An application of profunctors in the study of colimits

Robert Paré

Dalhousie University pare@mathstat.dal.ca

Coimbra, July 10, 2012

The Problem

For two diagrams

what is the most general kind of morphism $\Gamma \leadsto \Phi$ which will produce a morphism

$$\varinjlim \Gamma \longrightarrow \varinjlim \Phi \quad ?$$

Trivial answer: A morphism $\varinjlim \Gamma \longrightarrow \varinjlim \Phi$. We want something more syntactic! E.g.

The Problem

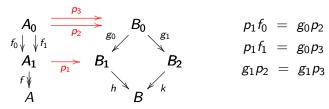
For two diagrams

what is the most general kind of morphism $\Gamma \leadsto \Phi$ which will produce a morphism

$$\varinjlim \Gamma \longrightarrow \varinjlim \Phi \quad ?$$

Trivial answer: A morphism $\varinjlim \Gamma \longrightarrow \varinjlim \Phi$. We want something more syntactic! E.g.

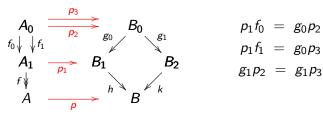
Example



Then we get

$$\begin{array}{rcl} hp_{1}f_{0} & = & hg_{0}p_{2} \\ & = & kg_{1}p_{2} \\ & = & kg_{1}p_{3} \\ & = & hg_{0}p_{3} \\ & = & hp_{1}f_{1} \end{array}$$

Example



Thus we get

$$hp_1f_0 = hg_0p_2$$

 $= kg_1p_2$
 $= kg_1p_3$
 $= hg_0p_3$
 $= hp_1f_1$

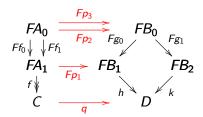
So there is a unique p such that $pf = hp_1$.

Problems

- Different schemes (number of arrows, placement, equations)
 may give the same p
- It might be difficult to compose such schemes

On the positive side

It is equational so for any functor F : A → B for which the coequalizer and pushout below exist we get an induced morphism q



The Problem (Refined)

For two diagrams in A

what is the most general kind of morphism $\Gamma \leadsto \Phi$ which will produce a morphism

$$\varinjlim F \Gamma \longrightarrow \varinjlim F \Phi$$

for every $F: \mathbf{A} \longrightarrow \mathbf{B}$ for which the \varinjlim 's exist?

▶ It should be natural in F (in a way to be specified)

First Solution

Take F to be the Yoneda embedding $Y: \mathbf{A} \longrightarrow \mathbf{Set}^{\mathbf{A}^{op}}$. Then we have the bijections

$$\frac{\underset{Iim_{J}}{\varinjlim} \mathsf{A}(-,\Gamma I) \longrightarrow \underset{Iim_{J}}{\varinjlim} \mathsf{A}(-,\Phi J)}{\underset{\langle \mathsf{A}(-,\Gamma I) \longrightarrow \underset{Iim_{J}}{\varinjlim} \mathsf{A}(-,\Phi J) \rangle_{I}}{(\mathsf{A}(-,\Gamma I) \longrightarrow \underset{Iim_{J}}{\varinjlim} \mathsf{A}(\Gamma I,\Phi J))_{I}}}$$

An element of $\varinjlim_{I} \mathbf{A}(\Gamma I, \Phi J)$ is an equivalence class of morphisms

$$[\Gamma I \xrightarrow{a} \Phi J]_I$$

where $a \sim a'$ iff there is a zigzag path of diagrams

$$\begin{array}{c|c}
\Gamma I & \xrightarrow{a_k} & \Phi J_k \\
\parallel & & \downarrow \Phi j_k \\
\Gamma I & \xrightarrow{a_{k+1}} & \Phi J_{k+1}
\end{array}$$

joining a to a'.

Theorem

Suppose we are given

- For each I, a J_I and a morphism $\Gamma I \xrightarrow{a_I} \Phi J_I$
- ► For each $I' \xrightarrow{i} I$ a path of J's and a's joining

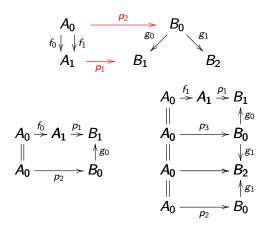
$$\Gamma I' \xrightarrow{\Gamma i} \Gamma I \xrightarrow{a_I} \Phi J_I$$

to

$$\Gamma I' \xrightarrow{a_{I'}} \Phi J_{I'}$$

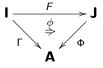
then for every F we get a morphism $\varinjlim F\Gamma \longrightarrow \varinjlim F\Phi$. Two such choices, $\langle a_I : \Gamma I \longrightarrow \Phi J_I \rangle$ and $\langle a_I' : \Gamma I \longrightarrow \Phi J_I' \rangle$, induce the same morphisms $\varinjlim F\Gamma \longrightarrow \varinjlim F\Phi$, iff for each I there is a path joining $\Gamma I \xrightarrow{a_I} \Phi J_I$ to $\Gamma I \xrightarrow{a_I'} \Phi J_I'$.

