Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References
00	0000000		O	0

Many for the price of one duality principle for variety-based topological spaces

Sergejs Solovjovs^{1,2}

¹Department of Mathematics, University of Latvia e-mail: sergejs.solovjovs@lu.lv, www: http://home.lu.lv/~zd10011

²Institute of Mathematics and Computer Science, University of Latvia e-mail: sergejs.solovjovs@lumii.lv

Workshop on Category Theory

University of Coimbra, Coimbra, Portugal July 9 - 13, 2012

Duality principle for variety-based topological spaces

Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References
00	0000000		O	O
Outline				

- 2 Variety-based topology and its monads
- 3 Variety-based distributive spaces and dualities

4 Conclusion

Duality principle for variety-based topological spaces

Introduction ●0	Topology & monads 0000000	Distributive spaces & dualities	Conclusion 0	References 0
Topological dualities				
Duality p	rinciple for to	pological spaces		

- Recently, D. Hofmann considered topological spaces as generalized orders, and characterized the ones, which satisfy a suitably defined topological analogue of the complete distributivity law.
- He showed that the category of distributive spaces is dually equivalent to a certain category of frames, since they both represent the idempotent split completion of the same category.
- The developments are based in four particular submonads of the filter monad on the category **Top** of topological spaces and continuous maps, providing four dualities of the same kind.

Introduction ●0	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Topological dualities				
Duality pr	rinciple for to	pological spaces		

- Recently, D. Hofmann considered topological spaces as generalized orders, and characterized the ones, which satisfy a suitably defined topological analogue of the complete distributivity law.
- He showed that the category of distributive spaces is dually equivalent to a certain category of frames, since they both represent the idempotent split completion of the same category.
- The developments are based in four particular submonads of the filter monad on the category **Top** of topological spaces and continuous maps, providing four dualities of the same kind.

Introduction ●0	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Topological dualities				
Duality pr	rinciple for to	pological spaces		

- Recently, D. Hofmann considered topological spaces as generalized orders, and characterized the ones, which satisfy a suitably defined topological analogue of the complete distributivity law.
- He showed that the category of distributive spaces is dually equivalent to a certain category of frames, since they both represent the idempotent split completion of the same category.
- The developments are based in four particular submonads of the filter monad on the category **Top** of topological spaces and continuous maps, providing four dualities of the same kind.

Introduction 0•	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Topological dualities				
Variety-ba	ased modifica	tion		

- This talk lifts the above-mentioned dualities of D. Hofmann to the framework of lattice-valued fixed-basis topological spaces.
- We replace the variety of frames, which underlies the category **Top**, with an arbitrary one, and find the sufficient conditions on its algebras, which allow to get an analogue of the concept of distributivity of D. Hofmann as well as his obtained dualities.
- Our provided machinery gives rise to many dualities of the same kind, which, additionally, could rely on lattice-valued topology.

Introduction 0	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Topological dualities				
Variety-ba	ased modifica	tion		

- This talk lifts the above-mentioned dualities of D. Hofmann to the framework of lattice-valued fixed-basis topological spaces.
- We replace the variety of frames, which underlies the category **Top**, with an arbitrary one, and find the sufficient conditions on its algebras, which allow to get an analogue of the concept of distributivity of D. Hofmann as well as his obtained dualities.
- Our provided machinery gives rise to many dualities of the same kind, which, additionally, could rely on lattice-valued topology.

Introduction ⊙●	Topology & monads 0000000	Distributive spaces & dualities	Conclusion 0	References 0
Topological dualities				
Variety-ba	sed modifica	tion		

- This talk lifts the above-mentioned dualities of D. Hofmann to the framework of lattice-valued fixed-basis topological spaces.
- We replace the variety of frames, which underlies the category **Top**, with an arbitrary one, and find the sufficient conditions on its algebras, which allow to get an analogue of the concept of distributivity of D. Hofmann as well as his obtained dualities.
- Our provided machinery gives rise to many dualities of the same kind, which, additionally, could rely on lattice-valued topology.

Introduction 00	Topology & monads ●000000	Distributive spaces & dualities	Conclusion O	References 0
Topological space	es and their induced monads			
× / ·				

Variety-based topological spaces

Definition 1

Given a variety of algebras **A** and an **A**-algebra *A*, *A*-**Top** is the construct, which is defined by the following data: objects are pairs (X, τ) , with X a set and τ an **A**-subalgebra of A^X ; morphisms $(X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)$ are maps $X_1 \xrightarrow{f} X_2$ such that $f_A^{\leftarrow}(\alpha) = \alpha \circ f \in \tau_1$ for every $\alpha \in \tau_2$.

Example 2

If A = Frm and A = 2, then $2\text{-Top} \cong Top$.

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads ●000000	Distributive spaces & dualities	Conclusion O	References 0
Topological space	es and their induced monads			
× / ·				

Variety-based topological spaces

Definition 1

Given a variety of algebras **A** and an **A**-algebra *A*, *A*-**Top** is the construct, which is defined by the following data: objects are pairs (X, τ) , with X a set and τ an **A**-subalgebra of A^X ; morphisms $(X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)$ are maps $X_1 \xrightarrow{f} X_2$ such that $f_A^{\leftarrow}(\alpha) = \alpha \circ f \in \tau_1$ for every $\alpha \in \tau_2$.

