Projections of weak braided Hopf algebras

Carlos Soneira Calvo

Univ. da Coruña

Workshop on Category Theory. Universidade de Coimbra
9 de julio de 2012
(9) Preliminaries
(2) Weak braided Hopf algebras
(3) Projections over WBHA

4. Aplication to the braided case

Motivation

Weak Hopf algebras

- G. Böhm, F. Nill, K. Szlachányi, Weak Hopf algebras I. Integral theory and C*-structure, J. of Algebra 221 (1999)

Applications:

- Operators theory
- Extension of algebras
- Space-time models in dimension 2
- Solutions to the dynamic Yang-Baxter equation
- Reconstruction of categories

Hypothesis

Hypothesis

We consider a monoidal category C :

- strict
- with split idempotents:

For any $\nabla: A \rightarrow A$ with $\nabla=\nabla \circ \nabla$, exist
$B \in|\mathcal{C}|, i: B \rightarrow A, p: A \rightarrow B$ such that $\nabla=i \circ p$ y $p \circ i=i d_{B}$

Preliminaries

Algebra in \mathcal{C} : a triple $A=\left(A, \eta_{A}, \mu_{A}\right)$ with $A \in|\mathcal{C}|$ and $\eta_{A} \in \mathcal{C}(A, K)$ (unit), $\mu_{A} \in \mathcal{C}(D \otimes D, D)$ (product) such that $\mu_{A} \circ\left(A \otimes \eta_{A}\right)=i d_{A}=\mu_{A} \circ\left(\eta_{A} \otimes A\right)$ and $\mu_{A} \circ\left(\mu_{A} \otimes A\right)=\mu_{A} \circ\left(A \otimes \mu_{A}\right)$.

Preliminaries

Algebra in \mathcal{C} : a triple $A=\left(A, \eta_{A}, \mu_{A}\right)$ with $A \in|\mathcal{C}|$ and $\eta_{A} \in \mathcal{C}(A, K)$ (unit), $\mu_{A} \in \mathcal{C}(A \otimes A, A)$ (product) such that
$\mu_{A} \circ\left(A \otimes \eta_{A}\right)=i d_{A}=\mu_{A} \circ\left(\eta_{A} \otimes A\right)$ y $\mu_{A} \circ\left(\mu_{A} \otimes A\right)=\mu_{A} \circ\left(A \otimes \mu_{A}\right)$.
If A, B algebras, $f \in \mathcal{C}(A, B)$ is a morphism of algebras if $\mu_{B} \circ(f \otimes f)=f \circ \mu_{A}, \eta_{B}=f \circ \eta_{A}$.

Preliminaries

Coalgebra in \mathcal{C} : a triple $D=\left(D, \varepsilon_{D}, \delta_{D}\right)$ with $D \in|\mathcal{C}|$ and $\varepsilon_{D} \in \mathcal{C}(D, K)$ (counit), $\delta_{D} \in \mathcal{C}(D, D \otimes D)$ (coproduct) such that $\left(\varepsilon_{D} \otimes D\right) \circ \delta_{D}=i d_{D}=\left(D \otimes \varepsilon_{D}\right) \circ \delta_{D}$ and $\left(\delta_{D} \otimes D\right) \circ \delta_{D}=\left(D \otimes \delta_{D}\right) \circ \delta_{D}$. If D, E are coalgebras, $f \in \mathcal{C}(D, E)$ is a coalgebra morphism if $(f \otimes f) \circ \delta_{D}=\delta_{E} \circ f, \varepsilon_{E} \circ f=\varepsilon_{D}$.

If A algebra, B coalgebra and $f, g \in \mathcal{C}(B, A)$, the convolution of f and g is $f \wedge g=\mu_{A} \circ(f \otimes g) \circ \delta_{B}$.

Preliminaries

Let A be an algebra. A left A-module is a pair $\left(M, \varphi_{M}\right)$ with:

$$
M \in|\mathcal{C}|, \quad \varphi_{M} \in \mathcal{C}(A \otimes M, M) \text { such that }
$$

$$
\varphi_{M} \circ\left(\eta_{A} \otimes M\right)=i d_{M}, \quad \varphi_{M} \circ\left(A \otimes \varphi_{M}\right)=\varphi_{M} \circ\left(\mu_{A} \otimes M\right) .
$$

Given $\left(M, \varphi_{M}\right),\left(N, \varphi_{N}\right)$, left A-mod, $f: M \rightarrow N$ is an A-mod morphism if

$$
\varphi_{N} \circ(A \otimes f)=f \circ \varphi_{M}
$$

Preliminaries

Let D be a coalgebra. A left D-comodule is a pair $\left(M, \varrho_{M}\right)$ with:

$$
M \in|\mathcal{C}|, \quad \varrho_{M} \in \mathcal{C}(M, D \otimes M) \text { such that }
$$

$$
\left(\varepsilon_{D} \otimes M\right) \circ \varrho_{M}=i d_{M}, \quad\left(D \otimes \varrho_{M}\right) \circ \varrho_{M}=\left(\delta_{D} \otimes M\right) \circ \varrho_{M}
$$

Given $\left(M, \varrho_{M}\right),\left(N, \varrho_{N}\right)$, left D-comod, $f: M \rightarrow N$ is a morphism of D-comod if

$$
\varrho_{N} \circ f=(D \otimes f) \circ \varrho_{M} .
$$

(1) Preliminaries

(2) Weak braided Hopf algebras

(3) Projections over WBHA

4. Aplication to the braided case

Weak braided Hopf algebras

Definition

Let $D \in|\mathcal{C}|$ and $t_{D, D}: D \otimes D \rightarrow D \otimes D$ morfismo en \mathcal{C}. It is said that $t_{D, D}$ satisfies the Yang-Baxter equation if

$$
\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right)=\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right)
$$

Definition (Weak Yang-Baxtder operator)
Let $D \in|\mathcal{C}|$. A weak Yang-Baxter operator is a morphism

(a1) $t_{D, D}$ satisfies the Yang-Baxter equation.
(a2) There exists an idempotent $\nabla_{D, D}: D \otimes D \rightarrow D \otimes D$ such that:

$(\mathrm{a} 2-4) t_{D, D} \circ \nabla_{D, D}=\nabla_{D, D} \circ t_{D, D}=t_{D, D}$.

Weak braided Hopf algebras

Definition

Let $D \in|\mathcal{C}|$ and $t_{D, D}: D \otimes D \rightarrow D \otimes D$ morfismo en \mathcal{C}. It is said that $t_{D, D}$ satisfies the Yang-Baxter equation if

$$
\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right)=\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right)
$$

Definition (Weak Yang-Baxtder operator)

Let $D \in|\mathcal{C}|$. A weak Yang-Baxter operator is a morphism $t_{D, D}: D \otimes D \rightarrow D \otimes D$ in \mathcal{C} such that:

(a1) $t_{D, D}$
(a2) The
$(\mathrm{a} 2-1)$
$(\mathrm{a} 2-2)$
$(\mathrm{a} 2-3)$
$(\mathrm{a} 2-4)$

Weak braided Hopf algebras

Definition

Let $D \in|\mathcal{C}|$ and $t_{D, D}: D \otimes D \rightarrow D \otimes D$ morfismo en \mathcal{C}. It is said that $t_{D, D}$ satisfies the Yang-Baxter equation if

$$
\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right)=\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right)
$$

Definition (Weak Yang-Baxtder operator)

Let $D \in|\mathcal{C}|$. A weak Yang-Baxter operator is a morphism $t_{D, D}: D \otimes D \rightarrow D \otimes D$ in \mathcal{C} such that:
(a1) $t_{D, D}$ satisfies the Yang-Baxter equation.

