Pseudogrupoids and hoc genus omne in universal algebra

Aldo Ursini-Siena, Italy
ursini.aldo@unisi.it

Ninth of July 2012
WCT Coimbra

First Slide

The contents of the first slide will appear on the second slide. And it is much superior to any of Epimenides', Gödel's or Tarski's tricks; because it is

TRUE

First slide-cnt'd

Thank You, George

When back home, slap your wife. You do not need to know why; she does.
(Old Sicilian Philosophy)

Pseudogrupoids-1

- R, S congruence relations on an algebra A
- $R \square S$: the subalgebra of $A \times A \times A \times A$ containing the quadruples (x, y, t, z) such that $x R y, x S t, z R t, z S y$:

$$
\left(\begin{array}{ll}
x & t \\
y & z
\end{array}\right)
$$

horizontal (resp. vertical) elements related by R (resp. by S).

Pseudogrupoids-2

G.J. and C. Pedicchio(TAC, 2001), after Gumm, Kiss, et alii.

Pseudogrupoids-2

G.J. and C. Pedicchio(TAC, 2001), after Gumm, Kiss, et alii. A homomorphism $m: R \square S \longrightarrow A$ is called a pseudogroupoid on R, S, if
(A) $x S m(x, y, t, z) R z$;
(B) $m(x, y, t, z)=m\left(x, y, t^{\prime}, z\right)$ (i.e. m does not depend on the third variable);
(C1) $m(x, x, t, z)=z$;
(C2) $m(x, y, t, y)=x$;
(D) $m\left(m\left(x_{1}, x_{2}, y, x_{3}\right), x_{4}, t, x_{5}\right)=m\left(x_{1}, x_{2}, t, m\left(x_{3}, x_{4}, z, x_{5}\right)\right)$, whenever m is defined [...]for (A), (B), (C1), C(2) and for $x_{1} R x_{2}, y R x_{3} R x_{4}, t R x_{5} R z$; and $t S x_{1} S y, x_{2} S x_{3} S z, x_{4} S x_{5}$ for (D).

This title does not exist-1

Axiom (B) suggests a variant: forget about the third coordinate.

This title does not exist-1

Axiom (B) suggests a variant: forget about the third coordinate. Define $R\llcorner S \subseteq A \times A \times A$ by: $(x, y, z) \in R\llcorner S$ iff there exists $t \in A$ such that $(x, y, t, z) \in R \square S . R\llcorner S$ is trivially a subalgebra of $A \times A \times A$. Thus to represent such a triple, we can use :

$$
\left(\begin{array}{cc}
x & (t) \\
y & z
\end{array}\right)
$$

implying that (t) is needed, but is also is damned.

This title does not exist-2

A homomorphism $h: R\llcorner S \longrightarrow A$ is called a paragrouopoid on R, S if
(A') $x S h(x, y, z) R z$;
(C'1) $h(x, x, z)=z$;
(C'2) $h(x, y, y)=x$;
(D') $h\left(x_{1}, x_{2}, h\left(x_{3}, x_{4}, x_{5}\right)\right)=h\left(h\left(x_{1}, x_{2}, x_{3}\right), x_{4}, x_{5}\right)$,
whenever h is defined ...

This title does not exist-2

A homomorphism $h: R\llcorner S \longrightarrow A$ is called a paragrouopoid on R, S if
(A') $x S h(x, y, z) R z$;
(C'1) $h(x, x, z)=z$;
(C'2) $h(x, y, y)=x$;
(D') $h\left(x_{1}, x_{2}, h\left(x_{3}, x_{4}, x_{5}\right)\right)=h\left(h\left(x_{1}, x_{2}, x_{3}\right), x_{4}, x_{5}\right)$,
whenever h is defined...
Theorem
There is a pseudogroupoid m on R, S iff there is a paragroupoid h on R, S.

