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Topological dualities

Duality principle for topological spaces

Recently, D. Hofmann considered topological spaces as general-
ized orders, and characterized the ones, which satisfy a suitably
defined topological analogue of the complete distributivity law.

He showed that the category of distributive spaces is dually
equivalent to a certain category of frames, since they both rep-
resent the idempotent split completion of the same category.

The developments are based in four particular submonads of
the filter monad on the category Top of topological spaces and
continuous maps, providing four dualities of the same kind.
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Topological dualities

Variety-based modification

This talk lifts the above-mentioned dualities of D. Hofmann to
the framework of lattice-valued fixed-basis topological spaces.

We replace the variety of frames, which underlies the category
Top, with an arbitrary one, and find the sufficient conditions
on its algebras, which allow to get an analogue of the concept
of distributivity of D. Hofmann as well as his obtained dualities.

Our provided machinery gives rise to many dualities of the same
kind, which, additionally, could rely on lattice-valued topology.
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Topological spaces and their induced monads

Variety-based topological spaces

Definition 1

Given a variety of algebras A and an A-algebra A, A-Top is the
construct, which is defined by the following data:

objects are pairs (X , τ), with X a set and τ an A-subalgebra of AX ;

morphisms (X1, τ1)
f−→ (X2, τ2) are maps X1

f−→ X2 such that
f←A (α) = α ◦ f ∈ τ1 for every α ∈ τ2.

Example 2

If A = Frm and A = 2, then 2-Top ∼= Top.
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Topological spaces and their induced monads

Variety-based monads

Assumption: B is a reduct of A with the forgetful functor A
|−|−−→ B.

Theorem 3

1 There exists the functor A-Top
OA−−→ Bop, which is defined by

OA((X1, τ1)
f−→ (X2, τ2)) = |τ1|

(f←A )op

−−−−→ |τ2|.
2 There exists the functor Bop

PtA−−→ A-Top, which is defined by

PtA(B1
ϕ−→ B2) = (PtA(B1), τ1)

(ϕop)←A−−−−→ (PtA(B2), τ2), with
PtA(Bi ) = B(Bi , |A|), and τi the A-algebra generated by the

image of Bi under the map Bi
ΦA−−→|APtA(Bi )|, (ΦA(b))(p)=p(b).

3 PtA is a right adjoint to OA.
4 The adjunction gives rise to a monad F = (F , η, µ) on A-Top.
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Topological spaces and their induced monads

Examples of variety-based monads

Example 4

If A = Frm and A = 2, then
1 B = Frm provides the completely prime filter monad;
2 B = BLat provides the prime filter monad;
3 B = SLat(∧,>) provides the filter monad;
4 B = BSLat(∧) provides the proper filter monad;
5 B = BSLat(∧,

∨
d) provides the Scott-open filter monad.
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Topological spaces and their induced monads

Variety-based T0 spaces

Definition 5
1 A space (X , τ) is said to be T0 provided that for every distinct

x1, x2 ∈ X there exists α ∈ τ such that α(x1) 6= α(x2).
2 A-Top0 is the full subcategory of A-Top of T0 spaces.

Assumption: B has a forgetful functor to Pos.

Theorem 6

There exists the functor A-Top0
Spec−−−→ Pos, which is given by

Spec((X1, τ1)
f−→ (X2, τ2)) = (X1,v)

f−→ (X2,v), where x v y
iff α(y) 6 α(x) for every α ∈ τi .
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Topological spaces and their induced monads

Kock-Zöberlein variety-based monads

Theorem 7

There exists the restriction F0 of the monad F to A-Top0.

Assumption: For every A ∈ A, 6 is a subalgebra of A× A.

Assumption: Given a set X , for every x ∈ X and every B-algebra
S ⊆ AX : if α ∈ 〈S〉 and α(x) 6= ⊥, then there exists s ∈ S such
that s 6 α and s(x) = α(x).