Weak braided Hopf algebras

Definition

Let $D \in|\mathcal{C}|$ and $t_{D, D}: D \otimes D \rightarrow D \otimes D$ morfismo en \mathcal{C}. It is said that $t_{D, D}$ satisfies the Yang-Baxter equation if

$$
\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right)=\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right)
$$

Definition (Weak Yang-Baxtder operator)

Let $D \in|\mathcal{C}|$. A weak Yang-Baxter operator is a morphism $t_{D, D}: D \otimes D \rightarrow D \otimes D$ in \mathcal{C} such that:
(a1) $t_{D, D}$ satisfies the Yang-Baxter equation.
(a2) There exists an idempotent $\nabla_{D, D}: D \otimes D \rightarrow D \otimes D$ such that:

$$
\begin{aligned}
& \text { (a2-1) }\left(\nabla_{D, D} \otimes D\right) \circ\left(D \otimes \nabla_{D, D}\right)=\left(D \otimes \nabla_{D, D}\right) \circ\left(\nabla_{D, D} \otimes D\right), \\
& \text { (a2-2) }\left(\nabla_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right)=\left(D \otimes t_{D, D}\right) \circ\left(\nabla_{D, D} \otimes D\right), \\
& \text { (a2-3) }\left(t_{D, D} \otimes D\right) \circ\left(D \otimes \nabla_{D, D}\right)=\left(D \otimes \nabla_{D, D}\right) \circ\left(t_{D, D} \otimes D\right), \\
& \text { (a2-4) } t_{D, D} \circ \nabla_{D, D}=\nabla_{D, D} \circ t_{D, D}=t_{D, D} .
\end{aligned}
$$

Weak braided Hopf algebras

(a3) There exists $t_{D, D}^{\prime}: D \otimes D \rightarrow D \otimes D$ such that:
(a3-1) The morphism $p_{D, D} \circ t_{D, D} \circ i_{D, D}: D \times D \rightarrow D \times D$ is an isomorphism with inverse $p_{D, D} \circ t_{D, D}^{\prime} \circ i_{D, D}: D \times D \rightarrow D \times D$, where $p_{D, D}$ e $i_{D, D}$ are those such that $i_{D, D} \circ p_{D, D}=\nabla_{D, D}$ y $p_{D, D} \circ i_{D, D}=i d_{D \times D}$ with $D \times D$ the image of $\nabla_{D, D}$.
(a3-2) $t_{D, D}^{\prime} \circ \nabla_{D, D}=\nabla_{D, D} \circ t_{D, D}^{\prime}=t_{D, D}^{\prime}$.

Example

If $\left(\mathcal{C}, \otimes, K, \mathcal{C}_{-,-}\right)$is a braided category:

- The braid $c_{D, D}$ satisfies the Yang-Baxter equation
- The braid $t_{D, D}:=c_{D, D}$ is a weak Yang-Baxter operator with

Weak braided Hopf algebras

(a3) There exists $t_{D, D}^{\prime}: D \otimes D \rightarrow D \otimes D$ such that:
(a3-1) The morphism $p_{D, D} \circ t_{D, D} \circ i_{D, D}: D \times D \rightarrow D \times D$ is an isomorphism with inverse $p_{D, D} \circ t_{D, D}^{\prime} \circ i_{D, D}: D \times D \rightarrow D \times D$, where $p_{D, D}$ e $i_{D, D}$ are those such that $i_{D, D} \circ p_{D, D}=\nabla_{D, D}$ y $p_{D, D} \circ i_{D, D}=i d_{D \times D}$ with $D \times D$ the image of $\nabla_{D, D}$.
(a3-2) $t_{D, D}^{\prime} \circ \nabla_{D, D}=\nabla_{D, D} \circ t_{D, D}^{\prime}=t_{D, D}^{\prime}$.

Example

If $\left(\mathcal{C}, \otimes, K, \mathcal{C}_{-,-}\right)$is a braided category:

- The braid $c_{D, D}$ satisfies the Yang-Baxter equation
- The braid $t_{D, D}:=c_{D, D}$ is a weak Yang-Baxter operator with $\nabla_{D, D}=i d_{D \otimes D}, t_{D, D}^{\prime}=c_{D, D}^{-1}$

Weak braided Hopf algebras

Definition (Weak braided bialgebra (WBB))

Is a $D \in \mathcal{C}$ with
algebra-coalgebra strutcture $\left(D, \eta_{D}, \mu_{D}\right),\left(D, \varepsilon_{D}, \delta_{D}\right)$
and a weak Vang-Baxter op ${ }^{t} D: D: D \otimes D \rightarrow D \otimes D$ with associated idempotent $\nabla_{D, D}$ such that:
(b1) It holds that

(b2) It holds that

Weak braided Hopf algebras

Definition (Weak braided bialgebra (WBB))

Is a $D \in \mathcal{C}$ with
algebra-coalgebra strutcture $\left(D, \eta_{D}, \mu_{D}\right),\left(D, \varepsilon_{D}, \delta_{D}\right)$

Weak braided Hopf algebras

Definition (Weak braided bialgebra (WBB))

Is a $D \in \mathcal{C}$ with
algebra-coalgebra strutcture $\left(D, \eta_{D}, \mu_{D}\right),\left(D, \varepsilon_{D}, \delta_{D}\right)$
and a weak Yang-Baxter op. $t_{D, D}: D \otimes D \rightarrow D \otimes D$ with associated idempotent $\nabla_{D, D}$ such that:

Weak braided Hopf algebras

Definition (Weak braided bialgebra (WBB))

Is a $D \in \mathcal{C}$ with
algebra-coalgebra strutcture $\left(D, \eta_{D}, \mu_{D}\right),\left(D, \varepsilon_{D}, \delta_{D}\right)$
and a weak Yang-Baxter op. $t_{D, D}: D \otimes D \rightarrow D \otimes D$ with associated idempotent $\nabla_{D, D}$ such that:
(b1) It holds that
(b1-1) $\mu_{D} \circ \nabla_{D, D}=\mu_{D}$,
(b1-2) $\nabla_{D, D} \circ\left(\mu_{D} \otimes D\right)=\left(\mu_{D} \otimes D\right) \circ\left(D \otimes \nabla_{D, D}\right)$,
(b1-3) $\nabla_{D, D} \circ\left(D \otimes \mu_{D}\right)=\left(D \otimes \mu_{D}\right) \circ\left(\nabla_{D, D} \otimes D\right)$.

