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First Slide

The contents of the first slide will appear on the second slide. And
it is much superior to any of Epimenides’, Gödel’s or Tarski’s
tricks; because it is

TRUE



First slide-cnt’d

Thank You, George

When back home, slap your wife.You do not need to know why;
she does.

(Old Sicilian Philosophy)



Pseudogrupoids-1

• R, S congruence relations on an algebra A
•R�S : the subalgebra of A× A× A× A containing the
quadruples (x , y , t, z) such that x R y , x S t, z R t, z S y :(

x t
y z

)
horizontal (resp. vertical) elements related by R (resp. by S).



Pseudogrupoids-2

G.J. and C. Pedicchio( TAC, 2001), after Gumm, Kiss, et alii.

A homomorphism m : R�S −→ A is called a pseudogroupoid on
R,S , if

(A) x S m(x , y , t, z) R z ;

(B) m(x , y , t, z) = m(x , y , t ′, z) (i.e. m does not depend on the
third variable);

(C1) m(x , x , t, z) = z ;

(C2) m(x , y , t, y) = x ;

(D) m(m(x1, x2, y , x3), x4, t, x5) = m(x1, x2, t,m(x3, x4, z , x5)),

whenever m is defined [...]for (A), (B), (C1), C(2) and for
x1 R x2, y R x3 R x4, t R x5 R z ; and
t S x1 S y , x2 S x3 S z , x4 S x5 for (D).
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This title does not exist-1

Axiom (B) suggests a variant: forget about the third coordinate.

Define R x S ⊆ A× A× A by: (x , y , z) ∈ R x S iff there exists
t ∈ A such that (x , y , t, z) ∈ R�S . R x S is trivially a subalgebra
of A× A× A. Thus to represent such a triple, we can use :(

x (t)
y z

)
implying that (t) is needed, but is also is damned.
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This title does not exist-2

A homomorphism h : R x S −→ A is called a paragrouopoid on
R,S if

(A’) x S h(x , y , z) R z ;

(C’1) h(x , x , z) = z ;

(C’2) h(x , y , y) = x ;

(D’) h(x1, x2, h(x3, x4, x5)) = h(h(x1, x2, x3), x4, x5),

whenever h is defined . . .

Theorem
There is a pseudogroupoid m on R ,S iff there is a paragroupoid h
on R,S .

• Warning: George does not like this at all; that’s why these slides have

no title.
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Ideal determined varieties

• A variety C of universal algebras pointed at 0 is ideal determined
(shortly, an ID variety) if congruences in C

1. are determined by their 0-classes and

2. they are 0-permutable

(meaning that if 0/R = 0/S , then R = S , and if 0 R a S b then
for some c , 0 S c R b).

• C is ideal determined iff for some n ≥ 0 there are binary terms
s, d1, . . . , dn such that

(a) s is a subtraction, i.e. the identities s(x , x) = 0, s(x , 0) = x
hold in C ;

(b) d1, . . . dn internalize equality, namely x = y iff di (x , y) = 0 for
all i = 1, . . . , n.

• For a congruence R of A ∈C, one has a R b iff di (a, b) R 0 for
all i = 1, . . . , n.
• Congruence lattices of algebras in an ID variety are modular.
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Pseudogrupoids in ID varieties

Theorem
Let C be an ID variety, A ∈C , R, S be congruence relations of A.
A homomorphism g : R�S −→ A is a pseudogroupoid on R,S iff
the following hold:

1. g(x , x , x , x) = x ;

2. g(x , 0, 0, 0) = x ;

3. g(0, 0, 0, x) = x ;

4. g(0, 0, x , x) = x ,

when defined, namely for all x ∈ A for (1); 0 R x S 0) for (2) and (3);
(0 S x) for (4).