Example Again



Canonization

Recalling our first idea of



where we get for every I, a $J_I = FI$, and a morphism $a_I = \phi I : \Gamma I \longrightarrow \Phi FI$. Naturality of ϕ gives a one-step path

$$\Gamma I' \xrightarrow{\Gamma i} \Gamma I \xrightarrow{\phi I} \Phi F I
\parallel \qquad \qquad \uparrow \Phi F i
\Gamma I' \xrightarrow{\phi I'} \to \Phi F I'$$

In the general case $I \rightsquigarrow J_I$ is not a functor. There can be several J_I , and for $i:I'\longrightarrow I$ we don't get a morphism $J_{I'}\longrightarrow J_I$ but only a path. This is a kind of "relation between categories". They are called profunctors (distributors, bimodules, modules, relators).

Profunctors

- ▶ A profunctor $P : \mathbf{A} \longrightarrow \mathbf{B}$ is a functor $P : \mathbf{A}^{op} \times \mathbf{B} \longrightarrow \mathbf{Set}$
- **Every functor** $F : \mathbf{A} \longrightarrow \mathbf{B}$ gives two profunctors

$$F_*: \mathbf{A} \longrightarrow \mathbf{B}, \quad F_* = \mathbf{B}(F_{-}, -): \mathbf{A}^{op} \times \mathbf{B} \longrightarrow \mathbf{Set}$$

$$F^*: \mathbf{B} \longrightarrow \mathbf{A}, \quad F^* = \mathbf{B}(-, F_{-}): \mathbf{B}^{op} \times \mathbf{A} \longrightarrow \mathbf{Set}$$

$$F_* \dashv F^*$$

► Composition
$$\mathbf{A} \xrightarrow{P} \mathbf{B} \xrightarrow{Q} \mathbf{C}$$

$$Q \otimes P(A, C) = \int_{-\infty}^{B} Q(B, C) \times P(A, B)$$
$$= \{ [A \xrightarrow{x} B \xrightarrow{y} C]_{B} \} = \{ y \otimes_{B} x \}$$

$$A \xrightarrow{x} B \xrightarrow{y} C \sim A \xrightarrow{x'} B' \xrightarrow{y'} C$$
 if there is

$$A \xrightarrow{x} B \xrightarrow{y} C$$

$$\parallel \qquad \downarrow b \qquad \parallel$$

$$A \xrightarrow{y'} B' \xrightarrow{y'} C$$

$$y \otimes x = y'b \otimes x$$

$$= y' \otimes bx$$

$$= y' \otimes x'$$

For example, given functors

$$I \xrightarrow{\Gamma} A \xleftarrow{\varphi} J$$

we get an easily computed profunctor $\Phi^* \otimes \Gamma_* : \mathbf{I} \longrightarrow \mathbf{J}$

$$\Phi^* \otimes \Gamma_*(I,J) = \mathbf{A}(\Gamma I, \Phi J).$$

Proposition

A compatible family $\langle x_I \in \varinjlim_J \mathbf{A}(\Gamma I, \Phi J) \rangle_J$ determines a subprofunctor $P \subseteq \Phi^* \otimes \Gamma_*$ with the property that for every F and every $a \in P(I,J)$ we have

$$\begin{array}{ccc}
F\Gamma I & \xrightarrow{Fa} & F\Phi J \\
& & \downarrow inj_I \downarrow & & \downarrow inj_J \\
\underline{\lim} & F\Gamma \longrightarrow \underline{\lim} & F\Phi
\end{array}$$

for the morphism induced by $\langle x_I \rangle$.

Proof.

$$P(I, J) = \{a : \Gamma I \longrightarrow \Phi J | [a] = [x_I] \}.$$

Total Profunctors

Definition

 $P: \mathbf{A} \longrightarrow \mathbf{B}$ is *total* if for every A,

$$\varinjlim_B P(A,B) \cong 1.$$

Let $T: \mathbf{A} \longrightarrow \mathbf{1}$ be the unique functor. Then P is total iff $T_* \otimes P \stackrel{\cong}{\longrightarrow} T_*$.

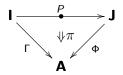
Proposition

- (1) Total profunctors are closed under composition.
- (2) For any functor $F : \mathbf{A} \longrightarrow \mathbf{B}$, F_* is total. (In particular Id_A is total.)
- (3) If P and $P \otimes Q$ are total then Q is total.
- (4) Total profunctors are closed under connected colimits and quotients.
- (5) F^* is total iff F is final.
- (6) For $\mathbf{I} \stackrel{\Sigma}{\longleftarrow} \mathbf{K} \stackrel{\Theta}{\longrightarrow} \mathbf{J}$, $\Theta_* \otimes \Sigma^*$ is total iff Σ is final.