Example 2

If A = Frm and A = 2, then $2\text{-Top} \cong Top$.

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads o●ooooo	Distributive spaces & dualities	Conclusion O	References 0
Topological space	s and their induced monads			
Variety-	based monads			

Assumption: **B** is a reduct of **A** with the forgetful functor $\mathbf{A} \xrightarrow{|-|} \mathbf{B}$.

Theorem 3

- There exists the functor A-Top $\xrightarrow{O_A} \mathbf{B}^{op}$, which is defined by $\mathcal{O}_A((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = |\tau_1| \xrightarrow{(f_A^+)^{op}} |\tau_2|.$
- There exists the functor B^{op} →tA A-Top, which is defined by Pt_A(B₁ → B₂) = (Pt_A(B₁), τ₁) (φ^{op})⁺A (Pt_A(B₂), τ₂), with Pt_A(B_i) = B(B_i, |A|), and τ_i the A-algebra generated by the image of B_i under the map B_i → |A<sup>Pt_A(B_i)|, (Φ_A(b))(p)=p(b).
 Pt_A is a right adjoint to O_A.
 </sup>
-) The adjunction gives rise to a monad $\mathbb{F} = (F, \eta, \mu)$ on A-Top.

Introduction 00	Topology & monads ○●○○○○○	Distributive spaces & dualities	Conclusion O	References 0
Topological space	s and their induced monads			
Varietv-	based monads			

Assumption: **B** is a reduct of **A** with the forgetful functor $\mathbf{A} \xrightarrow{|-|} \mathbf{B}$.

Theorem 3

- There exists the functor A-**Top** $\xrightarrow{\mathcal{O}_A} \mathbf{B}^{op}$, which is defined by $\mathcal{O}_A((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = |\tau_1| \xrightarrow{(f_A^{-})^{op}} |\tau_2|.$
- So There exists the functor $\mathbf{B}^{op} \xrightarrow{Pt_A} A$ -**Top**, which is defined by $Pt_A(B_1 \xrightarrow{\varphi} B_2) = (Pt_A(B_1), \tau_1) \xrightarrow{(\varphi^{op})_A^{\leftarrow}} (Pt_A(B_2), \tau_2)$, with $Pt_A(B_i) = \mathbf{B}(B_i, |A|)$, and τ_i the **A**-algebra generated by the image of B_i under the map $B_i \xrightarrow{\Phi_A} |A^{Pt_A(B_i)}|$, $(\Phi_A(b))(p) = p(b)$.
- **3** Pt_A is a right adjoint to \mathcal{O}_A .
- The adjunction gives rise to a monad $\mathbb{F} = (F, \eta, \mu)$ on A-**Top**.

Introduction 00	Topology & monads 00●0000	Distributive spaces & dualities	Conclusion O	References 0
Topological space	s and their induced monads			
Example	es of variety-ba	sed monads		

Example 4

- If $\mathbf{A} = \mathbf{Frm}$ and $A = \mathbf{2}$, then
 - **(** $\mathbf{B} = \mathbf{Frm}$ provides the completely prime filter monad;
 - **2** $\mathbf{B} = \mathbf{BLat}$ provides the prime filter monad;
 - **③** $\mathbf{B} = \mathbf{SLat}(\wedge, \top)$ provides the filter monad;
 - **4** $\mathbf{B} = \mathbf{BSLat}(\wedge)$ provides the proper filter monad;
 - **5** $\mathbf{B} = \mathbf{BSLat}(\wedge, \bigvee_d)$ provides the Scott-open filter monad.

Introduction 00	Topology & monads 000●000	Distributive spaces & dualities	Conclusion O	References 0
Topological space	s and their induced monads			
Varietv-l	based T_0 space	S		

- A space (X, τ) is said to be T₀ provided that for every distinct x₁, x₂ ∈ X there exists α ∈ τ such that α(x₁) ≠ α(x₂).
- **2** A-**Top**₀ is the full subcategory of A-**Top** of T_0 spaces.

Assumption: **B** has a forgetful functor to **Pos**.

Theorem 6

There exists the functor A-**Top**₀ \xrightarrow{Spec} **Pos**, which is given by $Spec((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = (X_1, \sqsubseteq) \xrightarrow{f} (X_2, \sqsubseteq)$, where $x \sqsubseteq y$ iff $\alpha(y) \leq \alpha(x)$ for every $\alpha \in \tau_i$.

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads 000●000	Distributive spaces & dualities	Conclusion O	References 0
Topological space	s and their induced monads			
Varietv-l	based T_0 space	S		

- A space (X, τ) is said to be T₀ provided that for every distinct x₁, x₂ ∈ X there exists α ∈ τ such that α(x₁) ≠ α(x₂).
- **2** A-**Top**₀ is the full subcategory of A-**Top** of T_0 spaces.