This title does not exist-2

A homomorphism $h: R\llcorner S \longrightarrow A$ is called a paragrouopoid on R, S if
(A') $x S h(x, y, z) R z$;
(C'1) $h(x, x, z)=z$;
(C'2) $h(x, y, y)=x$;
(D') $h\left(x_{1}, x_{2}, h\left(x_{3}, x_{4}, x_{5}\right)\right)=h\left(h\left(x_{1}, x_{2}, x_{3}\right), x_{4}, x_{5}\right)$,
whenever h is defined...
Theorem
There is a pseudogroupoid m on R, S iff there is a paragroupoid h on R, S.

- Warning: George does not like this at all; that's why these slides have no title.

Ideal determined varieties

- A variety \mathbf{C} of universal algebras pointed at 0 is ideal determined (shortly, an ID variety) if congruences in C

1. are determined by their 0 -classes and
2. they are 0 -permutable (meaning that if $0 / R=0 / S$, then $R=S$, and if $0 R$ a $S b$ then for some $c, 0 S \subset R b)$.

Ideal determined varieties

- A variety \mathbf{C} of universal algebras pointed at 0 is ideal determined (shortly, an ID variety) if congruences in C

1. are determined by their 0 -classes and
2. they are 0-permutable
(meaning that if $0 / R=0 / S$, then $R=S$, and if $0 R$ a $S b$ then for some $c, 0 S \subset R b)$.

- \mathbf{C} is ideal determined iff for some $n \geq 0$ there are binary terms s, d_{1}, \ldots, d_{n} such that
(a) s is a subtraction, i.e. the identities $s(x, x)=0, s(x, 0)=x$ hold in \mathbf{C};
(b) $d_{1}, \ldots d_{n}$ internalize equality, namely $x=y$ iff $d_{i}(x, y)=0$ for all $i=1, \ldots, n$.

Ideal determined varieties

- A variety \mathbf{C} of universal algebras pointed at 0 is ideal determined (shortly, an ID variety) if congruences in C

1. are determined by their 0 -classes and
2. they are 0-permutable
(meaning that if $0 / R=0 / S$, then $R=S$, and if $0 R$ a $S b$ then for some $c, 0 S \subset R b)$.

- \mathbf{C} is ideal determined iff for some $n \geq 0$ there are binary terms s, d_{1}, \ldots, d_{n} such that
(a) s is a subtraction, i.e. the identities $s(x, x)=0, s(x, 0)=x$ hold in \mathbf{C};
(b) $d_{1}, \ldots d_{n}$ internalize equality, namely $x=y$ iff $d_{i}(x, y)=0$ for all $i=1, \ldots, n$.
- For a congruence R of $A \in \mathbf{C}$, one has a R iff $d_{i}(a, b) R 0$ for all $i=1, \ldots, n$.

Ideal determined varieties

- A variety \mathbf{C} of universal algebras pointed at 0 is ideal determined (shortly, an ID variety) if congruences in C

1. are determined by their 0 -classes and
2. they are 0 -permutable (meaning that if $0 / R=0 / S$, then $R=S$, and if $0 R$ a $S b$ then for some $c, 0 S \subset R b)$.

- \mathbf{C} is ideal determined iff for some $n \geq 0$ there are binary terms s, d_{1}, \ldots, d_{n} such that
(a) s is a subtraction, i.e. the identities $s(x, x)=0, s(x, 0)=x$ hold in \mathbf{C};
(b) $d_{1}, \ldots d_{n}$ internalize equality, namely $x=y$ iff $d_{i}(x, y)=0$ for all $i=1, \ldots, n$.
- For a congruence R of $A \in \mathbf{C}$, one has a R iff $d_{i}(a, b) R 0$ for all $i=1, \ldots, n$.
- Congruence lattices of algebras in an ID variety are modular.

Pseudogrupoids in ID varieties

Theorem
Let \mathbf{C} be an ID variety, $A \in \mathbf{C}, R, S$ be congruence relations of A. A homomorphism $g: R \square S \longrightarrow A$ is a pseudogroupoid on R, S iff the following hold:

1. $g(x, x, x, x)=x$;
2. $g(x, 0,0,0)=x$;
3. $g(0,0,0, x)=x$;
4. $g(0,0, x, x)=x$,
when defined, namely for all $x \in A$ for (1); $0 R \times S 0$) for (2) and (3); (0 S x) for (4).

