Probabilistic metric spaces as enriched categories

Carla Reis

Polytechnic Institute of Coimbra
Centro de Investigação e Desenvolvimento em Matemática e Aplicações, UA

Workshop on Category Theory, Universidade de Coimbra, July 2012

Quantales

Definition

A quantale $\mathrm{V}=(\mathrm{V}, \otimes, k)$, is a complete ordered set V equipped with an associative and commutative binary operation $\otimes: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ with neutral element k satisfying

$$
u \otimes \bigvee_{i \in I} v_{i}=\bigvee_{i \in I}\left(u \otimes v_{i}\right), \forall u, v_{i} \in \mathrm{~V}, \forall i \in I
$$

Therefore $u \otimes-: \mathrm{V} \rightarrow \mathrm{V} \dashv \operatorname{hom}(u,-)$.

Quantales

Example

- $2=\{$ false, true $\}$ is a quantale with tensor $\otimes=\&$ and $k=$ true. More general, every frame is a quantale with $\otimes=\wedge$ and $k=T$.
- $([0, \infty], \geq,+, 0)$ is a quantale, and one has

$$
\begin{gathered}
\operatorname{hom}(x, y)=y \ominus x:=\max \{y-x, 0\} \\
\text { with } y-\infty=0 \text { and } \infty-x=\infty \text { for } x, y \in[0, \infty], x \neq \infty
\end{gathered}
$$

- $([0,1], \leq, \times, 1)$ is a quantale. The right adjoint is given here by "division" $\operatorname{hom}(x, y)=y \oslash x:=\min \left\{\frac{y}{x}, 1\right\}$ for $x \neq 0$ and $y \oslash 0=1$

Quantales

Example

The set

$$
\Delta=\left\{f:[0,+\infty] \rightarrow[0,1], f \text { monotone and } f(x)=\bigvee_{y<x} f(y)\right\}
$$

is a quantale considering in Δ :
(1) $f \leq g$ iff $f(x) \leq g(x), \forall x \in[0,+\infty]$;
(2) $f \otimes g(x)=\underset{y+z \leq x}{\vee}(f(y) * g(z))$;
(3) $f_{0,1}$ is the neutral element.

We call $f \in \Delta$ finite if $f(\infty)=1$.

Morphism of quantales

Definition

Given also a quantale $\mathrm{W}=(\mathrm{W}, \oplus, l)$, a monotone map $F: \mathrm{V} \rightarrow \mathrm{W}$, is a morphism of quantales whenever for all $u, v, v_{i} \in \mathrm{~V}$ and $i \in I$

$$
\bigvee_{i \in I} F\left(v_{i}\right)=F\left(\bigvee_{i \in I} v_{i}\right), \quad F(u) \oplus F(v)=F(u \otimes v), \quad l=F(k),
$$

For many applications it is enough to have inequalities above:

Definition

We say that F is a lax morphism of quantales if, for all $u, v \in \mathrm{~V}$,

$$
F(u) \oplus F(v) \leq F(u \otimes v), \quad l \leq F(k)
$$

Morphism of quantales

Example

The morphism of quantales

$$
\begin{aligned}
I: & 2 \rightarrow[0, \infty] \\
& t \mapsto 0 \\
& f \mapsto \infty
\end{aligned}
$$

has a left and a right adjoint given, respectively, by

$$
\begin{aligned}
O:[0, \infty] & \rightarrow 2, & P:[0, \infty] & \rightarrow 2 \\
x & \mapsto \begin{cases}t & \text { if } x<\infty \\
f & \text { if } x=\infty\end{cases} & x & \mapsto \begin{cases}t & \text { if } x=0 \\
f & \text { if } x>0\end{cases}
\end{aligned}
$$

Here $O:[0, \infty] \rightarrow 2$ is a morphism of quantales as well, but $P:[0, \infty] \rightarrow 2$ is only a lax morphism of quantales.

Morphism of quantales

Example

The quantale $[0, \infty]$ embeds canonically into Δ via the morphism

$$
\begin{aligned}
I_{\infty}:[0, \infty] & \rightarrow \Delta \\
x & \mapsto f_{x, 1}
\end{aligned}
$$

I_{∞} has right adjoint and left adjoint:

$$
\begin{aligned}
P_{\infty}: \Delta & \rightarrow[0, \infty] \\
f & \mapsto \inf \{x \in[0, \infty] \mid f(x)=1\} \\
O_{\infty}: \Delta & \rightarrow[0, \infty] \\
f & \mapsto \sup \{x \in[0, \infty] \mid f(x)=0\}
\end{aligned}
$$

P_{∞} is only a lax morphism of quantales.