Profunctors over A

Definition

For $\Gamma: I \longrightarrow A$ and $\Phi: J \longrightarrow A$, a profunctor from Γ to Φ (or a profunctor from I to J over A) is



where P is a profunctor $\mathbf{I} \longrightarrow \mathbf{J}$ and

$$\pi: P \longrightarrow \mathbf{A}(\Gamma -, \Phi -) = \Phi^* \otimes \Gamma_*$$
 is a natural transformation.

Profunctors over **A** compose in the "obvious" way:

$$(Q, \psi) \otimes (P, \pi) = (Q \otimes P, \psi \otimes \pi)$$

 $(\psi \otimes \pi)(y \otimes x) = (\psi y)(\pi x).$

Theorem

Let

be a profunctor over \mathbf{A} with P total. Then for every $F: \mathbf{A} \longrightarrow \mathbf{B}$ for which $\varinjlim F\Gamma$ and $\varinjlim F\Phi$ exist, there is a unique morphism $\varinjlim F\pi : \varinjlim F\Gamma \longrightarrow \varinjlim F\Phi$ such that for every $x \in P(I,J)$ we have

$$\begin{array}{ccc}
F\Gamma I & \xrightarrow{F\pi(x)} & F\Phi J \\
& & \downarrow inj_{I} \downarrow & & \downarrow inj_{J} \\
& \varinjlim F\Gamma & \xrightarrow{\lim F\phi} & \varinjlim F\Phi
\end{array}$$

If $(Q, \psi) : \Phi \longrightarrow \Psi$ is another total profunctor over **A**, we have

$$\varinjlim F(\psi \otimes \pi) = (\varinjlim F\psi)(\varinjlim F\pi).$$

Saturation

Definition

 $P \longrightarrow Q : \mathbf{I} \longrightarrow \mathbf{J}$ is *saturated* if for every $x \in Q(I, J)$ for which $jx \in P(I, J')$ for some $j : J \longrightarrow J'$, it follows that $x \in P(I, J)$.

- ▶ P is saturated in Q iff for every I, $P(I, -) > \longrightarrow Q(I, -)$ is complemented in $\mathbf{Set}^{\mathbf{J}}$.
- Every $P \longrightarrow Q$ has a saturation $\bar{P} \longrightarrow Q$.

Theorem

Let (P,π) and (P',π') be two total profunctors $\Gamma \longrightarrow \Phi$. Then they induce the same family $\varinjlim F\Gamma \longrightarrow \varinjlim F\Phi$ iff the images of $\pi: P \longrightarrow \Phi^* \otimes \Gamma_*$ and $\pi': P' \longrightarrow \Phi^* \otimes \Gamma_*$ have the same saturation.

Naturality

Definition

A family of morphisms $b_F: \varinjlim F\Gamma \longrightarrow \varinjlim F\Phi$ is natural if for every G we have

$$\underbrace{\lim_{\downarrow} GF\Gamma}_{\downarrow} \xrightarrow{b_{GF}} \xrightarrow{\lim_{\downarrow} GF\Phi} GF\Phi$$

$$G \underset{\downarrow}{\lim} F\Gamma \xrightarrow{Gb_{F}} G \underset{\downarrow}{\lim} F\Phi$$

Theorem

A total profunctor over **A** induces a natural family as above. Every natural family comes from a total saturated profunctor $\subseteq \Phi^* \otimes \Gamma_*$. In fact there is a bijection between natural families and saturated total $\subseteq \Phi^* \otimes \Gamma_*$.

Cohesive Families

As remarked by Bénabou already in the 70's, a category over I

corresponds to a lax normal functor $I \longrightarrow \mathbf{Prof}$ where an object I is sent to K_I , the fibre over I, and a morphism $i: I \longrightarrow I'$ to the profunctor $P_i: K_I \longrightarrow K_{I'}$ given by the formula

$$P_i(K, K') = \{K \xrightarrow{k} K' | \Lambda k = i\}$$

He also points out that interesting sub bicategories of **Prof** should produce interesting conditions on categories over *I*.

Definition

 $\Lambda: \mathbf{K} \longrightarrow \mathbf{I}$ is a *cohesive* family of categories if each P_i is total.

Cohesive Families (Continued)

In elementary terms, for every K in K and every morphism $i: \Lambda K \longrightarrow I'$, there exists a morphism $k: K \stackrel{k}{\longrightarrow} K'$ such that $i = \Lambda k$ and any two such liftings are connected by a path over i.