Proof

One direction is trivial.

- Assuming (1)-(4) we have to show that g is a pseudogroupoid. Assume the binary terms s, d_{1}, \ldots, d_{n} satify requirements (a), (b) above. Consider ideals $I=0 / R, J=0 / S$. First prove some consequences of axioms (1)-(4)(in brackets, the range of the variables):
(5) $g(x, x, 0,0)=0 \quad(x \in J)$;
(6) $g(x, x, z, z)=z \quad(x S z)$;
(7) $g(0,0, x, 0)=0 \quad(x \in I \cap J)$;
(8) $g(x, x, 0, x)=x \quad(x \in I \cap J)$;
(9) $g(0, x, x, x)=0 \quad(x \in I \cap J)$;
(10) $g(0, x, 0, x)=0 \quad(x \in J)$;
(11) $g(x, y, x, y)=x \quad(x S y)$;
(12) $g(0,0, t, z)=z \quad(t R z, t \in J, z \in J)$.

Proof, cnt'd

- for instance: to prove (9), use (1) and (2):

$$
\begin{aligned}
& g(0, x, x, x)=g(s(x, x), s(x, 0), s(x, 0), s(x, 0))= \\
& =s(g(x, x, x, x), g(0,0,0, x))=s(x, x)=0
\end{aligned}
$$

- For (12), first notice that for $i=1, \ldots, n, d_{i}(t, z) \in J$; then by (6) and (7):

$$
\begin{aligned}
& \left.d_{i}(g(0,0, t, z), z)=d_{i}(g(0,0, t, z), g(0,0, z, z))\right)= \\
& =g\left(0,0, d_{i}(t, z), 0\right)=0
\end{aligned}
$$

- Next got to the axioms; for instance, to verify (C2) for g : use axiom (B) just verified, and apply (11):

$$
g(x, y, t, y)=g(x, y, x, y)=x
$$

Variations on axioms

\bullet A homomorphism $g: R \square S \longrightarrow A$ is a pseudogroupoid on R, S iff the following hold:

$$
\begin{array}{r}
1 g(x, x, x, x)=x ; \\
2^{\prime} g(x, 0, x, 0)=x ; \\
3^{\prime} g(0,0, x, 0)=0 ; \\
4^{\prime} g(0,0, x, x)=x
\end{array}
$$

- The real role of axiom 1 is to ensure that g is surjective on A.
- Anybody fit to compact these axioms?

The commutator

- A principal result of [G.J.-Pedicchio (2001)] :

Theorem
In a congruence modular variety, if R, S are congruences of A, then $[R, S]=\Delta_{A}$] iff there is a pseudogrupoid on R, S.

The commutator

- A principal result of [G.J.-Pedicchio (2001)] :

Theorem
In a congruence modular variety, if R, S are congruences of A, then $\left.[R, S]=\Delta_{A}\right]$ iff there is a pseudogrupoid on R, S.

- C be any (pointed) variety; a term $t(\vec{x}, \vec{y}, \vec{z})$ in distinct tuples of variables $\vec{x}=x_{1}, \ldots, x_{m} ; \vec{y}=y_{1}, \ldots, y_{n} ; \vec{z}=z_{1}, \ldots, z_{p}$, is a commutator term in \vec{y}, \vec{z} if the identities

$$
t(\vec{x}, \overrightarrow{0}, \vec{z})=0, \quad t(\vec{x}, \vec{y}, \overrightarrow{0})=0
$$

hold in \mathbb{C}. For subalgebras X, Y of $A \in \mathbb{C}$, their commutator [X, Y] is defined:

$$
\{t(\vec{a}, \vec{u}, \vec{v}) \mid t \in C T(\vec{y}, \vec{z}), \vec{a} \in A, \vec{u} \in X, \vec{v} \in Y\}
$$

The commutator

- A principal result of [G.J.-Pedicchio (2001)] :

Theorem

In a congruence modular variety, if R, S are congruences of A, then $\left.[R, S]=\Delta_{A}\right]$ iff there is a pseudogrupoid on R, S.