Proof

One direction is trivial.
• Assuming (1)-(4) we have to show that g is a pseudogroupoid.
Assume the binary terms s, d1, . . . , dn satify requirements (a), (b)
above. Consider ideals I = 0/R, J = 0/S . First prove some
consequences of axioms (1)-(4)(in brackets, the range of the
variables):

(5) g(x , x , 0, 0) = 0 (x ∈ J);

(6) g(x , x , z , z) = z (x S z);

(7) g(0, 0, x , 0) = 0 (x ∈ I ∩ J);

(8) g(x , x , 0, x) = x (x ∈ I ∩ J);

(9) g(0, x , x , x) = 0 (x ∈ I ∩ J);

(10) g(0, x , 0, x) = 0 (x ∈ J);

(11) g(x , y , x , y) = x (x S y);

(12) g(0, 0, t, z) = z (t R z , t ∈ J, z ∈ J).



Proof, cnt’d

• for instance: to prove (9), use (1) and (2):

g(0, x , x , x) = g(s(x , x), s(x , 0), s(x , 0), s(x , 0)) =

= s(g(x , x , x , x), g(0, 0, 0, x)) = s(x , x) = 0.

• For (12), first notice that for i = 1, . . . , n, di (t, z) ∈ J; then by
(6) and (7):

di (g(0, 0, t, z), z) = di (g(0, 0, t, z), g(0, 0, z , z))) =

= g(0, 0, di (t, z), 0) = 0.

• Next got to the axioms; for instance, to verify (C2) for g : use
axiom (B) just verified, and apply (11):

g(x , y , t, y) = g(x , y , x , y) = x .



Variations on axioms

•A homomorphism g : R�S −→ A is a pseudogroupoid on R, S iff
the following hold:

1 g(x , x , x , x) = x ;

2’ g(x , 0, x , 0) = x ;

3’ g(0, 0, x , 0) = 0;

4’ g(0, 0, x , x) = x .

• The real role of axiom 1 is to ensure that g is surjective on A.
• Anybody fit to compact these axioms?



The commutator
• A principal result of [G.J.-Pedicchio (2001)] :

Theorem
In a congruence modular variety, if R,S are congruences of A, then
[R, S ] = ∆A] iff there is a pseudogrupoid on R,S .

I C be any (pointed) variety; a term t(~x , ~y ,~z) in distinct tuples of
variables ~x = x1, . . . , xm;~y = y1, . . . , yn;~z = z1, . . . , zp, is a
commutator term in ~y ,~z if the identities

t(~x ,~0,~z) = 0, t(~x , ~y ,~0) = 0

hold in C. For subalgebras X ,Y of A ∈ C, their commutator
[X ,Y ] is defined:

{t(~a, ~u, ~v)|t ∈ CT (~y ,~z),~a ∈ A, ~u ∈ X , ~v ∈ Y }.

I it is a normal subalgebra (i.e. it is a congruence class and a
subalgebra) of A, it is preserved under surjective homomorphisms,
and it depends on A but not on the ID variety to which A belongs.
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The commutator in ID varieties-1
In an ID variety, because of congruence modularity, we have the
usual modular commutator [R,S ].
I [0/R, 0/S ] is a congruence class of [R, S ], namely

[0/R, 0/S ] = 0/[R, S ].

(Gumm-∼ [1984].)

Theorem
Let R ,S be congruences of an algebra A in an ideal determined
variety. Then [0/R, 0/S ] = 0 iff there is a pseudogroupoid on R,S
iff there is a paragrupoid on R,S .

The shortest direct proof of ⇐ :assume g is a pseudogroupoid on
R,S and I = 0/R, J = 0/S . Let t(x , y , z) be a commutator term
let a ∈ A, b ∈ I , c ∈ J. Then

t(a, b, c) = t(g(a, a, a, a), g(b, 0, b, 0), g(0, 0, c, c)) =

= g(t(a, b, 0), t(a, 0, 0), g(a, b, c), t(a, 0, c)) =

= g(0, 0, t(a, b, c), 0) = 0.

Thus [0/R, 0/S = 0].
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The commutator in ID varieties-2

Three trivialities:
1 B,C algebras of the same signature; a subalgebra F of B × C is
a functional subalgebra of B × C if it is functional:
(b, c), (b, c ′) ∈ F ⇒ c = c ′.Such an F is called a functional
relation from B to C .

