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Introduction

We will describe two kinds of networks of interconnected
components:

I Tangled circuits - networks in which the tangling of the
connecting ”wires” is represented;

I Networks with state - networks in which the tangling is ignored
but in which the state of the components is represented.



PART I: Tangled circuits Rosebrugh, Sabadini, Walters, Tangled circuits, arXiv:1110.0715 (2011)

A commutative Frobenius algebra in a braided monoidal category
consists of an object G and four arrows ∇ : G ⊗ G → G ,
∆ : G → G ⊗ G , n : I → G and e : G → I making (G ,∇, e) a
monoid, (G ,∆, n) a comonoid and satisfying the equations

(1G ⊗∇)(∆⊗ 1G ) = ∆∇ = (∇⊗ 1G )(1G ⊗∆) : G ⊗ G → G ⊗ G

∇τ = ∇ : G ⊗ G → G

τ∆ = ∆ : G → G ⊗ G

where τ is the braiding.
A monoidal graph M consists of two sets M0 (vertices or wires)
and M1 (edges or components) and two functions dom : M1 → M∗

0

and cod : M1 → M∗
0 where M∗

0 is the free monoid on M0.
Given a monoidal graph M the free braided strict monoidal
category in which the objects of M are equipped with commutative
Frobenius algebra structures is called TCircDM . Its arrows are
called tangled circuit diagrams, or more briefly circuit diagrams.



Tangled circuits

If M is the monoidal graph {R : G ⊗ G → G ⊗ G} then the
following are distinct tangled circuits G ⊗ G → G ⊗ G :

Figure : (∇⊗∇)(1⊗ τ ⊗ 1)(1⊗ R ⊗ 1)(1⊗ τ ⊗ 1)(∆⊗∆)

Figure : (∇⊗∇)(1⊗ τ−1 ⊗ 1)(1⊗ R ⊗ 1)(1⊗ τ ⊗ 1)(∆⊗∆)



Equality of tangled circuits

We claim that the following three circuits are equal. It clearly
suffices to verify the first equation.



Equality of tangled circuits

Proof of equality:



Equality of tangled circuits

Further it is the case that



Dirac Belt Trick

Two whole twists can be unwound without rotating the ends - this
is called Dirac’s belt trick.



Dirac Belt Trick
Rough indication of steps of proof - the two complete twists are
equal to



Proving tangled circuits distinct

To prove two circuits distinct it suffices to find a braided monoidal
category with a commutative Frobenius algebra in which the two
circuits are distinct. Given any group G there is an interesting such
category which may be thought of as tangled relations TRelG .



Proving tangled circuits distinct

Let G be a group. The objects of TRelG are the formal powers of
G , and the arrows from Gm to Gn are relations R from the set Gm

to the set Gn satisfying:

1) if (x1, ..., xm)R(y1, ...yn) then also for all g in G
(g−1x1g , ..., g

−1xmg)R(g−1y1g , ..., g
−1ymg),

2) if (x1, ..., xm)R(y1, ...yn) then x1...xm(y1...yn)−1 ∈ Z (G ) (the
center of G ).

Composition and identities are defined to be composition and
identity of relations.
It is straightforward to verify that TRelG is a category.



Proving tangled circuits distinct

We introduce some useful notation. Write x = (x1, ..., xm),
y = (y1, ..., yn), and so on. Write x = x1x2...xm and for g , h in G ,
as gh = hgh−1. For g in G write xg = (xg1 , x

g
2 , ..., x

g
m). Thus,

(x)g = xg , and of course for any x , y in Gm × Gn, xgyg = (xy)g

where we write xy for (x1, ..., xm, y1, ..., yn).
Then TRelG is a braided strict monoidal category with tensor
defined on objects by Gm ⊗ Gn = Gm+n and on arrows by product
of relations. The twist

τm,n : Gm ⊗ Gn → Gn ⊗ Gm

is the functional relation

(x , y) ∼ (y x , x)

The arrow ∇ : G ⊗ G → G is the functional relation of
multiplication of the group.