- C be any (pointed) variety; a term $t(\vec{x}, \vec{y}, \vec{z})$ in distinct tuples of variables $\vec{x}=x_{1}, \ldots, x_{m} ; \vec{y}=y_{1}, \ldots, y_{n} ; \vec{z}=z_{1}, \ldots, z_{p}$, is a commutator term in \vec{y}, \vec{z} if the identities

$$
t(\vec{x}, \overrightarrow{0}, \vec{z})=0, \quad t(\vec{x}, \vec{y}, \overrightarrow{0})=0
$$

hold in \mathbb{C}. For subalgebras X, Y of $A \in \mathbb{C}$, their commutator $[X, Y]$ is defined:

$$
\{t(\vec{a}, \vec{u}, \vec{v}) \mid t \in C T(\vec{y}, \vec{z}), \vec{a} \in A, \vec{u} \in X, \vec{v} \in Y\} .
$$

- it is a normal subalgebra (i.e. it is a congruence class and a subalgebra) of A, it is preserved under surjective homomorphisms, and it depends on A but not on the ID variety to which A belongs,

The commutator in ID varieties-1

In an ID variety, because of congruence modularity, we have the usual modular commutator $[R, S]$.

- $[0 / R, 0 / S]$ is a congruence class of $[R, S]$, namely

$$
[0 / R, 0 / S]=0 /[R, S]
$$

(Gumm-~ [1984].)

The commutator in ID varieties-1

In an ID variety, because of congruence modularity, we have the usual modular commutator $[R, S]$.

- $[0 / R, 0 / S]$ is a congruence class of $[R, S]$, namely

$$
[0 / R, 0 / S]=0 /[R, S]
$$

(Gumm-~ [1984].)

Theorem
Let R, S be congruences of an algebra A in an ideal determined variety. Then $[0 / R, 0 / S]=0$ iff there is a pseudogroupoid on R, S iff there is a paragrupoid on R, S.

The commutator in ID varieties-1

In an ID variety, because of congruence modularity, we have the usual modular commutator $[R, S]$.

- $[0 / R, 0 / S]$ is a congruence class of $[R, S]$, namely

$$
[0 / R, 0 / S]=0 /[R, S]
$$

(Gumm-~ [1984].)

Theorem
Let R, S be congruences of an algebra A in an ideal determined variety. Then $[0 / R, 0 / S]=0$ iff there is a pseudogroupoid on R, S iff there is a paragrupoid on R, S.
The shortest direct proof of \Leftarrow :assume g is a pseudogroupoid on R, S and $I=0 / R, J=0 / S$. Let $t(x, y, z)$ be a commutator term let $a \in A, b \in I, c \in J$. Then

$$
\begin{aligned}
t(a, b, c) & =t(g(a, a, a, a), g(b, 0, b, 0), g(0,0, c, c))= \\
& =g(t(a, b, 0), t(a, 0,0), g(a, b, c), t(a, 0, c))= \\
& =g(0,0, t(a, b, c), 0)=0
\end{aligned}
$$

Thus $[0 / R, 0 / S=0]$.

The commutator in ID varieties-2

Three trivialities:
$1 B, C$ algebras of the same signature; a subalgebra F of $B \times C$ is a functional subalgebra of $B \times C$ if it is functional: $(b, c),\left(b, c^{\prime}\right) \in F \Rightarrow c=c^{\prime}$. Such an F is called a functional relation from B to C.

The commutator in ID varieties-2

Three trivialities:
$1 B, C$ algebras of the same signature; a subalgebra F of $B \times C$ is a functional subalgebra of $B \times C$ if it is functional: $(b, c),\left(b, c^{\prime}\right) \in F \Rightarrow c=c^{\prime}$.Such an F is called a functional relation from B to C.
$2 \operatorname{dom}(F)=:\{b \in B \mid \exists c(b, c) \in F\}$ is a subalgebra of B; the restriction $\dagger F=\{(b, c) \in F \mid b \in \operatorname{dom}(F)\}$ is a functional subalgebra of $\operatorname{dom}(F) \times C$ which is (the graph of) a mapping $\dagger F: \operatorname{dom}(F) \longrightarrow B$ and which is a homomorphism. (Every homomorphism g from a subalgebra S of B into C arises in this way).