(b2) It holds that

Weak braided Hopf algebras

Definition (Weak braided bialgebra (WBB))

Is a $D \in \mathcal{C}$ with
algebra-coalgebra strutcture $\left(D, \eta_{D}, \mu_{D}\right),\left(D, \varepsilon_{D}, \delta_{D}\right)$
and a weak Yang-Baxter op. $t_{D, D}: D \otimes D \rightarrow D \otimes D$ with associated idempotent $\nabla_{D, D}$ such that:
(b1) It holds that
(b1-1) $\mu_{D} \circ \nabla_{D, D}=\mu_{D}$,
(b1-2) $\nabla_{D, D} \circ\left(\mu_{D} \otimes D\right)=\left(\mu_{D} \otimes D\right) \circ\left(D \otimes \nabla_{D, D}\right)$,
(b1-3) $\nabla_{D, D} \circ\left(D \otimes \mu_{D}\right)=\left(D \otimes \mu_{D}\right) \circ\left(\nabla_{D, D} \otimes D\right)$.
(b2) It holds that

$$
\begin{aligned}
& \text { (b2-1) } \nabla_{D, D} \circ \delta_{D}=\delta_{D}, \\
& \text { (b2-2) }\left(\delta_{D} \otimes D\right) \circ \nabla_{D, D}=\left(D \otimes \nabla_{D, D}\right) \circ\left(\delta_{D} \otimes D\right), \\
& \text { (b2-3) }\left(D \otimes \delta_{D}\right) \circ \nabla_{D, D}=\left(\nabla_{D, D} \otimes D\right) \circ\left(D \otimes \delta_{D}\right) .
\end{aligned}
$$

Weak braided Hopf algebras

(b3) It holds that

$$
\begin{aligned}
& \text { (b3-1) } t_{D, D} \circ\left(\mu_{D} \otimes D\right)=\left(D \otimes \mu_{D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right), \\
& \text { (b3-2) } t_{D, D} \circ\left(D \otimes \mu_{D}\right)=\left(\mu_{D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right), \\
& \text { (b3-3) }\left(\delta_{D} \otimes D\right) \circ t_{D, D}=\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes \delta_{D}\right), \\
& \text { (b3-4) }\left(D \otimes \delta_{D}\right) \circ t_{D, D}=\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(\delta_{D} \otimes D\right) .
\end{aligned}
$$

Weak braided Hopf algebras

(b3) It holds that

$$
\begin{aligned}
& \text { (b3-1) } t_{D, D} \circ\left(\mu_{D} \otimes D\right)=\left(D \otimes \mu_{D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right), \\
& \text { (b3-2) } t_{D, D} \circ\left(D \otimes \mu_{D}\right)=\left(\mu_{D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right), \\
& \text { (b3-3) }\left(\delta_{D} \otimes D\right) \circ t_{D, D}=\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes \delta_{D}\right), \\
& \text { (b3-4) }\left(D \otimes \delta_{D}\right) \circ t_{D, D}=\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(\delta_{D} \otimes D\right) .
\end{aligned}
$$

(b4) $\delta_{D} \circ \mu_{D}=\left(\mu_{D} \otimes \mu_{D}\right) \circ\left(D \otimes t_{D, D} \otimes D\right) \circ\left(\delta_{D} \otimes \delta_{D}\right)$.

Weak braided Hopf algebras

(b3) It holds that
$(\mathrm{b} 3-1) t_{D, D} \circ\left(\mu_{D} \otimes D\right)=\left(D \otimes \mu_{D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right)$,
(b3-2) $t_{D, D} \circ\left(D \otimes \mu_{D}\right)=\left(\mu_{D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right)$,
(b3-3) $\left(\delta_{D} \otimes D\right) \circ t_{D, D}=\left(D \otimes t_{D, D}\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes \delta_{D}\right)$,
$(\mathrm{b} 3-4)\left(D \otimes \delta_{D}\right) \circ t_{D, D}=\left(t_{D, D} \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(\delta_{D} \otimes D\right)$.
(b4) $\delta_{D} \circ \mu_{D}=\left(\mu_{D} \otimes \mu_{D}\right) \circ\left(D \otimes t_{D, D} \otimes D\right) \circ\left(\delta_{D} \otimes \delta_{D}\right)$.
$(\mathrm{b} 5) \varepsilon_{D} \circ \mu_{D} \circ\left(\mu_{D} \otimes D\right)=\left(\left(\varepsilon_{D} \circ \mu_{D}\right) \otimes\left(\varepsilon_{D} \circ \mu_{D}\right)\right) \circ\left(D \otimes \delta_{D} \otimes D\right)$
$=\left(\left(\varepsilon_{D} \circ \mu_{D}\right) \otimes\left(\varepsilon_{D} \circ \mu_{D}\right)\right) \circ\left(D \otimes\left(t_{D, D}^{\prime} \circ \delta_{D}\right) \otimes D\right)$.
(b6) $\left(\delta_{D} \otimes D\right) \circ \delta_{D} \circ \eta_{D}=\left(D \otimes \mu_{D} \otimes D\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes\left(\delta_{D} \circ \eta_{D}\right)\right)$

$$
=\left(D \otimes\left(\mu_{D} \circ t_{D, D}^{\prime}\right) \otimes D\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes\left(\delta_{D} \circ \eta_{D}\right)\right)
$$

Weak braided Hopf algebras

Definition (Weak braided Hopf algebra (WBHA))

Is a WBB such that in addition it verifies that:
(b7) There exists a morphism $\lambda_{D}: D \rightarrow D$ en \mathcal{C} (the antipode of D) such that:

$$
\begin{aligned}
& \text { (b7-1) } i d_{D} \wedge \lambda_{D}=\left(\left(\varepsilon_{D} \circ \mu_{D}\right) \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes D\right), \\
& \left(\text { b7-2) } \lambda_{D} \wedge i d_{D}=\left(D \otimes\left(\varepsilon_{D} \circ \mu_{D}\right)\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(D \otimes\left(\delta_{D} \circ \eta_{D}\right)\right),\right. \\
& \left(\text { b7-3) } \lambda_{D} \wedge i d_{D} \wedge \lambda_{D}=\lambda_{D} .\right.
\end{aligned}
$$

Weak braided Hopf algebras

If D is a WBB or a WBHA we define the idempotents:

$$
\begin{aligned}
& \Pi_{D}^{L}=\left(\left(\varepsilon_{D} \circ \mu_{D}\right) \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes D\right), \\
& \Pi_{D}^{R}=\left(D \otimes\left(\varepsilon_{D} \circ \mu_{D}\right)\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(\left(D \otimes\left(\delta_{D} \circ \eta_{D}\right)\right) .\right.
\end{aligned}
$$

and the idempotents $\bar{\Pi}_{D}^{L}$ y $\bar{\Pi}_{D}^{R}$:

Weak braided Hopf algebras

If D is a WBB or a WBHA we define the idempotents:

$$
\begin{aligned}
& \Pi_{D}^{L}=\left(\left(\varepsilon_{D} \circ \mu_{D}\right) \otimes D\right) \circ\left(D \otimes t_{D, D}\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes D\right), \\
& \Pi_{D}^{R}=\left(D \otimes\left(\varepsilon_{D} \circ \mu_{D}\right)\right) \circ\left(t_{D, D} \otimes D\right) \circ\left(\left(D \otimes\left(\delta_{D} \circ \eta_{D}\right)\right) .\right.
\end{aligned}
$$

and the idempotents $\bar{\Pi}_{D}^{L}$ y $\bar{\Pi}_{D}^{R}$:

$$
\begin{aligned}
& \bar{\Pi}_{D}^{L}=\left(D \otimes\left(\varepsilon_{D} \circ \mu_{D}\right)\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes D\right), \\
& \bar{\Pi}_{D}^{R}=\left(\left(\varepsilon_{D} \circ \mu_{D}\right) \otimes D\right) \circ\left(D \otimes\left(\delta_{D} \circ \eta_{D}\right)\right) .
\end{aligned}
$$

Weak braided Hopf algebras: Examples

Examples

- Classic Hopf algebras, Braided Hopf algebras
- Weak Hopf algebras
- Weak Hopf algebras (WHA for short) in braided categories
- A WBHA H with: weak Yang-Baxter operator $t_{H, H}:=$ CH.H

Weak braided Hopf algebras: Examples

Examples

- Classic Hopf algebras, Braided Hopf algebras
- Weak Hopf algebras
- Weak Hopf algebras (WHA for short) in braided categories
- A WBHA H with:
weak Yang-Baxter operator $t_{H, H}:=C_{H, H}$
$\nabla_{H, H}=i d_{H, H}$
$t_{H, H}^{\prime}=c_{H, H}^{-1}$