Theorem 8

The monad F0 is of Kock-Zöberlein type.

Corollary 9

The F0-algebra structure on a T0 space (X , τ) is unique.
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Kock-Zöberlein variety-based monads

Theorem 7

There exists the restriction F0 of the monad F to A-Top0.

Assumption: For every A ∈ A, 6 is a subalgebra of A× A.

Assumption: Given a set X , for every x ∈ X and every B-algebra
S ⊆ AX : if α ∈ 〈S〉 and α(x) 6= ⊥, then there exists s ∈ S such
that s 6 α and s(x) = α(x).

Theorem 8

The monad F0 is of Kock-Zöberlein type.
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Topological spaces and their induced monads

Variety-based monad morphisms

Theorem 10

Suppose the diagram

A
|−|

~~

|−|

  
B1 |−|

// B2

commutes. Then there exists a monad morphism F1 ξ−→ F2, which
is defined by the inclusions Pt1A(|τ |) �

� // Pt2A(|τ |) .

Corollary 11

There exists a functor (A-Top0)
F20 G−→ (A-Top0)

F10 .
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Topological spaces and their induced monads

Sobriety for variety-based monads

Definition 12

A T0 space (X , τ) is said to be |A|-sober (A-sober in case of A = B)

provided that the map (X , τ)
η(X ,τ)−−−→ F0(X , τ) is a homeomorphism.

Theorem 13

Every F0-algebra (X , τ) is A-sober. If A = B, then every A-sober
T0 space (X , τ) is an F0-algebra.
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Variety-based monad algebras

Characterization of monad algebras I

Definition 14

Let (X , τ) be a T0 space.
1 Given p ∈ PtA(|τ |), define lim(p) = {x ∈ X | η(X ,τ)(x) 6 p}.
2 Given α, β ∈ τ , α is said to be F0-below β (denoted α�F0 β)

provided that for every p ∈ PtA(|τ |), there exists x ∈ lim(p)
such that p(α) 6 β(x).

3 (X , τ) is said to be F0-core-compact provided that for every
β ∈ τ and every x ∈ X such that β(x) 6= ⊥, there exists α ∈ τ
such that β(x) 6 α(x) and α�F0 β.

4 (X , τ) is said to be F0-stable provided that for every p ∈
PtA(|τ |), there exists p′ ∈ PtA(τ) such that p′ 6 p and
lim(p′) = lim(p).
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Variety-based monad algebras

Characterization of monad algebras II

Assumption: Let X be a set and let S ⊆ AX be a B-algebra. If
α ∈ AX has the property that for every x ∈ X such that α(x) 6= ⊥,
there exists s ∈ S such that s 6 α and s(x) = α(x), then α ∈ 〈S〉.

Theorem 15

Given a T0 space (X , τ), the following are equivalent:
1 (X , τ) is an F0-algebra;
2 (X , τ) is A-sober, F0-stable and F0-core-compact.
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Variety-based distributive spaces

Characterization of distributive monad algebras I

Definition 16

An F0-algebra ((X , τ), h) is said to be F0-distributive provided that

h has a left adjoint (X , τ)
t−→ F0(X , τ) in A-Top0.

Theorem 17

An F0-algebra ((X , τ), h) is F0-distributive if and only if there exists

(X , τ)
t−→ F0(X , τ) in (A-Top0)

F0 such that h ◦ t = 1(X ,τ).

Definition 18

An F0-algebra ((X , τ), h) is said to be F0-disconnected provided that
given α ∈ τ , for every x ∈ X , there exists max{p(α) | h(p) = x}
(denoted (µ(α))(x)), and, moreover, µ(α) ∈ τ .
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Variety-based distributive spaces

Characterization of distributive algebras II

Assumption: F0 takes surjective maps to surjective maps.