The commutator in ID varieties-2

Three trivialities:
$1 B, C$ algebras of the same signature; a subalgebra F of $B \times C$ is a functional subalgebra of $B \times C$ if it is functional:
$(b, c),\left(b, c^{\prime}\right) \in F \Rightarrow c=c^{\prime}$.Such an F is called a functional relation from B to C.
$2 \operatorname{dom}(F)=:\{b \in B \mid \exists c(b, c) \in F\}$ is a subalgebra of B; the restriction $\dagger F=\{(b, c) \in F \mid b \in \operatorname{dom}(F)\}$ is a functional subalgebra of $\operatorname{dom}(F) \times C$ which is (the graph of) a mapping $\dagger F: \operatorname{dom}(F) \longrightarrow B$ and which is a homomorphism. (Every homomorphism g from a subalgebra S of B into C arises in this way).
3 Any intersection of functional subalgebras of $B \times C$ is a functional subalgebra. The following are equivalent for any functional subset $H \subseteq B \times C$.
(i) There is a functional subalgebra $F \subseteq B \times C$ such that $F \supseteq H$.
(ii) The subalgebra $H_{B \times C}$ generated in $B \times C$ by H is functional.

The commutator in ID varieties-3

- Let \mathbf{C} be an ID variety, $A \in \mathbf{C}, R, S$ congruence relations of A; $I=0 / R, J=0 / S$, and let $H(R, S) \subseteq A \times A \times A \times A \times A$ be the union of the following sets of 5 -tuples:

$$
\begin{aligned}
& \{(a, a, a, a, a) \mid a \in A\} ; \\
& \{(a, 0, a, 0, a) \mid a \in I\} ; \\
& \{(0,0, a, 0,0) \mid a \in I \cap J\} \\
& \{(0,0, a, a, a) \mid a \in J\} .
\end{aligned}
$$

Notice that $H(R, S)$ is functional in $(A \times A \times A \times A) \times A$.

The commutator in ID varieties-3

- Let \mathbf{C} be an ID variety, $A \in \mathbf{C}, R, S$ congruence relations of A; $I=0 / R, J=0 / S$, and let $H(R, S) \subseteq A \times A \times A \times A \times A$ be the union of the following sets of 5 -tuples:

$$
\begin{aligned}
& \{(a, a, a, a, a) \mid a \in A\} ; \\
& \{(a, 0, a, 0, a) \mid a \in I\} ; \\
& \{(0,0, a, 0,0) \mid a \in I \cap J\} \\
& \{(0,0, a, a, a) \mid a \in J\}
\end{aligned}
$$

Notice that $H(R, S)$ is functional in $(A \times A \times A \times A) \times A$.
Corollary
Let \mathbf{C} be an ID variety, $A \in \mathbf{C}, R, S$ be congruence relations of A.
Then $[R, S]=\Delta_{A}$ iff the subalgebra generated in
$A \times A \times A \times A \times A$ by $H(R, S)$ is functional in $(A \times A \times A \times A) \times A$.

The commutator in ID varieties-3

- Let \mathbf{C} be an ID variety, $A \in \mathbf{C}, R, S$ congruence relations of A; $I=0 / R, J=0 / S$, and let $H(R, S) \subseteq A \times A \times A \times A \times A$ be the union of the following sets of 5 -tuples:

$$
\begin{aligned}
& \{(a, a, a, a, a) \mid a \in A\} ; \\
& \{(a, 0, a, 0, a) \mid a \in I\} ; \\
& \{(0,0, a, 0,0) \mid a \in I \cap J\} \\
& \{(0,0, a, a, a) \mid a \in J\} .
\end{aligned}
$$

Notice that $H(R, S)$ is functional in $(A \times A \times A \times A) \times A$.