Yetter-Drinfeld modules over WBHA

Definition (Yetter-Drinfeld modules over WBHA)

Let D be a WBHA. We denote by ${ }_{D}^{D} \mathcal{Y D}$ the category of left-left Yetter-Drinfeld modules over D.
Its objects are the triples $\left(M, \varphi_{M}, \rho_{M}\right)$ with $\left(M, \varphi_{M}\right)$ a left D-mod, (M, ρ_{M}) a left D-comod and:
(1) $\rho_{M}=\left(\mu_{D} \otimes \varphi_{M}\right) \circ\left(D \otimes t_{D, D} \otimes M\right) \circ\left(\delta_{D} \otimes \rho_{M}\right) \circ\left(\eta_{D} \otimes M\right)$.
(2) $\exists t_{D, M}: D \otimes M \rightarrow M \otimes D$ and $t_{M, D}: M \otimes D \rightarrow D \otimes M$ such that

$$
\begin{aligned}
& \left(\mu_{D} \otimes M\right) \circ\left(D \otimes t_{M, D}\right) \circ\left(\left(\rho_{M} \circ \varphi_{M}\right) \otimes D\right) \circ\left(D \otimes t_{D, M}\right) \circ\left(\delta_{D} \otimes M\right) \\
= & \left(\mu_{D} \otimes \varphi_{M}\right) \circ\left(D \otimes t_{D, D} \otimes M\right) \circ\left(\delta_{D} \otimes \rho_{M}\right) .
\end{aligned}
$$

Given $M, N \in \in_{D}^{D} \mathcal{Y} D, f: M \rightarrow N$ in \mathcal{C} is in ${ }_{D}^{D} \mathcal{Y} D(M, N)$ if $f \circ \varphi_{M}=\varphi_{N} \circ(D \otimes f)$ and $(D \otimes f) \circ \rho_{M}=\rho_{N} \circ f$.

Notation

Notation

Given $M, N \in \in_{D}^{D} \mathcal{Y} D$, we consider the idempotent
$\nabla_{M \otimes N}: M \otimes N \rightarrow M \otimes N$

$$
\nabla_{M \otimes N}=\left(\varphi_{M} \otimes \varphi_{N}\right) \circ\left(D \otimes t_{D, M} \otimes N\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes M \otimes N\right)
$$

and denote by $M \times N, i_{M \otimes N}$ and $p_{M \otimes N}$ the image and splitting morphisms.

We denote by $\nabla_{M \otimes H}$ the idempotent

$$
\nabla_{M \otimes H}=\left(\varphi_{M} \otimes \mu_{H}\right) \circ\left(D \otimes t_{D, M} \otimes H\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes M \otimes H\right)
$$

and by $M \times H, i_{M \otimes H}$ and $p_{M \otimes H}$ the image and splitting morphisms.

Índice

(1) Preliminaries

(2) Weak braided Hopf algebras
(3) Projections over WBHA

4 Aplication to the braided case

Projections and WBHA structures

Definition (Projection)

Let D be a WBHA.
A projection over D is a triple (B, f, g) with B un WBHA,
$f: D \rightarrow B, g: B \rightarrow D$ WBHA morphisms such that $g \circ f=i d_{D}$ and:

A morphism $h: B \rightarrow B^{\prime}$ of projections $(B, f, g),\left(B^{\prime}, f^{\prime}, g^{\prime}\right)$ is WBiliA morphism such that n of $=f^{\prime \prime}, \quad g^{\prime} \circ n=g$.

The class of projections and its morphisms constitute $\operatorname{Proj}(D)$

Projections and WBHA structures

Definition (Projection)

Let D be a WBHA.
A projection over D is a triple (B, f, g) with

B un WBHA,

$f: D \rightarrow B, g: B \rightarrow D$ WBHA morphisms such that $g \circ f=i d_{D}$ and:
(i) $(B \otimes(f \circ g)) \circ t_{B, B}=t_{B, B} \circ((f \circ g) \otimes B)$,
(ii) $((f \circ g) \otimes B) \circ t_{B, B}=t_{B, B} \circ(B \otimes(f \circ g))$.

A morphism $h: B \rightarrow B^{\prime}$ of projections $(B, f, g),\left(B^{\prime}, f^{\prime}, g^{\prime}\right)$ is WBHA morphism such that $h \circ f=f^{\prime}, \quad g^{\prime} \circ h=g$.

The class of projections and its morphisms constitute $\operatorname{Proj}(D)$.

Projections and WBHA structures

Definition (Projection)

Let D be a WBHA.
A projection over D is a triple (B, f, g) with

B un WBHA,

$f: D \rightarrow B, g: B \rightarrow D$ WBHA morphisms such that $g \circ f=i d_{D}$ and:
(i) $(B \otimes(f \circ g)) \circ t_{B, B}=t_{B, B} \circ((f \circ g) \otimes B)$,
(ii) $((f \circ g) \otimes B) \circ t_{B, B}=t_{B, B} \circ(B \otimes(f \circ g))$.

A morphism $h: B \rightarrow B^{\prime}$ of projections $(B, f, g),\left(B^{\prime}, f^{\prime}, g^{\prime}\right)$ is
WBHA morphism such that $h \circ f=f^{\prime}, \quad g^{\prime} \circ h=g$.

The class of projections and its morphisms constitute $\operatorname{Proj}(D)$.

Projections and WBHA structures

Definition (Projection)

Let D be a WBHA.
A projection over D is a triple (B, f, g) with

B un WBHA,

$f: D \rightarrow B, g: B \rightarrow D$ WBHA morphisms such that $g \circ f=i d_{D}$ and:
(i) $(B \otimes(f \circ g)) \circ t_{B, B}=t_{B, B} \circ((f \circ g) \otimes B)$,
(ii) $((f \circ g) \otimes B) \circ t_{B, B}=t_{B, B} \circ(B \otimes(f \circ g))$.

A morphism $h: B \rightarrow B^{\prime}$ of projections $(B, f, g),\left(B^{\prime}, f^{\prime}, g^{\prime}\right)$ is
WBHA morphism such that $h \circ f=f^{\prime}, \quad g^{\prime} \circ h=g$.
The class of projections and its morphisms constitute $\operatorname{Proj}(D)$.

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in \mathcal{P r o j}(D)$.
The morphism $q_{D}^{B}:=i d_{B} \wedge\left(f \circ \lambda_{D} \circ g\right): B \longrightarrow B$ is idempotent.

Notation

B_{D} the image of q_{D}^{B},

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in \operatorname{Proj}(D)$.
The morphism $q_{D}^{B}:=i d_{B} \wedge\left(f \circ \lambda_{D} \circ g\right): B \longrightarrow B$ is idempotent.

Notation

B_{D} the image of q_{D}^{B},

$$
p_{D}^{B}: B \rightarrow B_{D}, \quad i_{D}^{B}: B_{D} \rightarrow B \text { the splitting morphisms of } q_{D}^{B} .
$$

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in|\operatorname{Proj}(D)|$. It holds that:

is an equalizer diagram.

is a coequalizer diagram.

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in|\operatorname{Proj}(D)|$. It holds that:

$$
B_{D} \xrightarrow{i_{D}^{B}} B \frac{(B \otimes g) \circ \delta_{B}}{\left(B \otimes\left(\Pi_{D}^{L} \circ g\right)\right) \circ \delta_{B}} B \otimes D
$$

is an equalizer diagram.

