{CRng} \underbrace{\stackrel{G}{\stackrel{\bot}{=}}}_{\subseteq} \operatorname{Rng}$$

and f: A \rightarrow B a regular epimorphism, one has

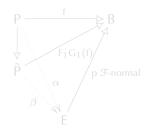
 $[f]_{1,CRng} = [ker(f), A]_{CRng} = \langle ak - ka \, | \, k \in \text{Ker} \, f, a \in A \, \rangle.$

Construction of weakly universal normal extensions

Lemma

If A has enough projective objects w.r.t. \mathcal{E} , then for all B in A one can construct a weakly universal normal extension of B.

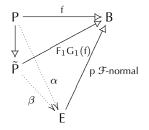
<u>Proof</u> : If $f : P \rightarrow B$ is a projective presentation of B :



Lemma

If A has enough projective objects w.r.t. \mathcal{E} , then for all B in A one can construct a weakly universal normal extension of B.

<u>Proof</u> : If $f : P \rightarrow B$ is a projective presentation of B :



Theorem

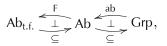
For $f : P \rightarrow B$ a projective presentation of B

$$\pi_{1}(\mathsf{B}) \cong \frac{\overline{([\mathsf{P},\mathsf{P}]_{\mathfrak{B}})}_{\mathsf{P}}^{\mathcal{F}} \cap \operatorname{Ker}(\mathsf{f})}{\overline{([\operatorname{Ker}\mathsf{f},\mathsf{P}]_{\mathfrak{B}})}_{\operatorname{Ker}\mathsf{f}}^{\mathcal{F}}}.$$

 \dot{F} is a homological closure operator [D. Bourn and M. Gran, 2006].

Groups with coefficients in torsion free abelian groups

For



and a projective presentation $K \rightarrow P \rightarrow B$ of a group B,

$$\pi_1(\mathsf{B}) \cong \frac{\{\mathsf{p} \in \mathsf{K} \mid \exists \mathsf{n} \in \mathbb{N}_0 : \mathsf{p}^\mathsf{n} \in [\mathsf{P}, \mathsf{P}]\}}{\{\mathsf{p} \in \mathsf{K} \mid \exists \mathsf{n} \in \mathbb{N}_0 : \mathsf{p}^\mathsf{n} \in [\mathsf{K}, \mathsf{P}]\}}.$$

Rings with coefficients in reduced commutative rings

For

$$\operatorname{RedCRng} \underbrace{\stackrel{\mathsf{F}}{\underset{\subseteq}{\overset{\bot}{\overset{}}}} \operatorname{CRng} \underbrace{\stackrel{\mathsf{G}}{\underset{\underline{}}{\overset{\bot}{\overset{}}}} \operatorname{Rng}}_{\overset{\mathsf{G}}{\underset{\underline{}}{\overset{}}}} \operatorname{Rng},$$

and a projective presentation $K \to P \to B$ of a ring B,

$$\pi_1(\mathsf{B}) \cong \frac{\sqrt{[\mathsf{P},\mathsf{P}]_{\mathsf{CRng}}}_{(\mathsf{P})} \cap \mathsf{K}}{\sqrt{[\mathsf{K},\mathsf{P}]_{\mathsf{CRng}}}_{(\mathsf{K})}}$$

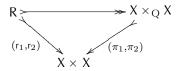
A wider context

Grp(Top) is regular but not exact.

But in some way, it is "almost exact" :

where $q = coeq(r_1, r_2) \colon X \longrightarrow Q$.

Grp(Top) is regular but not exact. But in some way, it is "almost exact" :

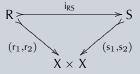


where $q = coeq(r_1, r_2) \colon X \longrightarrow Q$.

For \mathcal{A} with (\mathbb{E}, \mathbb{M}) a proper stable factorization system, finite limits and coequalizers of effective equivalence relations :

Definition

 \mathcal{A} is \mathbb{E} -exact if for every internal equivalence relation R there exist an effective equivalence relation S such that $R \leq_{\mathbb{E}} S$, i.e.



where i_{RS} is in \mathbb{E} .

 $(\mathbb{E}$ -exact \Rightarrow efficiently regular [D. Bourn, 2007]

 \Rightarrow almost Barr exact [G. Janelidze and M. Sobral, 2011])

For our purpose, a good context to work in is the one of \mathbb{E} -exact homological categories.

Examples

- **1** All semi-abelian categories ($\mathbb{E} = \text{RegEpi}$);
- **2** All topological semi-abelian varieties ($\mathbb{E} = \text{Epi}$);
- 3 All integral almost abelian categories (E = Epi)
 ≈ Raïkov semi-abelian categories.