V-Cat

For a quantale $(\mathrm{V}, \leq, \otimes, k)$, the category V -Cat has

- Objects: V-categories (X, a) st $a: X \times X \rightarrow \mathrm{~V}$ and
- $k \leq a(x, x)$;
- $a(x, y) \otimes a(y, z) \leq a(x, z)$.
- Morphisms: V-functors - maps $f:(X, a) \rightarrow(Y, b)$ st

$$
a(x, y) \leq b(f(x), f(y))
$$

The quantale V gives rise to the V -category $\mathrm{V}=(\mathrm{V}$, hom $)$. Any V-category (X, a) is an ordered set.

V-Cat

Example

(1) A 2-category is just a set equipped with a reflexive and transitive relation, and a 2-functor is a monotone map. Hence, 2-Cat \simeq Ord.
(2) A $[0, \infty]$-category structure is a distance function $a: X \times X \rightarrow[0, \infty]$ which satisfies the conditions

$$
0 \geqslant a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geqslant a(x, z)
$$

for all $x, y, z \in X$; and a $[0, \infty]$-functor is a non-expansive map. Hence, $[0, \infty]-\mathrm{Cat} \simeq$ Met.

V-Cat

Example

A probabilistic metric space $(X, a, *)$ is a separated, symmetric and finitary Δ-category (X, a).

- $a(x, y):[0, \infty] \rightarrow[0,1]$ satisfies for all $x, y, z \in X$ and $t, s \in[0, \infty]$:
(1) $a(x, y):[0, \infty] \rightarrow[0,1]$ is left continuous;
(2) $\forall t>0, a(x, x)(t)=1$;
(3) $a(x, y)(t) * a(y, z)(s) \leq a(x, z)(t+s)$;
(9) $\forall t>0, a(x, y)(t)=1 \Rightarrow x=y$;
(3) $a(x, y)=a(y, x)$
(0) $a(x, y)(\infty)=1$

We will use the term "probabilistic metric space" as a synonym for Δ-category; then ProbMet $\simeq \Delta$-Cat.

V-Cat

A lax morphism of quantales $F: \mathrm{V} \rightarrow \mathrm{W}$ induces a functor $F:$ V-Cat \rightarrow W-Cat st

- $F(X, a)=(X, F a)$ with $F a=F \cdot a$:

$$
X \times X \xrightarrow{a} \mathrm{~V} \xrightarrow{F} \mathrm{~W}
$$

- $F f:=f:(X, F \cdot a) \rightarrow(Y, F \cdot b)$ for a V-functor $f:(X, a) \rightarrow(Y, b)$.

If $G: \mathrm{W} \rightarrow \mathrm{V}$ is also a lax morphism of quantales and $F \dashv G$ then the induced functors are also adjoint.

In particular, if $F=G^{-1}$, then V -Cat $\simeq \mathrm{W}$-Cat.

V-Cat

Example

We have seen that

Therefore, one obtains adjunctions between the induced functors:

V-Cat

Example

We have seen that

Therefore, one obtains the chain of functors

V-Dist

Definition

A V-distributor $\varphi:(X, a) \rightarrow(Y, b)$ is a map $\varphi: X \times Y \rightarrow \mathrm{~V}$ such that

$$
\varphi \cdot a \leq \varphi \text { and } b \cdot \varphi \leq \varphi
$$

In the category V -Dist of V -categories and V -distributors we consider:

- For $\psi:(Y, b) \rightarrow(Z, c)$:

$$
\psi \cdot \varphi(x, z)=\bigvee_{y \in Y} \varphi(x, y) \otimes \psi(y, z)
$$

- $a:(X, a) \longrightarrow(X, a)$ is the identity on $X=(X, a)$.

Lemma

Let $\varphi, \varphi^{\prime}: X \rightarrow Y$ and $\psi, \psi^{\prime}: Y \rightarrow X$ be V-distributors with $\varphi \dashv \psi$, $\varphi^{\prime} \dashv \psi^{\prime}, \varphi \leq \varphi^{\prime}$ and $\psi \leq \psi^{\prime}$. Then $\varphi=\varphi^{\prime}$ and $\psi=\psi^{\prime}$.