Bénabou says such Λ are called "homotopy opfibrations".

Proposition

- (1) Opfibrations are homotopy opfibrations
- (2) Homotopy opfibrations are stable under pullback
- (3) Homotopy opfibrations are closed under composition

Cohesive Families of Diagrams

Definition

A cohesive family of diagrams in A is a span

with Λ a homotopy opfibration.

Let
$$\Gamma_I = \Gamma|_{\mathbf{K}_I}$$
.

Theorem

 $\varinjlim_{k: K \longrightarrow K'} \Gamma_l$ extends to a unique functor $\varinjlim_{l} \Gamma_{(\)}: I \longrightarrow A$ such that for all

$$\begin{array}{c|c}
\Gamma K & \xrightarrow{\Gamma k} & \Gamma K' \\
 inj_{K} \downarrow & & \downarrow inj_{K'} \\
 & \varinjlim \Gamma_{I} & \xrightarrow{\varinjlim \Gamma_{i}} & \varinjlim \Gamma_{I'}
\end{array}$$

Kan Extensions

 $\varinjlim \Gamma_{(\)}: I \longrightarrow A$ is the left Kan extension and cohesiveness says it is fibrewise. So a more functorial version of the preceding theorem is:

Theorem

 $\Lambda: \textbf{K} \longrightarrow \textbf{I}$ is a homotopy opfibration iff for every pullback diagram

$$\begin{array}{c}
\mathbf{L} \stackrel{G}{\longrightarrow} \mathbf{K} \\
\Sigma \downarrow \qquad \downarrow \Lambda \\
\mathbf{J} \stackrel{}{\longrightarrow} \mathbf{I}
\end{array}$$

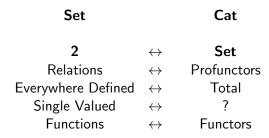
and every cocomplete A, the canonical morphism

$$\begin{array}{ccc} \boldsymbol{A^L} & \overset{G^*}{\longleftarrow} \boldsymbol{A^K} \\ \text{Lan}_{\boldsymbol{\Sigma}} & & \psi_{\boldsymbol{\lambda}} & & \sqrt{\text{Lan}_{\boldsymbol{\Lambda}}} \\ \boldsymbol{A^J} & \overset{F^*}{\longleftarrow} \boldsymbol{A^I} \end{array}$$

is an isomorphism.

If we take $\mathbf{J}=\mathbf{1},\ F\leftrightarrow I\in\mathbf{I}$, we get $(\mathit{Lan}_{\Lambda}\Gamma)I\cong \varinjlim \Gamma_{I}.$

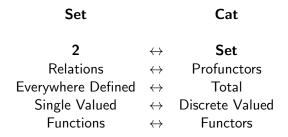
The Comprehensive Factorization



Recall the *comprehensive factorization* on Cat (Street & Walters '73). Every functor F factors as

with G final and H a discrete fibration. So the final functors are "epi-like" and the discrete fibrations are "mono-like".

The Comprehensive Factorization



Recall the *comprehensive factorization* on Cat (Street & Walters '79). Every functor F factors as

with G final and H a discrete fibration. So the final functors are "epi-like" and the discrete fibrations are "mono-like".

Discrete Valued Profunctors

Definition

P is discrete valued if it is of the form $P \cong G_* \otimes F^*$ for some $\mathbf{A} \stackrel{F}{\longleftrightarrow} \mathbf{C} \stackrel{G}{\longrightarrow} \mathbf{B}$ with F a discrete fibration.

Theorem

P is discrete valued iff for every A, P(A, -) is multirepresentable (Diers), i.e. a sum of representables. In fact

$$P(A,-)\cong \sum_{FC=A}\mathbf{B}(GC,-).$$

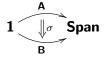
Corollary

The factorization $P \cong G_* \otimes F^*$ is unique up to isomorphism.

Mealy Morphisms

A small category is a monad in **Span**, which is a lax functor $1 \longrightarrow$ **Span**.

A lax transformation



corresponds to a Mealy morphism (machine)

- ▶ For every A, B we are given a set S(A, B) of states
- Arrows of A are the input alphabet
- Arrows of B are the output alphabet
- Action

$$A' \xrightarrow{a} A \xrightarrow{s} B \xrightarrow{\sigma} A' \xrightarrow{s^a} B' \xrightarrow{\sigma(s,a)} B$$

Mealy Profunctors

A Mealy morphism determines a profunctor $P: \mathbf{A} \longrightarrow \mathbf{B}$

$$P(A,B) = \sum_{s \in S(A,B')} \mathbf{B}(B',B)$$

Theorem

P is a Mealy profunctor iff P is discrete valued.

Theorem

P is representable iff it is total and discrete valued.