Assumption: Given a T0 space (X , τ), for every a ∈ A and every
α ∈ τ , (F0i)

→(F0(X
a
α, τ̂)) = (F0(X , τ))aα, where

X a
α = {x ∈ X | a 6 α(x)} �

� i // X

(F0(X , τ))aα = {p ∈ PtA(|τ |) | a 6 p(α)}.
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Variety-based distributive spaces

Characterization of distributive algebras III

Assumption: Let X be a set and let |AX | f−→ |AX | be a map. Given
λ ∈ ΛB, (αi )nλ ∈ (AX )nλ and S ⊆ nλ, define

αi
S =

{
αi , i ∈ S

f (αi ), i 6∈ S .

If ωAX

λ ((f (αi ))nλ) 6 f (ωAX

λ ((αi
S)nλ)) for every finite S ⊆ nλ, then

it follows that ωAX

λ ((f (αi ))nλ) 6 f (ωAX

λ ((αi )nλ)).
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Variety-based distributive spaces

Characterization of distributive algebras IV

Theorem 19

Given an F0-algebra (X , τ), the following are equivalent:
1 (X , τ) is F0-distributive;
2 (X , τ) is F0-disconnected.
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Variety-based dualities

Variety-based duality I

Definition 20

spl((A-Top0)
F0) is the full subcategory of (A-Top0)

F0 of F0-
distributive F0-algebras.

Theorem 21

Idempotents split in A-Top0.

Corollary 22

spl((A-Top0)
F0) ' kar((A-Top0)F0).
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Variety-based dualities

Variety-based duality II

Assumption: The variety A has a nullary operation.

Theorem 23

There exists a full embedding (A-Top0)F0
L−→ Bop.
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Variety-based dualities

Variety-based duality III

Definition 24

Bopkar is the idempotent split completion of the image of (A-Top0)F0
in Bop under L.

Theorem 25

spl((A-Top0)
F0) ' Bopkar.
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Variety-based dualities

Variety-based frames I

Theorem 26

B ∈ Bopkar if and only if there exists a T0 space (X , τ) such that B
is a retract of |τ |.

Definition 27
1 B ∈ B is A-spatial provided that for every b1, b2 ∈ B such that

b1 66 b2, there exists p ∈ PtA(B) such that p(b1) 66 p(b2).
2 A ∈ A is a B-frame provided that A has a reduct in Sup, and,

moreover, for every λ ∈ ΛB such that nλ 6= 0, and every family
{Si⊆A | i ∈nλ}, ωA

λ ((
∨
Si )nλ)=

∨
{ωA

λ ((si )nλ) | si ∈Si , i ∈nλ}.
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Variety-based dualities

Variety-based frames II

Assumption: A is a B-frame.

Assumption: Let S ⊆ A be a B-algebra, let λ ∈ ΛB, and let (ai )nλ ∈
〈S〉nλ have the property that ai 6= ⊥ for every i ∈ nλ. Given s ∈ S

such that s 6 ω
〈S〉
λ ((ai )nλ), there exists (si )nλ ∈ Snλ such that

si 6 ai for every i ∈ nλ, and s 6 ω
〈S〉
λ ((si )nλ).
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Variety-based dualities

Variety-based frames III

Definition 28

B-Frm is the full subcategory of B of A-spatial B-frames.

Theorem 29

(B-Frm)op ∼= Bopkar.

Corollary 30

(B-Frm)op ' spl((A-Top0)
F0).

Example 31

If A = B, then A-Frm is the category of A-spatial A-algebras, and
spl((A-Top0)

F0) is the category of A-sober T0 topological spaces.
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Final remarks

Conclusion

In the talk, we have provided a variety-based approach to the
four dualities of D. Hofmann.

Our approach is based in a series of assumptions, which are
sufficient to get a similar kind duality.

Every variety, which satisfies these assumptions, will qualify,
thereby providing many possible dualities.

It will be our future work to find also the necessary conditions
for the obtained machinery.
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Thank you for your attention!
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