V-Dist

There are two important functors:

$$
(-)_{*}: \text { V-Cat } \rightarrow \text { V-Dist } \quad(-)^{*}: \text { V-Cat }^{\mathrm{op}} \rightarrow \text { V-Dist. }
$$

that leave objects unchanged and for every V-functor $f:(X, a) \rightarrow(Y, b)$

$$
f_{*}:(X, a) \longrightarrow(Y, b) \quad f^{*}:(Y, b) \longrightarrow(X, a),
$$

st

$$
f_{*}(x, y)=b(f(x), y) \quad f^{*}(y, x)=b(y, f(x))
$$

Furthermore,

$$
f_{*} \dashv f^{*}
$$

V-Dist

For every morphism of quantales $F: \mathrm{V} \rightarrow \mathrm{W}$:

For a V-distributor $\varphi:(X, a) \longrightarrow(Y, b), F \varphi=F \cdot \varphi$.
F is even locally monotone:

$$
\varphi \leq \varphi^{\prime} \Longrightarrow F \varphi \leq F \varphi^{\prime} ;
$$

therefore:

$$
\varphi \dashv \psi \text { in V-Dist } \Rightarrow F \varphi \dashv F \psi \text { in W-Dist }
$$

Cauchy Complete V-categories

Definition

A V-categorie (X, a) is Cauchy complete if any left adjoint V -distributor $\varphi: E \longrightarrow X$ is representable: $\varphi=x_{*}$, for some $x \in X$.

Hence,
X is Cauchy complete

- iff $(-)_{*}: X \rightarrow\{\varphi: E \longrightarrow X \mid \varphi$ is l.a. $\}$ is surjective.
- iff $(-)^{*}: X \rightarrow\{\psi: X \rightarrow E \mid \psi$ is r.a. $\}$ is surjective.

Cauchy Complete V-categories

Let $F: \mathrm{V} \rightarrow \mathrm{W}$ be a morphism of quantales and X be a V -category.

Proposition

(1) $F X$ is Cauchy complete and Φ is injective $\Rightarrow X$ is Cauchy complete.
(2) X is Cauchy complete and Φ is surjective $\Rightarrow F X$ is Cauchy complete.

Cauchy Complete V-categories

To obtain surjectivity of Φ, we assume that

- $F: \mathrm{V} \rightarrow \mathrm{W}$ is injective (then Φ is injective for every V -category X);
- there is a morphism of quantales $G: \mathrm{W} \rightarrow \mathrm{V}$ st $F \dashv G$.

Hence,

$$
\left(\varphi^{\prime}: E \multimap F X\right) \dashv\left(\psi^{\prime}: F X \multimap E\right) \text { in W-Dist }
$$

gives

$$
\left(G \varphi^{\prime}: E \multimap G F X\right) \dashv\left(G \psi^{\prime}: G F X \multimap E\right) \text { in V-Dist. }
$$

Since $G F=1_{\vee}$

$$
\left(G \varphi^{\prime}: E \multimap X\right) \dashv\left(G \psi^{\prime}: X \multimap E\right) \text { in V-Dist. }
$$

and

$$
\left(F G \varphi^{\prime}: E \multimap F X\right) \dashv\left(F G \psi^{\prime}: F X \multimap E\right) \text { in W-Dist. }
$$

with

$$
F G \varphi^{\prime} \leq \varphi^{\prime} \text { and } F G \psi^{\prime} \leq \psi^{\prime}
$$

In these conditions we conclude that $F G \varphi^{\prime}=\varphi^{\prime}$.

Cauchy Complete V-categories

We also have surjectivity of Φ if $G \dashv F$, since:

- 1_{X} is a V-functor of type $\gamma: G F X \rightarrow X$,
- $\left(G \varphi^{\prime}: E \rightarrow G F X\right) \dashv\left(G \psi^{\prime}: G F X \longrightarrow E\right)$ can be composed with $\gamma_{*} \dashv \gamma^{*}$ to yield

$$
\left(\gamma_{*} \cdot G \varphi^{\prime}: E \multimap X\right) \dashv\left(G \psi^{\prime} \cdot \gamma^{*}: X \multimap E\right) .
$$

- $F \gamma$ is the identity on $F X$ since $F G F=F$,
- Hence $\Phi\left(\gamma_{*} \cdot G \varphi^{\prime}\right)=\varphi^{\prime}$.

Cauchy Complete V-categories

Corollary

Let $F: \mathrm{V} \rightarrow \mathrm{W}$ and $G: \mathrm{W} \rightarrow \mathrm{V}$ be morphisms of quantales and assume that either $G \dashv F$ or that $F \dashv G$ and F is injective. Then $F X$ is Cauchy complete provided that X is Cauchy complete.

Example

Since $O_{\infty} \dashv I_{\infty}$, a metric space X is Cauchy complete in Met if and only if $I_{\infty} X$ is Cauchy complete in ProbMet.