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in|\mathcal{P r o j}(D)|$. It holds that:

$$
B_{D} \xrightarrow{i_{D}^{B}} B \frac{(B \otimes g) \circ \delta_{B}}{\left(B \otimes\left(\Pi_{D}^{L} \circ g\right)\right) \circ \delta_{B}} B \otimes D
$$

is an equalizer diagram.

$$
B \otimes D \xrightarrow[\mu_{B} \circ\left(B \otimes\left(f \circ \Pi_{D}^{L}\right)\right)]{\xrightarrow{\mu_{B} \circ(B \otimes f)}} B \xrightarrow[D]{p_{D}^{B}} B_{D}
$$

is a coequalizer diagram.

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in|\operatorname{Proj}(D)|$.
Then $\left(B_{D}, \varphi_{B_{D}}, \varrho_{B_{D}}\right) \in \in_{D}^{D} \mathcal{D}$

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in|\operatorname{Proj}(D)|$.
Then $\left(B_{D}, \varphi_{B_{D}}, \varrho_{B_{D}}\right) \in_{D}^{D} \mathcal{Y D}$

Projections and WBHA structures

Theorem

Let D be a WBHA such that $\exists \lambda_{D}^{-1},(B, f, g) \in|\operatorname{Proj}(D)|$.
It holds that $\left(B_{D}, \eta_{B_{0}}, \mu_{B_{0}}, \varepsilon_{B_{D}}, \delta_{B_{0}}\right)$ is a WBHA with:

Projections and WBHA structures

Theorem

Let D be a WBHA such that $\exists \lambda_{D}^{-1},(B, f, g) \in|\operatorname{Proj}(D)|$. It holds that $\left(B_{D}, \eta_{B_{D}}, \mu_{B_{D}}, \varepsilon_{B_{D}}, \delta_{B_{D}}\right)$ is a WBHA with:
weak Yang-Baxter op:

$$
\begin{aligned}
& t_{B_{D}, B_{D}}=\left(\varphi_{B_{D}} \otimes B_{D} \circ\left(D \otimes r_{B_{D}, B_{D}}\right) \circ\left(\varrho_{B_{D}} \otimes B_{D}\right)\right. \\
& \text { with } r_{B_{0}, B_{D}}=\left(p_{B}^{D} \otimes p_{B}^{D}\right) \circ t_{B, B} \circ\left(i_{D}^{B} \otimes i_{D}^{B}\right): B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}, \\
& \eta_{B_{D}}=p_{D}^{B} \circ \eta_{B}, \quad \mu_{B_{D}}=p_{D}^{B} \circ \mu_{B} \circ\left(i_{D}^{B} \otimes i i_{D}^{B}\right), \\
& \left.\varepsilon_{B_{D}}=\varepsilon_{B} \circ i_{D}^{B}, \quad \delta_{B_{D}}=\left(p_{D}^{B} \otimes p_{D}^{B}\right) \circ \delta_{B} \circ i_{D}^{B}\right)
\end{aligned}
$$

antipode the factorization through $\left(B_{D}, i_{D}^{B}\right)$ of $(f \circ g) \wedge \lambda_{B} \circ i_{D}^{B}$.

(1) Preliminaries

(2) Weak braided Hopf algebras
(3) Projections over WBHA

4 Aplication to the braided case

The braided case

Hypothesis

Let \mathcal{C} be a braided category and H a WHA in \mathcal{C}.

Theorem

If \mathcal{C} is a braided category and H a WHA such that $\exists \lambda_{H}^{-1}$

Then ${ }_{H}^{H}$ OD is braided monoidal.

Given $M, N \in{ }_{D}^{D} \mathcal{Y} \mathcal{D}$, its product is $M \times N$.
The braid is given by:

$$
\tau_{M, N}:=p_{N \otimes M} \circ t_{M, N} \circ i_{M \otimes N}: M \times N \rightarrow N \times M
$$

with $t_{M, N}=\left(\varphi_{N} \otimes M\right) \circ\left(H \otimes c_{M, N}\right) \circ\left(\varrho_{M} \otimes N\right): M \otimes N \rightarrow N \otimes M$ and

$$
\tau_{M, N}^{-1}:=P_{M \otimes N} \circ_{M, N}^{\prime} \circ i_{N \otimes M}: N \times M \rightarrow M \times N
$$

The braided case

Hypothesis

Let \mathcal{C} be a braided category and H a WHA in \mathcal{C}.

Theorem

If \mathcal{C} is a braided category and H a WHA such that $\exists \lambda_{H}^{-1}$
Then ${ }_{H}^{H} \mathcal{Y}$ Dis braided monoidal.
Given $M, N \in{ }_{D}^{D} \mathcal{Y} D$, its product is $M \times N$ The braid is given by:

$$
\tau_{M, N}:=p_{N \otimes M} \circ t_{M, N} \circ i_{M \otimes N}: M \times N \rightarrow N \times M
$$

with $t_{M, N}=\left(\varphi_{N} \otimes M\right) \circ\left(H \otimes c_{M, N}\right) \circ\left(\varrho_{M} \otimes N\right): M \otimes N \rightarrow N \otimes M$ and

$$
\tau_{M, N}^{-1}:=p_{M \otimes N} \circ t_{M, N}^{\prime} \circ i_{N \otimes M}: N \times M \rightarrow M \times N
$$

The braided case

Hypothesis

Let \mathcal{C} be a braided category and H a WHA in \mathcal{C}.

Theorem

If \mathcal{C} is a braided category and H a WHA such that $\exists \lambda_{H}^{-1}$
Then ${ }_{H}^{H} \mathcal{Y}$ Dis braided monoidal.
Given $M, N \in{ }_{D}^{D} \mathcal{Y D}$, its product is $M \times N$. The braid is given by:

$$
\tau_{M, N}:=p_{N \otimes M} \circ t_{M, N} \circ i_{M \otimes N}: M \times N \rightarrow N \times M
$$

with $t_{M, N}=\left(\varphi_{N} \otimes M\right) \circ\left(H \otimes c_{M, N}\right) \circ\left(\varrho_{M} \otimes N\right): M \otimes N \rightarrow N \otimes M$ and

$$
\tau_{M, N}^{-1}:=p_{M \otimes N} \circ t_{M, N}^{\prime} \circ i_{N \otimes M}: N \times M \rightarrow M \times N
$$

The braided case

Hypothesis

Let \mathcal{C} be a braided category and H a WHA in \mathcal{C}.

Theorem

If \mathcal{C} is a braided category and H a WHA such that $\exists \lambda_{H}^{-1}$

Then ${ }_{H}^{H} \mathcal{Y}$ Dis braided monoidal.

Given $M, N \in{ }_{D}^{D} \mathcal{Y D}$, its product is $M \times N$. The braid is given by:

$$
\tau_{M, N}:=p_{N \otimes M} \circ t_{M, N} \circ i_{M \otimes N}: M \times N \rightarrow N \times M
$$

with $t_{M, N}=\left(\varphi_{N} \otimes M\right) \circ\left(H \otimes c_{M, N}\right) \circ\left(\varrho_{M} \otimes N\right): M \otimes N \rightarrow N \otimes M$ and

$$
\tau_{M, N}^{-1}:=p_{M \otimes N} \circ t_{M, N}^{\prime} \circ i_{N \otimes M}: N \times M \rightarrow M \times N
$$

with $t_{M, N}^{\prime}=c_{M, N}^{-1} \circ\left(\varphi_{N} \otimes M\right) \circ\left(c_{H, N}^{-1} \otimes M\right) \circ\left(N \otimes \lambda_{H}^{-1} \otimes M\right) \circ\left(N \otimes \varrho_{M}\right)$.