Assumption: **B** has a forgetful functor to **Pos**.

Theorem 6

There exists the functor A-**Top**₀ \xrightarrow{Spec} **Pos**, which is given by $Spec((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = (X_1, \sqsubseteq) \xrightarrow{f} (X_2, \sqsubseteq)$, where $x \sqsubseteq y$ iff $\alpha(y) \leq \alpha(x)$ for every $\alpha \in \tau_i$.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 000●000	Distributive spaces & dualities	Conclusion O	References 0
Topological space	s and their induced monads			
Varietv-l	based T_0 space	S		

- A space (X, τ) is said to be T₀ provided that for every distinct x₁, x₂ ∈ X there exists α ∈ τ such that α(x₁) ≠ α(x₂).
- **2** A-**Top**₀ is the full subcategory of A-**Top** of T_0 spaces.

Assumption: **B** has a forgetful functor to **Pos**.

Theorem 6

There exists the functor A-**Top**₀ \xrightarrow{Spec} **Pos**, which is given by $Spec((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = (X_1, \sqsubseteq) \xrightarrow{f} (X_2, \sqsubseteq)$, where $x \sqsubseteq y$ iff $\alpha(y) \leq \alpha(x)$ for every $\alpha \in \tau_i$.

Introduction 00	Topology & monads 0000€00	Distributive spaces & dualities	Conclusion O	References 0			
Topological spaces and their induced monads							
Kock-Zo	berlein variety	-based monads					

There exists the restriction \mathbb{F}_0 of the monad \mathbb{F} to A-**Top**₀.

Assumption: For every $A \in \mathbf{A}$, \leq is a subalgebra of $A \times A$.

Assumption: Given a set X, for every $x \in X$ and every **B**-algebra $S \subseteq A^X$: if $\alpha \in \langle S \rangle$ and $\alpha(x) \neq \bot$, then there exists $s \in S$ such that $s \leq \alpha$ and $s(x) = \alpha(x)$.

Theorem 8

The monad \mathbb{F}_0 is of Kock-Zöberlein type.

Corollary 9

The \mathbb{F}_0 -algebra structure on a T_0 space (X, τ) is unique.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000●00	Distributive spaces & dualities	Conclusion O	References 0			
Topological spaces and their induced monads							
Kock-Zc	berlein varietv	-based monads					

There exists the restriction \mathbb{F}_0 of the monad \mathbb{F} to A-**Top**₀.

Assumption: For every $A \in \mathbf{A}$, \leq is a subalgebra of $A \times A$.

Assumption: Given a set X, for every $x \in X$ and every **B**-algebra $S \subseteq A^X$: if $\alpha \in \langle S \rangle$ and $\alpha(x) \neq \bot$, then there exists $s \in S$ such that $s \leq \alpha$ and $s(x) = \alpha(x)$.

Theorem 8

The monad \mathbb{F}_0 is of Kock-Zöberlein type.

Corollary 9

The \mathbb{F}_0 -algebra structure on a T_0 space (X, τ) is unique.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000●00	Distributive spaces & dualities	Conclusion O	References 0			
Topological spaces and their induced monads							
Kock-Zö	berlein variety	-based monads					

There exists the restriction \mathbb{F}_0 of the monad \mathbb{F} to A-**Top**₀.

Assumption: For every $A \in \mathbf{A}$, \leq is a subalgebra of $A \times A$.

Assumption: Given a set X, for every $x \in X$ and every B-algebra $S \subseteq A^X$: if $\alpha \in \langle S \rangle$ and $\alpha(x) \neq \bot$, then there exists $s \in S$ such that $s \leq \alpha$ and $s(x) = \alpha(x)$.

Theorem 8

The monad \mathbb{F}_0 is of Kock-Zöberlein type.

Corollary 9

The \mathbb{F}_0 -algebra structure on a T_0 space (X, au) is unique.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000●00	Distributive spaces & dualities	Conclusion O	References 0			
Topological spaces and their induced monads							
Kock-Zö	berlein variety	-based monads					

There exists the restriction \mathbb{F}_0 of the monad \mathbb{F} to A-**Top**₀.

Assumption: For every $A \in \mathbf{A}$, \leq is a subalgebra of $A \times A$.

Assumption: Given a set X, for every $x \in X$ and every B-algebra $S \subseteq A^X$: if $\alpha \in \langle S \rangle$ and $\alpha(x) \neq \bot$, then there exists $s \in S$ such that $s \leq \alpha$ and $s(x) = \alpha(x)$.

Theorem 8

The monad \mathbb{F}_0 is of Kock-Zöberlein type.

Corollary 9

The \mathbb{F}_0 -algebra structure on a T_0 space (X, τ) is unique.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000●00	Distributive spaces & dualities	Conclusion O	References 0			
Topological spaces and their induced monads							
Kock-Zö	berlein variety	-based monads					

There exists the restriction \mathbb{F}_0 of the monad \mathbb{F} to A-**Top**₀.