Topological groups with coefficients in Hausdorff Abelian groups

For

$$Ab(Haus) \xrightarrow[]{}{ \underset{U}{\overset{}{\longrightarrow}}} Ab(Top) \xrightarrow[]{}{ \underset{H}{\overset{ab}{\xrightarrow}}} Grp(Top)$$

and for $K \to P \to B$ a projective presentation of B,

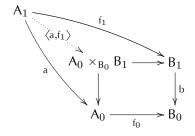
$$\pi_1(\mathsf{B}) \cong \frac{\overline{[\mathsf{P},\mathsf{P}]}^{\operatorname{top}} \cap \mathsf{K}}{\overline{[\mathsf{K},\mathsf{P}]}^{\operatorname{top}}}.$$

Generalized higher Hopf formulae

One has still in the wider context an adjunction like

$$\mathsf{NExt}_{\mathcal{F}}(\mathcal{A}) \xrightarrow{\underset{\subseteq}{F_1 \circ G_1}} \mathsf{Ext}(\mathcal{A}).$$

and then a Galois structure with the class of double extensions : squares $(f_1,f_0)\colon a \longrightarrow b$



with all morphisms in $\mathcal{E} = \mathbb{E}$.

A general notion of closure operator [W. Tholen, 2011]

For ${\mathcal M}$ a class of monomorphisms in a category ${\mathcal A}$:

- (a) containing isomorphisms;
- (b) closed under composition with isomorphisms;
- (c) satisfying the left-cancellation properties :

 $n\circ m\in \mathcal{M}, n\in \mathcal{M} \Rightarrow m\in \mathcal{M}.$

and viewed as a full replete subcategory of $\mathsf{Arr}\mathcal{A}.$

Definition

A closure operator of $\mathcal M$ in $\mathcal A$ is an endofunctor $\overline{\,\cdot\,}:\mathcal M\longrightarrow \mathcal M$ such that :

- (1) $\operatorname{Cod} = \operatorname{Cod} \circ \overline{\cdot};$
- (2) $\forall K \in \mathcal{M} : K \leqslant \overline{K};$
- (3) $\forall K, L \in \mathcal{M} : K \leq L \Rightarrow \overline{K} \leq \overline{L}.$

A general notion of closure operator [W. Tholen, 2011]

For ${\mathcal M}$ a class of monomorphisms in a category ${\mathcal A}$:

- (a) containing isomorphisms;
- (b) closed under composition with isomorphisms;
- (c) satisfying the left-cancellation properties :

```
n\circ m\in \mathcal{M}, n\in \mathcal{M} \Rightarrow m\in \mathcal{M}.
```

and viewed as a full replete subcategory of $\mathsf{Arr}\mathcal{A}.$

Definition

A closure operator of \mathcal{M} in \mathcal{A} is an endofunctor $\overline{\cdot} : \mathcal{M} \longrightarrow \mathcal{M}$ such that :

- (1) $\operatorname{Cod} = \operatorname{Cod} \circ \overline{\cdot};$
- (2) $\forall K \in \mathcal{M} : K \leqslant \overline{K};$
- (3) $\forall K, L \in \mathcal{M} : K \leq L \Rightarrow \overline{K} \leq \overline{L}.$

Generalized higher Hopf formulae

If P:

is a 2-projective presentation of B, then

$$\pi_{2}(\mathsf{B}) \cong \frac{\overline{([\mathsf{P}_{2},\mathsf{P}_{2}]_{\mathcal{B}})}_{\mathsf{P}_{2}}^{\mathfrak{F}} \cap \operatorname{Ker}(\mathsf{p}_{1}) \cap \operatorname{Ker}(\mathsf{p}_{2})}{\overline{([\mathsf{P}]_{2,\mathfrak{B}})}_{\operatorname{Ker}(\mathsf{p}_{1}) \cap \operatorname{Ker}(\mathsf{p}_{2})}^{\mathfrak{F}}}$$

where $[-]_{2,\mathcal{B}}$ is a kind of higher commutator.

For the adjunction

$$Ab(Haus) \xrightarrow[U]{} F \\ Ab(Top) \xrightarrow[H]{} Brp(Top)$$

one has

$$\pi_{2}(\mathsf{B}) \cong \frac{\overline{[\mathsf{P}_{2},\mathsf{P}_{2}]}^{\mathsf{top}} \cap \mathsf{Ker}(\mathsf{p}_{1}) \cap \mathsf{Ker}(\mathsf{p}_{2})}{[\mathsf{Ker}(\mathsf{p}_{1}), \mathsf{Ker}(\mathsf{p}_{2})].[\mathsf{Ker}(\mathsf{p}_{1}) \cap \mathsf{Ker}(\mathsf{p}_{2}), \mathsf{P}_{2}]}^{\mathsf{top}}}.$$

Thank you for your attention !