2 dom(F ) =: {b ∈ B|∃c(b, c) ∈ F} is a subalgebra of B; the
restriction †F = {(b, c) ∈ F |b ∈ dom(F )} is a functional
subalgebra of dom(F )× C which is (the graph of) a mapping
†F : dom(F ) −→ B and which is a homomorphism. (Every
homomorphism g from a subalgebra S of B into C arises in this
way).
3 Any intersection of functional subalgebras of B × C is a
functional subalgebra. The following are equivalent for any
functional subset H ⊆ B × C .

(i) There is a functional subalgebra F ⊆ B × C such that F ⊇ H.

(ii) The subalgebra HB×C generated in B × C by H is functional.
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The commutator in ID varieties-3

I Let C be an ID variety, A ∈C , R, S congruence relations of A;
I = 0/R, J = 0/S , and let H(R,S) ⊆ A× A× A× A× A be the
union of the following sets of 5-tuples:

{(a, a, a, a, a)|a ∈ A};
{(a, 0, a, 0, a)|a ∈ I};
{(0, 0, a, 0, 0)|a ∈ I ∩ J}
{(0, 0, a, a, a)|a ∈ J}.

Notice that H(R, S) is functional in (A× A× A× A)× A.

Corollary

Let C be an ID variety, A ∈C , R,S be congruence relations of A.
Then [R,S ] = ∆A iff the subalgebra generated in
A×A×A×A×A by H(R,S) is functional in (A×A×A×A)×A.

I Ideal determined categories have been invented
[G.Janledze-Marki-Tholen-∼(CahiersTGDC2010)]:
extend the above to ideal determined categories
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Beyond Ideal Determinacy and perspectives-1

I A clot in a (pointed) algebra A is a subalgebra K such that
whenever t(~x , ~y) is a term, and for ~a ∈ A, t(~a,~0) = 0, then for
~k ∈ K , t(~a, ~k) ∈ K . Equivalently (Agliano’-∼ (J.
Austral.M.S.1992)) iff there is a reflexive subalgebra S of A× A
such that K = 0/S =: {k ∈ A|(0, k) ∈ S}.

• A variety C is ideal determined and congruence permutable iff it
is clot determined: when S , S ′ are reflexive subalgebras of A×A, if
0/S = 0/S ′ ⇒ S = S ′. A notion of clot determined categories
should be quite within reach . . . .
•Extend the previous remarks on pseudogrupoids and the
commutator to clot determined varieties and categories
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Beyond Ideal Determinacy and perspectives-2
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Stepping out from the pointed case
I (1) We have also cosets in universal algebra [Agliano’-∼(
J.Algebra,1987)]: a coset in A ∈ C is a subset K ⊆ A such that
whenever an identity

t(x1, . . . , xm, z , . . . , z) = z

holds in C, then for all ~a ∈ A, ~k ∈ K one has t(~a, ~k) ∈ K .
Variety C is coset determined if every coset is a congruence class
for exactly one congruence: then it turn out this happens iff the
variety is congruence regular (congruences with a class in common
coincide) and congruence permutable.

• Invent coset determined categories, and
Extend all of the above to coset determined categories.
I (2) Ideals, clots and the commutator can be extended to
general varieties with many constants [∼ (TAC, 2012)]. What are
pseudogrupoids here?
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None of the above, but in this section

A curious remark on some semiabelian varieties
I A 1- semiabelian variety is a variety satisfying the laws:

m(x , x) = 0

p(y , d(x , y)) = x

for some binary terms m, p : you have ”both addition and
subtraction”. (A.k.a ”Bidual Algebren in German. Considered by
[S lominski (Fund. Math.1960)]. In fact, all we say is implicit in the
masterpiece [Mal’tsev(Mat.Sb.1954)])

• Johnstone showed that not all semiabelian varieties are
1-semiabelian.
• A translation of an algebra A is a unary term function
I A variety is 1-semiabelian iff the group of invertible translations
over every algebra in C is transitive.
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