Assumption: For every $A \in \mathbf{A}$, \leq is a subalgebra of $A \times A$.

Assumption: Given a set X, for every $x \in X$ and every B-algebra $S \subseteq A^X$: if $\alpha \in \langle S \rangle$ and $\alpha(x) \neq \bot$, then there exists $s \in S$ such that $s \leq \alpha$ and $s(x) = \alpha(x)$.

Theorem 8

The monad \mathbb{F}_0 is of Kock-Zöberlein type.

Corollary 9

The \mathbb{F}_0 -algebra structure on a T_0 space (X, τ) is unique.

Duality principle for variety-based topological spaces

Variety ba	sed monad m	orphisms		
Topological spaces and	their induced monads			
Introduction 00	Topology & monads 00000●0	Distributive spaces & dualities	Conclusion O	References 0

commutes. Then there exists a monad morphism $\mathbb{F}^1 \xrightarrow{\xi} \mathbb{F}^2$, which is defined by the inclusions $Pt^1_A(|\tau|) \longrightarrow Pt^2_A(|\tau|)$.

Corollary 11

There exists a functor
$$(A-\mathbf{Top}_0)^{\mathbb{F}^2_0} \xrightarrow{G} (A-\mathbf{Top}_0)^{\mathbb{F}^1_0}$$
.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Variety ba	sed monad m	orphisms		
Topological spaces and	their induced monads			
Introduction 00	Topology & monads 00000●0	Distributive spaces & dualities	Conclusion O	References 0

commutes. Then there exists a monad morphism $\mathbb{F}^1 \xrightarrow{\xi} \mathbb{F}^2$, which is defined by the inclusions $Pt^1_A(|\tau|) \longrightarrow Pt^2_A(|\tau|)$.

Corollary 11

There exists a functor
$$(A\operatorname{-}\mathbf{Top}_0)^{\mathbb{F}^2_0} \xrightarrow{G} (A\operatorname{-}\mathbf{Top}_0)^{\mathbb{F}^1_0}$$
.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 000000●	Distributive spaces & dualities	Conclusion O	References 0
Topological space	s and their induced monads			
Sobriety	for variety-bas	sed monads		

A T_0 space (X, τ) is said to be |A|-sober (A-sober in case of $\mathbf{A} = \mathbf{B}$) provided that the map $(X, \tau) \xrightarrow{\eta_{(X,\tau)}} F_0(X, \tau)$ is a homeomorphism.

Theorem 13

Every \mathbb{F}_0 -algebra (X, τ) is A-sober. If $\mathbf{A} = \mathbf{B}$, then every A-sober T_0 space (X, τ) is an \mathbb{F}_0 -algebra.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 000000●	Distributive spaces & dualities	Conclusion O	References O
Topological space	s and their induced monads			
Sobriety	for variety-bas	sed monads		

A T_0 space (X, τ) is said to be |A|-sober (A-sober in case of $\mathbf{A} = \mathbf{B}$) provided that the map $(X, \tau) \xrightarrow{\eta_{(X,\tau)}} F_0(X, \tau)$ is a homeomorphism.

Theorem 13

Every \mathbb{F}_0 -algebra (X, τ) is A-sober. If $\mathbf{A} = \mathbf{B}$, then every A-sober T_0 space (X, τ) is an \mathbb{F}_0 -algebra.

Duality principle for variety-based topological spaces

Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References	
00	0000000		O	0	
Variety-based monad algebras					

Characterization of monad algebras I

Definition 14

Let (X, τ) be a T_0 space.

- Given $p \in Pt_A(|\tau|)$, define $\lim(p) = \{x \in X \mid \eta_{(X,\tau)}(x) \leq p\}$.
- **2** Given $\alpha, \beta \in \tau$, α is said to be \mathbb{F}_0 -below β (denoted $\alpha \ll_{\mathbb{F}_0} \beta$) provided that for every $p \in Pt_A(|\tau|)$, there exists $x \in \lim(p)$ such that $p(\alpha) \leq \beta(x)$.
- (X, τ) is said to be F₀-core-compact provided that for every β ∈ τ and every x ∈ X such that β(x) ≠ ⊥, there exists α ∈ τ such that β(x) ≤ α(x) and $α ≪_{F_0} β$.
- (X, τ) is said to be \mathbb{F}_0 -stable provided that for every $p \in Pt_A(|\tau|)$, there exists $p' \in Pt_A(\tau)$ such that $p' \leq p$ and $\lim(p') = \lim(p)$.

Characterization of monoral almohuma II						
Variety-based monad algebras						
Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0		

Characterization of monad algebras II

Assumption: Let X be a set and let $S \subseteq A^X$ be a **B**-algebra. If $\alpha \in A^X$ has the property that for every $x \in X$ such that $\alpha(x) \neq \bot$, there exists $s \in S$ such that $s \leq \alpha$ and $s(x) = \alpha(x)$, then $\alpha \in \langle S \rangle$.