The projection theorem in the braided case

Theorem

Let \mathcal{C} be a braided cat., H a WHA such that $\exists \lambda_{H}^{-1}$,
$\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y D}$.
Then $\left(D, \eta_{D}, \mu_{D}, \varepsilon_{D}, \delta_{D}, \lambda_{D}\right)$ is a WBHA in \mathcal{C}.

and weak Yang-Baxter operator

Remark
 Moreover:

The projection theorem in the braided case

Theorem

Let \mathcal{C} be a braided cat., H a WHA such that $\exists \lambda_{H}^{-1}$,
$\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y D}$.
Then ($\left.D, \eta_{D}, \mu_{D}, \varepsilon_{D}, \delta_{D}, \lambda_{D}\right)$ is a WBHA in \mathcal{C}. csunsi Cbosivesse

and weak Yang-Baxter operator

Remark
 Moreover:

The projection theorem in the braided case

Theorem

Let \mathcal{C} be a braided cat., H a WHA such that $\exists \lambda_{H}^{-1}$,
$\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y D}$.
Then ($D, \eta_{D}, \mu_{D}, \varepsilon_{D}, \delta_{D}, \lambda_{D}$) is a WBHA in \mathcal{C}. csmasi Cbosivese

$$
\begin{array}{cc}
\eta_{D}=u_{D} \circ p_{L} \circ \eta_{H}, & \mu_{D}=m_{D} \circ p_{D \otimes D,}, \\
\varepsilon_{D}=\varepsilon_{H} \circ i_{L} \circ e_{C}, & \delta_{D}=i_{D \otimes D} \circ \Delta_{D},
\end{array}
$$

and weak Yang-Baxter operator

$$
t_{D, D}=\left(\varphi_{D} \otimes D\right) \circ\left(H \otimes c_{D, D}\right) \circ\left(\varrho_{D} \otimes D\right) .
$$

Remark

Moreover:

The projection theorem in the braided case

Theorem

Let \mathcal{C} be a braided cat., H a WHA such that $\exists \lambda_{H}^{-1}$,
$\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y D}$.
Then ($D, \eta_{D}, \mu_{D}, \varepsilon_{D}, \delta_{D}, \lambda_{D}$) is a WBHA in \mathcal{C}. csmasi Cbosivese

$$
\begin{array}{cc}
\eta_{D}=u_{D} \circ p_{L} \circ \eta_{H}, & \mu_{D}=m_{D} \circ p_{D \otimes D,}, \\
\varepsilon_{D}=\varepsilon_{H} \circ i_{L} \circ e_{C}, & \delta_{D}=i_{D \otimes D} \circ \Delta_{D},
\end{array}
$$

and weak Yang-Baxter operator

$$
t_{D, D}=\left(\varphi_{D} \otimes D\right) \circ\left(H \otimes c_{D, D}\right) \circ\left(\varrho_{D} \otimes D\right) .
$$

Remark

Moreover: D is not a Hopf algebra neither a WHA in C.

Weak smash biproduct

Let H be a WHA in \mathcal{C} and $\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$.

Weak smash biproduct

Let H be a WHA in \mathcal{C} and $\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in $H_{H}^{H} \mathcal{D}$.
We define the weak smash biproduct of D and H $\left(D \times H, \eta_{D \times H}, \mu_{D \times H}, \varepsilon_{D \times H}, \delta_{D \times H}, \lambda_{D \times H}\right):$

Weak smash biproduct

Let H be a WHA in \mathcal{C} and $\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$.
We define the weak smash biproduct of D and H $\left(D \times H, \eta_{D \times H}, \mu_{D \times H}, \varepsilon_{D \times H}, \delta_{D \times H}, \lambda_{D \times H}\right)$:

$$
\begin{aligned}
& \eta_{D \times H}=p_{D \otimes H} \circ\left(\eta_{D} \otimes \eta_{H}\right), \\
& \mu_{D \times H}=p_{D \otimes H^{\circ}}\left(\mu_{D} \otimes \mu_{H}\right) \circ\left(D \otimes\left(\left(\varphi_{D} \otimes H\right) \circ\left(H \otimes c_{H, D}\right) \circ\left(\delta_{H} \otimes D\right)\right) \otimes H\right)
\end{aligned}
$$

$$
\circ\left(i_{D \otimes H} \otimes i_{D \otimes H}\right)
$$

$$
\delta_{D \times H}=\left(p_{D \otimes H} \otimes p_{D \otimes H}\right) \circ\left(D \otimes \left(\left(\mu_{H} \otimes D\right) \circ\left(H \otimes c_{D, H}\right)\right.\right.
$$

$$
\left.\left.\circ\left(\varrho_{D} \otimes H\right)\right) \otimes H\right) \circ\left(\delta_{D} \otimes \delta_{H}\right) \circ i_{D \otimes H},
$$

Weak smash biproduct

Let H be a WHA in \mathcal{C} and ($\left.D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$.
We define the weak smash biproduct of D and H

$$
\left(D \times H, \eta_{D \times H}, \mu_{D \times H}, \varepsilon_{D \times H}, \delta_{D \times H}, \lambda_{D \times H}\right):
$$

$$
\begin{aligned}
\eta_{D \times H}= & p_{D \otimes H} \circ\left(\eta_{D} \otimes \eta_{H}\right), \\
\mu_{D \times H}= & p_{D \otimes H} \circ\left(\mu_{D} \otimes \mu_{H}\right) \circ\left(D \otimes\left(\left(\varphi_{D} \otimes H\right) \circ\left(H \otimes c_{H, D}\right) \circ\left(\delta_{H} \otimes D\right)\right) \otimes H\right) \\
& \circ\left(i_{D \otimes H} \otimes i_{D \otimes H}\right), \\
\varepsilon_{D \times H}= & \left(\varepsilon_{D} \otimes \varepsilon_{H}\right) \circ i_{D \otimes H}, \\
\delta_{D \times H}= & \left(p_{D \otimes H} \otimes p_{D \otimes H}\right) \circ\left(D \otimes \left(\left(\mu_{H} \otimes D\right) \circ\left(H \otimes c_{D, H}\right)\right.\right. \\
& \left.\left.\circ\left(\varrho_{D} \otimes H\right)\right) \otimes H\right) \circ\left(\delta_{D} \otimes \delta_{H}\right) \circ i_{D \otimes H},
\end{aligned}
$$

Weak smash biproduct

Let H be a WHA in \mathcal{C} and $\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a WHA in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$.
We define the weak smash biproduct of D and H

$$
\left(D \times H, \eta_{D \times H}, \mu_{D \times H}, \varepsilon_{D \times H}, \delta_{D \times H}, \lambda_{D \times H}\right):
$$

$$
\eta_{D \times H}=p_{D \otimes H} \circ\left(\eta_{D} \otimes \eta_{H}\right)
$$

$$
\mu_{D \times H}=p_{D \otimes H^{\circ}}\left(\mu_{D} \otimes \mu_{H}\right) \circ\left(D \otimes\left(\left(\varphi_{D} \otimes H\right) \circ\left(H \otimes c_{H, D}\right) \circ\left(\delta_{H} \otimes D\right)\right) \otimes H\right)
$$

$$
\circ\left(i_{D \otimes H} \otimes i_{D \otimes H}\right)
$$

$$
\varepsilon_{D \times H}=\left(\varepsilon_{D} \otimes \varepsilon_{H}\right) \circ i_{D \otimes H}
$$

$$
\delta_{D \times H}=\left(p_{D \otimes H} \otimes p_{D \otimes H}\right) \circ\left(D \otimes \left(\left(\mu_{H} \otimes D\right) \circ\left(H \otimes c_{D, H}\right)\right.\right.
$$

$$
\left.\left.\circ\left(\varrho_{D} \otimes H\right)\right) \otimes H\right) \circ\left(\delta_{D} \otimes \delta_{H}\right) \circ i_{D \otimes H}
$$

$$
\lambda_{D \times H}=p_{D \otimes H} \circ\left(\varphi_{D} \otimes H\right) \circ\left(H \otimes \boldsymbol{c}_{H, D}\right) \circ\left(\left(\delta_{H} \circ \lambda_{H} \circ \mu_{H}\right) \otimes \lambda_{D}\right) \circ\left(H \otimes c_{D, H}\right)
$$

$$
\circ\left(\varrho_{D} \otimes H\right) \circ i_{D \otimes H} .
$$

Weak smash biproduct

Theorem

Let H be a WHA, $\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a Hopf algebra in ${ }_{H} \mathcal{Y} \mathcal{D}$:
Then the weak smash biproduct $D \times H$ is a WHA in \mathcal{C}.