Topology in a V-category

To every metric on a set X one associates a topology by putting, for all $M \subseteq X$ and $x \in X$:

$$
x \in \bar{M}: \Leftrightarrow \exists \text { (Cauchy) sequence }\left(x_{n}\right)_{n \in \mathbb{N}} \text { in } M \text { st }\left(x_{n}\right)_{n \in \mathbb{N}} \rightarrow x
$$

In the language of V-distributors:
$x \in \bar{M}: \Leftrightarrow x$ represents an adjoint pair of V -distributors on M

$$
\Leftrightarrow\left(i^{*} \cdot x_{*}: E \multimap M\right) \dashv\left(x^{*} \cdot i_{*}\right): M \multimap E
$$

where we consider M as a sub-V-category of X and $i: M \rightarrow X$ denotes the inclusion V-functor.
This latter formulation defines a closure operator for any V-category X.

Topology in a V-category

We recall :

Proposition

Let $X=(X, a)$ be a V-category, $M \subseteq X$ and $x \in X$. Then

$$
x \in \bar{M} \Leftrightarrow k \leq \bigvee_{y \in M} a(x, y) \otimes a(y, x)
$$

By the proposition above, for $x, x^{\prime} \in \bar{M}$ one has

$$
a\left(x, x^{\prime}\right)=\bigvee_{y \in M} a(x, y) \otimes a\left(y, x^{\prime}\right)
$$

Topology in a V-category

Proposition

Let $f: X \rightarrow Y$ be a V-functor, $M, M^{\prime} \subseteq X$ and $N \subseteq Y$. Then
(1) $M \subseteq \bar{M}$,
(2) $M \subseteq M^{\prime}$ implies $\bar{M} \subseteq \overline{M^{\prime}}$,
(3) $\bar{\varnothing}=\varnothing$ and $\bar{M}=\bar{M}$,
(9) $f(\bar{M}) \subseteq \overline{f(M)}$ and $\overline{f^{-1}(N)} \subseteq f^{-1}(\bar{N})$,
(3) $\overline{M \cup M^{\prime}}=\bar{M} \cup \overline{M^{\prime}}$ provided that $k \leq u \vee v$ implies $k \leq u$ or $k \leq v$ for all $u, v \in \mathrm{~V}$.

Furthermore, $\overline{(-)}$ is hereditary, that is, for $M \subseteq Z \subseteq X$, where Z is a sub-V-category of X :

$$
\bar{M}_{\text {in } Z}=\bar{M}_{\text {in } X} \cap Z .
$$

Topology in a V-category

One has the expected results linking closed subsets with Cauchy completeness:

- every closed subset of a Cauchy complete V-category is Cauchy complete;
- every Cauchy complete sub-V-category of a separated V-category is closed.

The inclusion V -functor $i: M \rightarrow X$ is fully dense (i.e. $i_{*} \cdot i^{*}=a$ where $X=(X, a))$ if and only if $\bar{M}=X$.

Topology in a V-category

Example: $y_{X}: X \rightarrow\left[X^{\mathrm{op}}, \mathrm{V}\right]$, since

$$
\overline{y_{X}(X)}=\widetilde{X}=\{\psi: X \rightarrow 1 \mid \psi \text { is right adjoint }\} .
$$

Hence,

- \tilde{X} is Cauchy complete;
- $y_{X}: X \rightarrow \tilde{X}$ is (fully faithful and) fully dense;
- $\left(y_{X}\right)_{*}: X \longrightarrow \tilde{X}$ is an isomorphism in V-Dist with inverse $y_{X}^{*}: \tilde{X} \mapsto X$.
Then:
For every V -functor $f: X \rightarrow Y$ where Y is separated and Cauchy complete, there exists a unique V -functor $g: \tilde{X} \rightarrow Y$ with $g \cdot y_{X}=f$. g can be taken as the V -functor $\tilde{X} \rightarrow Y$ st $g_{*}=f_{*} \cdot y_{X}^{*}$, it exists since Y is Cauchy complete and it is unique since Y is separated.

Topology in a V-category

Proposition

A V-category X is Cauchy complete if and only if X is injective with respect to fully faithful and fully dense V -functors.

Lemma

Let $F: \mathrm{W} \rightarrow \mathrm{V}$ be a morphism of quantales. Then $F: \mathrm{W}$-Cat \rightarrow V-Cat sends fully faithful and fully dense W-functors to fully faithful and fully dense V-functors.

Example

P_{∞} : ProbMet \rightarrow Met preserves Cauchy completeness.