Theorem 15

Given a T_0 space (X, τ) , the following are equivalent:

(X,τ) is an F₀-algebra;

) (X, τ) is A-sober, \mathbb{F}_0 -stable and \mathbb{F}_0 -core-compact.

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0		
Variety-based monad algebras						
	· c	1 1 1				

Characterization of monad algebras II

Assumption: Let X be a set and let $S \subseteq A^X$ be a **B**-algebra. If $\alpha \in A^X$ has the property that for every $x \in X$ such that $\alpha(x) \neq \bot$, there exists $s \in S$ such that $s \leq \alpha$ and $s(x) = \alpha(x)$, then $\alpha \in \langle S \rangle$.

Theorem 15

Given a T_0 space (X, τ) , the following are equivalent:

- **(** X, τ **)** is an \mathbb{F}_0 -algebra;
- **2** (X, τ) is A-sober, \mathbb{F}_0 -stable and \mathbb{F}_0 -core-compact.

Duality principle for variety-based topological spaces

Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References	
		0000000000			
Variety-based distributive spaces					

Characterization of distributive monad algebras I

Definition 16

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is said to be \mathbb{F}_0 -distributive provided that h has a left adjoint $(X, \tau) \xrightarrow{t} F_0(X, \tau)$ in A-**Top**₀.

Theorem 17

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is \mathbb{F}_0 -distributive if and only if there exists $(X, \tau) \xrightarrow{t} F_0(X, \tau)$ in (A-**Top**₀) \mathbb{F}_0 such that $h \circ t = 1_{(X,\tau)}$.

Definition 18

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is said to be \mathbb{F}_0 -disconnected provided that given $\alpha \in \tau$, for every $x \in X$, there exists max $\{p(\alpha) \mid h(p) = x\}$ (denoted $(\mu(\alpha))(x)$), and, moreover, $\mu(\alpha) \in \tau$.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Variety-based dist	tributive spaces			
00	0000000	0000000000		
Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References

Characterization of distributive monad algebras I

Definition 16

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is said to be \mathbb{F}_0 -distributive provided that h has a left adjoint $(X, \tau) \xrightarrow{t} F_0(X, \tau)$ in A-**Top**₀.

Theorem 17

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is \mathbb{F}_0 -distributive if and only if there exists $(X, \tau) \xrightarrow{t} F_0(X, \tau)$ in (A-**Top**₀) \mathbb{F}_0 such that $h \circ t = 1_{(X, \tau)}$.

Definition 18

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is said to be \mathbb{F}_0 -disconnected provided that given $\alpha \in \tau$, for every $x \in X$, there exists max $\{p(\alpha) \mid h(p) = x\}$ (denoted $(\mu(\alpha))(x)$), and, moreover, $\mu(\alpha) \in \tau$.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

ntroduction	ocococo	Conclusion	References
Variety-based dist	tributive spaces		

Characterization of distributive monad algebras I

Definition 16

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is said to be \mathbb{F}_0 -distributive provided that h has a left adjoint $(X, \tau) \xrightarrow{t} F_0(X, \tau)$ in A-**Top**₀.

Theorem 17

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is \mathbb{F}_0 -distributive if and only if there exists $(X, \tau) \xrightarrow{t} F_0(X, \tau)$ in (A-**Top**₀) \mathbb{F}_0 such that $h \circ t = 1_{(X, \tau)}$.

Definition 18

An \mathbb{F}_0 -algebra $((X, \tau), h)$ is said to be \mathbb{F}_0 -disconnected provided that given $\alpha \in \tau$, for every $x \in X$, there exists max $\{p(\alpha) \mid h(p) = x\}$ (denoted $(\mu(\alpha))(x)$), and, moreover, $\mu(\alpha) \in \tau$.

Introduction 00	Topology & monads	Distributive spaces & dualities	Conclusion O	References 0
Variety-based dist	ributive spaces			
			-	

Characterization of distributive algebras II

Assumption: F_0 takes surjective maps to surjective maps.

Assumption: Given a T_0 space (X, τ) , for every $a \in A$ and every $\alpha \in \tau$, $(F_0i)^{\rightarrow}(F_0(X^a_{\alpha}, \hat{\tau})) = (F_0(X, \tau))^a_{\alpha}$, where

 $X_{\alpha}^{a} = \{ x \in X \mid a \leq \alpha(x) \} \xrightarrow{i} X$ $(F_{0}(X, \tau))_{\alpha}^{a} = \{ p \in Pt_{A}(|\tau|) \mid a \leq p(\alpha) \}.$

Duality principle for variety-based topological spaces

Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References
00	0000000		0	0
Variety-based distributive spaces				

Characterization of distributive algebras II

Assumption: F_0 takes surjective maps to surjective maps.