The projection theorem in the braided case

Theorem

Let H be a WHA such that $\exists \lambda_{H}^{-1},(B, f, g) \in|\mathcal{P r o j}(H)|$. Then:
$\left(B_{H}, u_{B_{H}}, m_{B_{H}}, e_{B_{H}}, \Delta_{B_{H}}, \lambda_{B_{H}}\right)$ is a Hopf algebra in ${ }_{H} \mathcal{Y}^{\mathcal{D}}$. $B \simeq B_{H} \times H$ as WHA ($B_{H} \times H$ the weak smash biproduct).

$$
\begin{gathered}
u_{B_{H}}=: p_{H}^{B} \circ f \circ i_{L}, \quad m_{B_{H}}:=\mu_{B_{H}} \circ i_{B_{H} \otimes B_{H}}, \\
e_{B_{H}}:=p_{L} \circ g \circ i_{H}^{B}, \quad \Delta_{B_{H}}:=p_{B_{H} \otimes B_{H} \circ \delta_{B_{H}}}, \\
\lambda_{B_{H}}:=p_{H}^{B} \circ\left((f \circ g) \wedge \lambda_{B}\right) \circ i_{H}^{B} .
\end{gathered}
$$

The projection theorem in the braided case

Proposition

Let H be a WHA such that $\exists \lambda_{H}^{-1}$,
$D=\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a Hopf algebra in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$,
$D=\left(D, \eta_{D}, \mu_{D}, \varepsilon_{D}, \delta_{D}, \lambda_{D}\right)$ the WBHA in $\mathcal{C} \Subset$
$D \times H$ the weak smash biproduct.
Then:
(i) $\left(D, H, \tilde{f}:=P_{D} \otimes H \circ(\eta D \otimes H), \tilde{g}:=\left(\varepsilon_{D} \otimes H\right) \circ i_{D} \otimes H\right) \in|\operatorname{Proj}(H)|$
(ii) $D \simeq(D \times H)_{H}$ as WBHA.

The projection theorem in the braided case

Proposition

Let H be a WHA such that $\exists \lambda_{H}^{-1}$,
$D=\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right)$ a Hopf algebra in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$,
$D=\left(D, \eta_{D}, \mu_{D}, \varepsilon_{D}, \delta_{D}, \lambda_{D}\right)$ the WBHA in \mathcal{C}
$D \times H$ the weak smash biproduct.
Then:
(i) $\left(D \times H, \tilde{f}:=p_{D \otimes H} \circ\left(\eta_{D} \otimes H\right), \tilde{g}:=\left(\varepsilon_{D} \otimes H\right) \circ i_{D \otimes H}\right) \in|\operatorname{Proj}(H)|$.
(ii) $D \simeq(D \times H)_{н}$ as WBHA.

The projection theorem in the braided case

Theorem
 If H is a WHA such that $\exists \lambda_{H}^{-1}$:

\square

The projection theorem in the braided case

Theorem

If H is a WHA such that $\exists \lambda_{H}^{-1}$:
There exists a category equivalence $\operatorname{Proj}(H) \simeq \mathcal{H} \mathcal{A}\left({ }_{H}^{H} \mathcal{Y D}\right)$.

The projection theorem in the braided case

Theorem

If H is a WHA such that $\exists \lambda_{H}^{-1}$:
There exists a category equivalence $\operatorname{Proj}(H) \simeq \mathcal{H} \mathcal{A}\left({ }_{H}^{H} \mathcal{Y D}\right)$.

$$
F: \operatorname{Proj}(H) \quad \longrightarrow \quad \mathcal{H A}\left({ }_{H} \mathcal{Y} \mathcal{D}\right)
$$

- Go

$$
\begin{array}{cll}
(B, f, g) & \longmapsto & \left(B_{H}, u_{B_{H}}, m_{B_{H}}, e_{B_{H}}, \Delta_{B_{H}}, \lambda_{B_{H}}\right) \\
\alpha: B \rightarrow B^{\prime} & \longmapsto & \alpha_{H}: B_{H} \rightarrow B_{H}^{\prime}\left(\text { factorization of } \alpha \circ i_{H}^{B}\right)
\end{array}
$$

The projection theorem in the braided case

Theorem

If H is a WHA such that $\exists \lambda_{H}^{-1}$:
There exists a category equivalence $\operatorname{Proj}(H) \simeq \mathcal{H} \mathcal{A}\left({ }_{H} \mathcal{H} \mathcal{D}\right)$.

Go

$$
G: \mathcal{H A}\left({ }_{H} \mathcal{Y D}\right) \quad \longrightarrow \quad \operatorname{Proj}(H)
$$

$\left(D, u_{D}, m_{D}, e_{D}, \Delta_{D}, \lambda_{D}\right) \longmapsto$
$\left(D \times H, p_{D \otimes H} \circ\left(\eta_{D} \times H\right),\left(\varepsilon_{D} \times H\right) \circ i_{D \otimes H}\right.$,

$$
r: D \rightarrow D^{\prime} \quad \longmapsto \quad r \times H
$$

Projections of weak braided Hopf algebras

Carlos Soneira Calvo

Univ. da Coruña

Workshop on Category Theory. Universidade de Coimbra
9 de julio de 2012

Monoidal structure of ${ }_{H}^{H} \mathcal{V}$

- Base Object: $D_{L}=\operatorname{Im}\left(\Pi_{D}^{L}\right)$,
- Associativity constraints $\mathfrak{a}_{M, N, P}: M \times(N \times P) \rightarrow(M \times N) \times P$

$$
\mathfrak{a}_{M, N, P}=p_{(M \times N) \otimes P} \circ\left(p_{M \otimes N} \otimes P\right) \circ\left(M \otimes i_{N \otimes P}\right) \circ i_{M \otimes(N \times P)} .
$$

- Unity constraints:

Monoidal structure of ${ }_{H}^{H} \mathcal{V D}$

- Base Object: $D_{L}=\operatorname{Im}\left(\Pi_{D}^{L}\right)$,
- Associativity constraints $\mathfrak{a}_{M, N, P}: M \times(N \times P) \rightarrow(M \times N) \times P$

$$
\mathfrak{a}_{M, N, P}=p_{(M \times N) \otimes P} \circ\left(p_{M \otimes N} \otimes P\right) \circ\left(M \otimes i_{N \otimes P}\right) \circ i_{M \otimes(N \times P)} .
$$