Corollary

Let \mathbf{C} be an ID variety, $A \in \mathbf{C}, R, S$ be congruence relations of A.
Then $[R, S]=\Delta_{A}$ iff the subalgebra generated in
$A \times A \times A \times A \times A$ by $H(R, S)$ is functional in $(A \times A \times A \times A) \times A$.

- Ideal determined categories have been invented
[G.Janledze-Marki-Tholen-~(CahiersTGDC2010)]:
extend the above to ideal determined categories

Beyond Ideal Determinacy and perspectives-1

- A clot in a (pointed) algebra A is a subalgebra K such that whenever $t(\vec{x}, \vec{y})$ is a term, and for $\vec{a} \in A, t(\vec{a}, \overrightarrow{0})=0$, then for $\vec{k} \in K, t(\vec{a}, \vec{k}) \in K$. Equivalently (Agliano'-~ (J.
Austral.M.S.1992)) iff there is a reflexive subalgebra S of $A \times A$ such that $K=0 / S=:\{k \in A \mid(0, k) \in S\}$.

Beyond Ideal Determinacy and perspectives-1

- A clot in a (pointed) algebra A is a subalgebra K such that whenever $t(\vec{x}, \vec{y})$ is a term, and for $\vec{a} \in A, t(\vec{a}, \overrightarrow{0})=0$, then for $\vec{k} \in K, t(\vec{a}, \vec{k}) \in K$. Equivalently (Agliano'-~ (J.
Austral.M.S.1992)) iff there is a reflexive subalgebra S of $A \times A$ such that $K=0 / S=:\{k \in A \mid(0, k) \in S\}$.
- A variety \mathbf{C} is ideal determined and congruence permutable iff it is clot determined: when S, S^{\prime} are reflexive subalgebras of $A \times A$, if $0 / S=0 / S^{\prime} \Rightarrow S=S^{\prime}$. A notion of clot determined categories should be quite within reach

Beyond Ideal Determinacy and perspectives-1

- A clot in a (pointed) algebra A is a subalgebra K such that whenever $t(\vec{x}, \vec{y})$ is a term, and for $\vec{a} \in A, t(\vec{a}, \overrightarrow{0})=0$, then for $\vec{k} \in K, t(\vec{a}, \vec{k}) \in K$. Equivalently (Agliano'-~ (J.
Austral.M.S.1992)) iff there is a reflexive subalgebra S of $A \times A$ such that $K=0 / S=:\{k \in A \mid(0, k) \in S\}$.
- A variety \mathbf{C} is ideal determined and congruence permutable iff it is clot determined: when S, S^{\prime} are reflexive subalgebras of $A \times A$, if $0 / S=0 / S^{\prime} \Rightarrow S=S^{\prime}$. A notion of clot determined categories should be quite within reach....
- Extend the previous remarks on pseudogrupoids and the commutator to clot determined varieties and categories

Beyond Ideal Determinacy and perspectives-2

- Semiabelian varieties and categories are well-known.

Beyond Ideal Determinacy and perspectives-2

- Semiabelian varieties and categories are well-known.

The commutator in semiabelian categories is dealt with in [Gran-G.Janelidze-~ (to appear, 2012)], but not yet via pseudogrupoids

Beyond Ideal Determinacy and perspectives-3

Stepping out from the pointed case

- (1) We have also cosets in universal algebra [Agliano'-~ (J.Algebra,1987)]: a coset in $A \in \mathbf{C}$ is a subset $K \subseteq A$ such that whenever an identity

$$
t\left(x_{1}, \ldots, x_{m}, z, \ldots, z\right)=z
$$

holds in \mathbf{C}, then for all $\vec{a} \in A, \vec{k} \in K$ one has $t(\vec{a}, \vec{k}) \in K$.
Variety \mathbf{C} is coset determined if every coset is a congruence class for exactly one congruence: then it turn out this happens iff the variety is congruence regular (congruences with a class in common coincide) and congruence permutable.