Assumption: Given a T_0 space (X, τ) , for every $a \in A$ and every $\alpha \in \tau$, $(F_0i)^{\rightarrow}(F_0(X^a_{\alpha}, \hat{\tau})) = (F_0(X, \tau))^a_{\alpha}$, where

$$X_{\alpha}^{a} = \{ x \in X \mid a \leq \alpha(x) \} \xrightarrow{i} X$$
$$(F_{0}(X, \tau))_{\alpha}^{a} = \{ p \in Pt_{A}(|\tau|) \mid a \leq p(\alpha) \}.$$

Duality principle for variety-based topological spaces

Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References
00	0000000		o	0
Variety-based distributive spaces				

Characterization of distributive algebras III

Assumption: Let X be a set and let $|A^X| \xrightarrow{f} |A^X|$ be a map. Given $\lambda \in \Lambda_{\mathbf{B}}$, $(\alpha_i)_{n_\lambda} \in (A^X)^{n_\lambda}$ and $S \subseteq n_\lambda$, define

$$\overline{\alpha_i}^{S} = \begin{cases} \alpha_i, & i \in S \\ f(\alpha_i), & i \notin S. \end{cases}$$

If $\omega_{\lambda}^{A^{X}}((f(\alpha_{i}))_{n_{\lambda}}) \leq f(\omega_{\lambda}^{A^{X}}((\overline{\alpha_{i}}^{S})_{n_{\lambda}}))$ for every finite $S \subseteq n_{\lambda}$, then it follows that $\omega_{\lambda}^{A^{X}}((f(\alpha_{i}))_{n_{\lambda}}) \leq f(\omega_{\lambda}^{A^{X}}((\alpha_{i})_{n_{\lambda}})).$

Duality principle for variety-based topological spaces

Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References 0
Variety-based distribut	tive spaces			

Characterization of distributive algebras IV

Theorem 19

Given an \mathbb{F}_0 -algebra (X, τ) , the following are equivalent:

- **1** (X, τ) is \mathbb{F}_0 -distributive;
- **2** (X, τ) is \mathbb{F}_0 -disconnected.

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Variety-based dua	lities			
Variety-	based duality I			

 $spl((A-Top_0)^{\mathbb{F}_0})$ is the full subcategory of $(A-Top_0)^{\mathbb{F}_0}$ of \mathbb{F}_0 -distributive \mathbb{F}_0 -algebras.

Theorem 21

Idempotents split in A-**Top**₀.

Corollary 22

 $\mathsf{spl}((A\text{-}\mathbf{Top}_0)^{\mathbb{F}_0}) \simeq \mathsf{kar}((A\text{-}\mathbf{Top}_0)_{\mathbb{F}_0}).$

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Variety-based dua	lities			
Variety-	based duality I			

 $spl((A-Top_0)^{\mathbb{F}_0})$ is the full subcategory of $(A-Top_0)^{\mathbb{F}_0}$ of \mathbb{F}_0 -distributive \mathbb{F}_0 -algebras.

Theorem 21

Idempotents split in A-**Top**₀.

Corollary 22

 $\mathsf{spl}((A\text{-}\mathbf{Top}_0)^{\mathbb{F}_0}) \simeq \mathsf{kar}((A\text{-}\mathbf{Top}_0)_{\mathbb{F}_0}).$

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Variety-based dua	lities			
Variety-	based duality I			

 $spl((A-Top_0)^{\mathbb{F}_0})$ is the full subcategory of $(A-Top_0)^{\mathbb{F}_0}$ of \mathbb{F}_0 -distributive \mathbb{F}_0 -algebras.

Theorem 21

Idempotents split in A-**Top**₀.

Corollary 22

$$\operatorname{spl}((A\operatorname{-}\mathbf{Top}_0)^{\mathbb{F}_0}) \simeq \operatorname{kar}((A\operatorname{-}\mathbf{Top}_0)_{\mathbb{F}_0}).$$

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion 0	References 0
Variety-based dualities				
Variety-based duality II				

Assumption: The variety **A** has a nullary operation.

Theorem 23

There exists a full embedding $(A-\mathbf{Top}_0)_{\mathbb{F}_0} \xrightarrow{L} \mathbf{B}^{op}$.

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References O			
Variety-based dualities	Variety-based dualities						
Variety-based duality II							

Assumption: The variety **A** has a nullary operation.

Theorem 23

There exists a full embedding $(A-\mathbf{Top}_0)_{\mathbb{F}_0} \xrightarrow{L} \mathbf{B}^{op}$.

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Variety-based duali	ties			
Variety-b	ased duality II	1		

 \mathbf{B}_{kar}^{op} is the idempotent split completion of the image of $(A-\mathbf{Top}_0)_{\mathbb{F}_0}$ in \mathbf{B}^{op} under *L*.

Theorem 25

 ${\operatorname{spl}}((A\operatorname{-}{\operatorname{Top}}_0)^{{\mathbb{F}}_0})\simeq {\operatorname{B}}^{\operatorname{op}}_{\operatorname{kar}}.$

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion 0	References 0
Variety-based dual	lities			
Variety-I	based duality II			

 \mathbf{B}_{kar}^{op} is the idempotent split completion of the image of $(A-\mathbf{Top}_0)_{\mathbb{F}_0}$ in \mathbf{B}^{op} under *L*.