- Unity constraints:

$$
\begin{aligned}
& \mathfrak{l}_{M}=\varphi_{M} \circ\left(i_{L} \otimes M\right) \circ i_{D_{L} \otimes M}, \\
& \mathfrak{r}_{M}=\varphi_{M} \circ s^{\prime}{ }_{M} \circ\left(M \otimes\left(\bar{\Pi}_{D} \circ i_{L}\right)\right) \circ i_{M \otimes D_{L}}, \\
& \mathfrak{r}_{M}^{-1}=p_{D_{L} \otimes M} \circ\left(p_{L} \otimes \varphi_{M}\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes M\right), \\
& \mathfrak{r}_{M}^{-1}=: p_{M \otimes D_{L}} \circ\left(\varphi_{M} \otimes p_{L}\right) \circ\left(D \otimes s_{M}\right) \circ\left(\left(\delta_{D} \circ \eta_{D}\right) \otimes M\right) .
\end{aligned}
$$

Projections and WBHA structures

Proposition

Let D be a $W B H A$ and $(B, f, g) \in|\operatorname{Proj}(D)|$.
Then $\left(B_{D}, \varphi_{B_{D}}, \varrho_{B_{D}}\right) \in_{D}^{D} \mathcal{Y} \mathcal{D}$ with

$$
\varphi_{B_{D}}=p_{D}^{B} \circ \mu_{B} \circ\left(f \otimes i_{D}^{B}\right), \quad \varrho_{B_{D}}=\left(g \otimes p_{D}^{B}\right) \circ \delta_{B} \circ i_{D}^{B},
$$

and:

$$
t_{D_{D}, D}=\left(g \otimes p_{D}^{B}\right) \circ t_{B, B} \circ(i B \otimes f), \quad t_{D, B_{D}}=\left(p_{D}^{B} \otimes g\right) \circ t_{B, B} \circ\left(f \otimes i_{D}^{B}\right) .
$$

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in|\operatorname{Proj}(D)|$.
Then $\left(B_{D}, \varphi_{B_{D}}, \varrho_{B_{D}}\right) \in_{D}^{D} \mathcal{Y D}$

and:

$$
t_{B_{D}, D}=\left(g \otimes p_{D}^{B}\right) \circ t_{B, B} \circ(i B \otimes f), \quad t_{D, B_{D}}=\left(p_{D}^{B} \otimes g\right) \circ t_{B, B} \circ\left(f \otimes i_{D}^{B}\right) .
$$

Projections and WBHA structures

Proposition

Let D be a WBHA and $(B, f, g) \in|\mathcal{P r o j}(D)|$.
Then $\left(B_{D}, \varphi_{B_{D}}, \varrho_{B_{D}}\right) \in_{D}^{D} \mathcal{Y} \mathcal{D}$ with

$$
\varphi_{B_{D}}=p_{D}^{B} \circ \mu_{B} \circ\left(f \otimes i_{D}^{B}\right), \quad \varrho_{B_{D}}=\left(g \otimes p_{D}^{B}\right) \circ \delta_{B} \circ i_{D}^{B}
$$

and:

$$
t_{B_{D}, D}=\left(g \otimes p_{D}^{B}\right) \circ t_{B, B} \circ\left(i_{D}^{B} \otimes f\right), \quad t_{D, B_{D}}=\left(p_{D}^{B} \otimes g\right) \circ t_{B, B} \circ\left(f \otimes i_{D}^{B}\right)
$$

Projections and WBHA structures

Proposition

Let D be a WBHA such that $\exists \lambda_{D}^{-1},(B, f, g) \in|\mathcal{P r o j}(D)|$. Taking:

the arrow $t_{B_{D}, B_{D}}: B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}$

$$
t_{B_{D}, B_{D}}=\left(\varphi B_{D} \otimes B_{D}\right) \circ\left(D \otimes r_{B_{D}, B_{D}}\right) \circ\left(\varrho B_{D} \otimes B_{D}\right)
$$

is a weak Yang-Baxter operator with
\square

Projections and WBHA structures

Proposition

Let D be a WBHA such that $\exists \lambda_{D}^{-1},(B, f, g) \in|\mathcal{P r o j}(D)|$. Taking:

$$
\begin{aligned}
& r_{B_{D}, B_{D}}=\left(p_{B}^{D} \otimes p_{B}^{D}\right) \circ t_{B, B} \circ\left(i_{D}^{B} \otimes i_{D}^{B}\right): B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}, \\
& r_{B_{D}, B_{D}}^{\prime}=\left(p_{B}^{D} \otimes p_{B}^{D}\right) \circ t_{B, B}^{\prime} \circ\left(i_{D}^{B} \otimes i_{D}^{B}\right): B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D},
\end{aligned}
$$

the arrow $t_{B_{0}, B_{D}}: B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}$

$$
t_{B_{0}, B_{D}}=\left(\varphi_{B_{D}} \otimes B_{D}\right) \circ\left(D \otimes r_{B_{D}, B_{D}}\right) \circ\left(\varrho_{B_{D}} \otimes B_{D}\right)
$$

is a weak Yang-Baxter operator with
\square

Projections and WBHA structures

Proposition

Let D be a WBHA such that $\exists \lambda_{D}^{-1},(B, f, g) \in|\mathcal{P r o j}(D)|$. Taking:

$$
\begin{aligned}
& r_{B_{D}, B_{D}}=\left(p_{B}^{D} \otimes p_{B}^{D}\right) \circ t_{B, B} \circ\left(i_{D}^{B} \otimes i_{D}^{B}\right): B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}, \\
& r_{B_{D}, B_{D}}^{\prime}=\left(p_{B}^{D} \otimes p_{B}^{D}\right) \circ t_{B, B}^{\prime} \circ\left(i_{D}^{B} \otimes i_{D}^{B}\right): B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D},
\end{aligned}
$$

the arrow $t_{B_{D}, B_{D}}: B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}$

$$
t_{B_{D}, B_{D}}=\left(\varphi_{B_{D}} \otimes B_{D}\right) \circ\left(D \otimes r_{B_{D}, B_{D}}\right) \circ\left(\varrho_{B_{D}} \otimes B_{D}\right)
$$

is a weak Yang-Baxter operator with

Projections and WBHA structures

Proposition

Let D be a WBHA such that $\exists \lambda_{D}^{-1},(B, f, g) \in|\mathcal{P r o j}(D)|$. Taking:

$$
\begin{aligned}
& r_{B_{D}, B_{D}}=\left(p_{B}^{D} \otimes p_{B}^{D}\right) \circ t_{B, B} \circ\left(i_{D}^{B} \otimes i_{D}^{B}\right): B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}, \\
& r_{B_{D}, B_{D}}^{\prime}=\left(p_{B}^{D} \otimes p_{B}^{D}\right) \circ t_{B, B}^{\prime} \circ\left(i_{D}^{B} \otimes i_{D}^{B}\right): B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D},
\end{aligned}
$$

the arrow $t_{B_{D}, B_{D}}: B_{D} \otimes B_{D} \rightarrow B_{D} \otimes B_{D}$

$$
t_{B_{D}, B_{D}}=\left(\varphi_{B_{D}} \otimes B_{D}\right) \circ\left(D \otimes r_{B_{D}, B_{D}}\right) \circ\left(\varrho_{B_{D}} \otimes B_{D}\right)
$$

is a weak Yang-Baxter operator with

$$
t_{B_{D}, B_{D}}^{\prime}=r_{B_{D}, B_{D}}^{\prime} \circ\left(\varphi_{B_{D}} \otimes B_{D}\right) \circ\left(t_{B_{D}, D}^{\prime} \otimes B_{D}\right) \circ\left(B_{D} \otimes\left(\left(\lambda_{D}^{-1} \otimes B_{D}\right) \circ \varrho_{B_{D}}\right)\right)
$$