Beyond Ideal Determinacy and perspectives-3

Stepping out from the pointed case

- (1) We have also cosets in universal algebra [Agliano'-~(J.Algebra,1987)]: a coset in $A \in \mathbf{C}$ is a subset $K \subseteq A$ such that whenever an identity

$$
t\left(x_{1}, \ldots, x_{m}, z, \ldots, z\right)=z
$$

holds in \mathbf{C}, then for all $\vec{a} \in A, \vec{k} \in K$ one has $t(\vec{a}, \vec{k}) \in K$.
Variety \mathbf{C} is coset determined if every coset is a congruence class for exactly one congruence: then it turn out this happens iff the variety is congruence regular (congruences with a class in common coincide) and congruence permutable.

- Invent coset determined categories, and Extend all of the above to coset determined categories.

Beyond Ideal Determinacy and perspectives-3

Stepping out from the pointed case

- (1) We have also cosets in universal algebra [Agliano'-~(J.Algebra,1987)]: a coset in $A \in \mathbf{C}$ is a subset $K \subseteq A$ such that whenever an identity

$$
t\left(x_{1}, \ldots, x_{m}, z, \ldots, z\right)=z
$$

holds in \mathbf{C}, then for all $\vec{a} \in A, \vec{k} \in K$ one has $t(\vec{a}, \vec{k}) \in K$.
Variety \mathbf{C} is coset determined if every coset is a congruence class for exactly one congruence: then it turn out this happens iff the variety is congruence regular (congruences with a class in common coincide) and congruence permutable.

- Invent coset determined categories, and Extend all of the above to coset determined categories.
- (2) Ideals, clots and the commutator can be extended to general varieties with many constants [\sim (TAC, 2012)]. What are pseudogrupoids here?

None of the above, but in this section

A curious remark on some semiabelian varieties

- A 1- semiabelian variety is a variety satisfying the laws:

$$
\begin{aligned}
& m(x, x)=0 \\
& p(y, d(x, y))=x
\end{aligned}
$$

for some binary terms m, p : you have " both addition and subtraction". (A.k.a "Bidual Algebren in German. Considered by [Słominski (Fund. Math.1960)]. In fact, all we say is implicit in the masterpiece [Mal'tsev(Mat.Sb.1954)])

None of the above, but in this section

A curious remark on some semiabelian varieties

- A 1- semiabelian variety is a variety satisfying the laws:

$$
\begin{aligned}
& m(x, x)=0 \\
& p(y, d(x, y))=x
\end{aligned}
$$

for some binary terms m, p : you have " both addition and subtraction". (A.k.a "Bidual Algebren in German. Considered by [Słominski (Fund. Math.1960)]. In fact, all we say is implicit in the masterpiece [Mal'tsev(Mat.Sb.1954)])

- Johnstone showed that not all semiabelian varieties are 1-semiabelian.

None of the above, but in this section

A curious remark on some semiabelian varieties

- A 1- semiabelian variety is a variety satisfying the laws:

$$
\begin{aligned}
& m(x, x)=0 \\
& p(y, d(x, y))=x
\end{aligned}
$$

for some binary terms m, p : you have " both addition and subtraction". (A.k.a "Bidual Algebren in German. Considered by [Słominski (Fund. Math.1960)]. In fact, all we say is implicit in the masterpiece [Mal'tsev(Mat.Sb.1954)])

- Johnstone showed that not all semiabelian varieties are 1-semiabelian.
- A translation of an algebra A is a unary term function

None of the above, but in this section

A curious remark on some semiabelian varieties

- A 1- semiabelian variety is a variety satisfying the laws:

$$
\begin{aligned}
& m(x, x)=0 \\
& p(y, d(x, y))=x
\end{aligned}
$$

for some binary terms m, p : you have " both addition and subtraction". (A.k.a "Bidual Algebren in German. Considered by [Słominski (Fund. Math.1960)]. In fact, all we say is implicit in the masterpiece [Mal'tsev(Mat.Sb.1954)])

- Johnstone showed that not all semiabelian varieties are 1-semiabelian.
- A translation of an algebra A is a unary term function
- A variety is 1-semiabelian iff the group of invertible translations over every algebra in \mathbf{C} is transitive.

THE END

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

THE END

(I was X , playing as an idiot, and I lost -I hope you gained)