Theorem 25

 $\mathsf{spl}((A\operatorname{-}\mathbf{Top}_0)^{\mathbb{F}_0})\simeq \mathbf{B}^{op}_{\mathsf{kar}}.$

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Variety-based dua	lities			
Variety-	based frames I			

 $B \in \mathbf{B}_{kar}^{op}$ if and only if there exists a T_0 space (X, τ) such that B is a retract of $|\tau|$.

Definition 27

■ $B \in \mathbf{B}$ is A-spatial provided that for every $b_1, b_2 \in B$ such that $b_1 \not\leq b_2$, there exists $p \in Pt_A(B)$ such that $p(b_1) \not\leq p(b_2)$.

▶ $A \in \mathbf{A}$ is a **B**-frame provided that A has a reduct in **Sup**, and, moreover, for every $\lambda \in \Lambda_{\mathbf{B}}$ such that $n_{\lambda} \neq 0$, and every family $\{S_i \subseteq A \mid i \in n_{\lambda}\}, \ \omega_{\lambda}^A((\bigvee S_i)_{n_{\lambda}}) = \bigvee \{\omega_{\lambda}^A((s_i)_{n_{\lambda}}) \mid s_i \in S_i, i \in n_{\lambda}\}.$

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities ○○○○○○○○●○○	Conclusion O	References 0
Variety-based dua	lities			
Variety-	based frames L			

 $B \in \mathbf{B}_{kar}^{op}$ if and only if there exists a T_0 space (X, τ) such that B is a retract of $|\tau|$.

Definition 27

- $B \in \mathbf{B}$ is A-spatial provided that for every $b_1, b_2 \in B$ such that $b_1 \notin b_2$, there exists $p \in Pt_A(B)$ such that $p(b_1) \notin p(b_2)$.
- ② $A \in \mathbf{A}$ is a **B**-frame provided that A has a reduct in **Sup**, and, moreover, for every $\lambda \in \Lambda_{\mathbf{B}}$ such that $n_{\lambda} \neq 0$, and every family $\{S_i \subseteq A \mid i \in n_{\lambda}\}, \ \omega_{\lambda}^{\mathcal{A}}((\bigvee S_i)_{n_{\lambda}}) = \bigvee \{\omega_{\lambda}^{\mathcal{A}}((s_i)_{n_{\lambda}}) \mid s_i \in S_i, i \in n_{\lambda}\}.$

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities ○○○○○○○○○●○	Conclusion O	References 0
Variety-based dualitie	s			
Variety-ba	sed frames II			

Assumption: A is a **B**-frame.

Assumption: Let $S \subseteq A$ be a **B**-algebra, let $\lambda \in \Lambda_{\mathbf{B}}$, and let $(a_i)_{n_{\lambda}} \in \langle S \rangle^{n_{\lambda}}$ have the property that $a_i \neq \bot$ for every $i \in n_{\lambda}$. Given $s \in S$ such that $s \leqslant \omega_{\lambda}^{\langle S \rangle}((a_i)_{n_{\lambda}})$, there exists $(s_i)_{n_{\lambda}} \in S^{n_{\lambda}}$ such that $s_i \leqslant a_i$ for every $i \in n_{\lambda}$, and $s \leqslant \omega_{\lambda}^{\langle S \rangle}((s_i)_{n_{\lambda}})$.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Variety-based dual	ities			
Variety-b	based frames II			

Assumption: A is a **B**-frame.

Assumption: Let $S \subseteq A$ be a **B**-algebra, let $\lambda \in \Lambda_{\mathbf{B}}$, and let $(a_i)_{n_{\lambda}} \in \langle S \rangle^{n_{\lambda}}$ have the property that $a_i \neq \bot$ for every $i \in n_{\lambda}$. Given $s \in S$ such that $s \leq \omega_{\lambda}^{\langle S \rangle}((a_i)_{n_{\lambda}})$, there exists $(s_i)_{n_{\lambda}} \in S^{n_{\lambda}}$ such that $s_i \leq a_i$ for every $i \in n_{\lambda}$, and $s \leq \omega_{\lambda}^{\langle S \rangle}((s_i)_{n_{\lambda}})$.

Duality principle for variety-based topological spaces

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References 0
Variety-based dua	lities			
Varietv-I	based frames II			

B-Frm is the full subcategory of **B** of A-spatial **B**-frames.

Theorem 29

 $(\mathbf{B}\operatorname{-}\mathbf{Frm})^{op}\cong \mathbf{B}^{op}_{\operatorname{kar}}.$

Corollary 30

 $(\mathbf{B}\operatorname{\mathbf{-Frm}})^{op}\simeq \operatorname{spl}((A\operatorname{\mathbf{-Top}}_0)^{\mathbb{F}_0}).$

Example 31

If $\mathbf{A} = \mathbf{B}$, then \mathbf{A} -Frm is the category of A-spatial \mathbf{A} -algebras, and spl((A-Top₀)^{\mathbb{F}_0}) is the category of A-sober T_0 topological spaces.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities ○○○○○○○○○○	Conclusion O	References 0
Variety-based dual	ities			
Varietv-t	based frames II			

B-Frm is the full subcategory of B of A-spatial B-frames.