Proving tangled circuits distinct

The following two circuits can be shown to be distinct by looking
in TRelS3 :

In fact with four or more strings and n twists on the first two
strings as above we obtain always distinct tangled circuits. With
two or three strings there are only finitely many tangled circuits of
this type (blocked braids) (Davide Maglia).



PART II: Networks with state

For many (most) purposes the tangling is not of interest. What is
of interest is that the components have state and behaviour. So
we now consider symmetric monoidal categories generated by a
monoidal graph M with Frobenius algebra structures on the
objects, but now also with the additional axiom

∇∆ = 1.

The geometry of this algebra is very simple: Let MonGraph be the
category of monoidal graphs. Then the symmetric monoidal
categories generated by a monoidal graph M with separable
algebra (Frobenius + ∇∆ = 1) structures on the objects is the full
subcategory of Cospan(MonGraph/M) restricted to the discrete
monoidal graphs - which category we call Csp(MonGraph/M).
Rosebrugh, Sabadini, Walters: Generic commutative separable algebras and cospans of graphs, TAC 2005



Networks with state
Example: The cospan of monoidal graphs corresponding to the
expression

Figure : (∇⊗∇)(1⊗ τ ⊗ 1)(1⊗ R ⊗ 1)(1⊗ τ ⊗ 1)(∆⊗∆)

is

The monoidal graph in the centre has one component labelled R and two wires

both labelled G . The left hand leg of the cospan is indicated by the input

wires, and the right hand by the output wires.



Networks with state

How does this allow us to describe networks with state? As
follows: the monoidal graph M may be the underlying monoidal
graph of a monoidal category, for example Span(Graph). So the
objects of the monoidal graph may have states and transitions.
But there is another fundamental fact. The objects of
Span(Graph) have separable algebra structures and hence there is
an induced structure-preserving functor

Csp(MonGraph/|Span(Graph)|) −→ Span(Graph),

which happens to be obtained by calculating a limit in Graph.
Rosebrugh, Sabadini, Walters: Calculating colimits compositionally, LNCS 5065, 2008



Networks with state
Consider the functor

limit : Csp(MonGraph/|Span(Graph)|) −→ Span(Graph).

An arrow in the domain may be thought of as either (i) an
expression in components with state (the compositional view of a
system) or (ii) a network (cospan of monoidal graphs) labelled in
graphs. The functor limit yields the global states and transitions of
the system.
The two points of view of the domain yield two methods of
calculating the global states and transitions of a system: (i) by
evaluating the expression in the domain and taking a limit, or (ii)
evaluating the expression in the codomain.
The first method is much more efficient than the second in finding
single paths in the system, and Filippo Schiavio has written a
program for doing that, with a graphical output. We present an
example of such a calculation for a simple mutual exclusion
protocol.



Networks with state



Networks with state



Networks with state



Networks with state



Networks with state



Networks with state
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Networks with state



Networks with state



Summary

Networks of components have a compositional description in terms of the
algebra of symmetric or braided monoidal categories in which each object has a
commutative Frobenius algebra structure compatible with the tensor product.
They also have a geometric description [11] - the free such algebra (in the
symmetric case) is the category of cospans of monoidal graphs, arrows of which
have a pictorial representation; in the braided case the geometry is more
complicated, capturing not only the connection between components but also
their entanglement.
These results are in the line introduced by Penrose [1], and Joyal and Street
[3], and were obtained by Sabadini and Walters with collaborators Katis and
Rosebrugh in earlier work, especially [6,7,8,9,11,12], beginning with the work
on relations with Carboni [2] in 1987. The work has numerous antecedents - we
mention just S. Eilenberg, S.L. Bloom, Z. Esik, Gh. Stefanescu. The algebra
has connections with quantum field theory [10]).

The present work presents two developments. The first is some initial work in

classifying tangled circuits; the second is a tool for composing cospans of

graphs and calculating executions of nets of parallel automata.
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