Theorem 29

 $(\mathbf{B}\operatorname{-}\mathbf{Frm})^{op}\cong \mathbf{B}^{op}_{kar}.$

Corollary 30

```
(\mathbf{B}\operatorname{\mathsf{-Frm}})^{op}\simeq \operatorname{spl}((A\operatorname{\mathsf{-Top}}_0)^{\mathbb{F}_0}).
```

Example 31

If $\mathbf{A} = \mathbf{B}$, then \mathbf{A} -Frm is the category of A-spatial \mathbf{A} -algebras, and spl((A-Top₀)^{\mathbb{F}_0}) is the category of A-sober T_0 topological spaces.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities ○○○○○○○○○○	Conclusion O	References 0
Variety-based duali	ties			
Varietv-b	based frames II			

B-Frm is the full subcategory of B of A-spatial B-frames.

Theorem 29

 $(\mathbf{B}\operatorname{-}\mathbf{Frm})^{op}\cong \mathbf{B}^{op}_{\operatorname{kar}}.$

Corollary 30

 $(\mathbf{B}\operatorname{-}\mathbf{Frm})^{op} \simeq \operatorname{spl}((A\operatorname{-}\mathbf{Top}_0)^{\mathbb{F}_0}).$

Example 31

If $\mathbf{A} = \mathbf{B}$, then \mathbf{A} -Frm is the category of A-spatial \mathbf{A} -algebras, and spl((A-Top₀)^{\mathbb{F}_0}) is the category of A-sober T_0 topological spaces.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities ○○○○○○○○○○	Conclusion O	References 0
Variety-based dual	ities			
Varietv-t	based frames II			

B-Frm is the full subcategory of B of A-spatial B-frames.

Theorem 29

 $(\mathbf{B}\operatorname{-}\mathbf{Frm})^{op}\cong \mathbf{B}^{op}_{\operatorname{kar}}.$

Corollary 30

$$({f B} extsf{-}{f Frm})^{op}\simeq {
m spl}((A extsf{-}{f Top}_0)^{{\mathbb F}_0}).$$

Example 31

If $\mathbf{A} = \mathbf{B}$, then \mathbf{A} -Frm is the category of A-spatial \mathbf{A} -algebras, and spl $((A - \mathbf{Top}_0)^{\mathbb{F}_0})$ is the category of A-sober T_0 topological spaces.

Duality principle for variety-based topological spaces

Sergejs Solovjovs

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion •	References 0
Final remarks				
Conclusio	n			

- In the talk, we have provided a variety-based approach to the four dualities of D. Hofmann.
- Our approach is based in a series of assumptions, which are sufficient to get a similar kind duality.
- Every variety, which satisfies these assumptions, will qualify, thereby providing many possible dualities.
- It will be our future work to find also the necessary conditions for the obtained machinery.

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion •	References 0
Final remarks				
Conclusio	n			

- In the talk, we have provided a variety-based approach to the four dualities of D. Hofmann.
- Our approach is based in a series of assumptions, which are sufficient to get a similar kind duality.
- Every variety, which satisfies these assumptions, will qualify, thereby providing many possible dualities.
- It will be our future work to find also the necessary conditions for the obtained machinery.

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion	References 0
Final remarks				
Conclusio	n			

- In the talk, we have provided a variety-based approach to the four dualities of D. Hofmann.
- Our approach is based in a series of assumptions, which are sufficient to get a similar kind duality.
- Every variety, which satisfies these assumptions, will qualify, thereby providing many possible dualities.
- It will be our future work to find also the necessary conditions for the obtained machinery.

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion	References 0
Final remarks				
Conclusio	n			

- In the talk, we have provided a variety-based approach to the four dualities of D. Hofmann.
- Our approach is based in a series of assumptions, which are sufficient to get a similar kind duality.
- Every variety, which satisfies these assumptions, will qualify, thereby providing many possible dualities.
- It will be our future work to find also the necessary conditions for the obtained machinery.

Introduction 00	Topology & monads 0000000	Distributive spaces & dualities	Conclusion O	References •
References				
Reference	es			

- M. Escardo and B. Flagg, *Semantic domains, injective spaces and monads*, Electronic Notes in Theoretical Computer Science **20** (1999), 16 pages.
- D. Hofmann, A four for the price of one duality principle for distributive spaces, arXiv:math.GN/1102.2605.
- R. Rosebrugh and R. J. Wood, *Split structures*, Theory Appl. Categ. 13 (2004), 172–183.
- S. Solovyov, *Sobriety and spatiality in varieties of algebras*, Fuzzy Sets Syst. **159** (2008), no. 19, 2567–2585.
- S. Solovyov, Categorical foundations of variety-based topology and topological systems, Fuzzy Sets Syst. **192** (2012), 176–200.

Introduction	Topology & monads	Distributive spaces & dualities	Conclusion	References
00	0000000		O	0

Thank you for your attention!

Duality principle for variety-based topological spaces

Sergejs Solovjovs