Departamento de Matemática da Universidade de Coimbra $Optimiza \c c \~ao~Num\'erica$

Mestrado em Matemática

Ano lectivo 2007/2008

Folha 1

- 1. Considere as matrizes $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$.
 - (a) Verifique que as formas quadráticas $x^{T}Ax$ e $x^{T}Bx$ coincidem.
 - (b) Seja A uma matriz quadrada. Prove que A e a parte simétrica de A $((A+A^{\mathsf{T}})/2)$ representam a mesma forma quadrática.
- 2. Seja A uma matriz real e simétrica de ordem n. Prove que A é definida positiva se e só se:
 - (a) Todos os valores próprios de A são positivos.
 - (b) Os determinantes de A_k , $1 \le k \le n$, são positivos, onde A_k é a submatriz de A constituída pelas primeiras k linhas e colunas de A.
 - (c) A pode factorizar-se na forma $A = LDL^{\mathsf{T}}$, onde L é uma matriz triangular inferior com elementos diagonais unitários e D uma matriz diagonal com elementos diagonais positivos.
- 3. Seja S um conjunto não vazio. Mostre que S é convexo se e só se para qualquer inteiro $k \geq 2$ a seguinte implicação é verdadeira

$$x_1, \dots, x_k \in S \Rightarrow \sum_{j=1}^k \lambda_j x_j \in S, \ \sum_{j=1}^k \lambda_j = 1, \ \lambda_j \ge 0, \ j = 1, \dots, k.$$

- 4. Seja S um subconjunto convexo de \mathbb{R}^n , $\alpha \in \mathbb{R}$ e A uma matriz de ordem $m \times n$. Mostre que os seguintes conjuntos são convexos.
 - (a) $AS = \{y : y = Ax, x \in S\}$
 - (b) $\alpha S = \{y : y = \alpha x, x \in S\}$
- 5. Mostre que se f é uma função convexa num conjunto convexo $D \subseteq \mathbb{R}^n$ e $a \in \mathbb{R}$, então $S = \{x \in D : f(x) \leq a\}$ é um conjunto convexo.
- 6. Mostre que a intersecção de conjuntos convexos é um conjunto convexo.
- 7. Sejam g_i , $1 \le i \le k$, funções convexas num conjunto convexo $D \subseteq \mathbb{R}^n$. Prove que $S = \{x \in D : g_i(x) \le 0, 1 \le i \le k\}$ é um conjunto convexo.

- 8. Estude a convexidade e concavidade das seguintes funções:
 - (a) $f(x_1, x_2) = x_1^4 + 2x_1^2x_2^2 + x_2^2$
 - (b) $f(x_1, x_2) = x_1 e^{-(x_1 + x_2)}$
 - (c) $f(x_1, x_2) = x_1^2 + 2x_1x_2 10x_1 + 5x_2$
 - (d) $f(x_1, x_2) = e^{2x_1 + 3x_2}$
 - (e) $f(x_1, x_2) = x_1 + x_2$
 - (f) $f(x_1, x_2, x_3) = x_1 x_2 + x_1^2 + x_2^2 + 2x_3^2 + x_1x_2 x_1x_3$
 - (g) $f(x_1, x_2, x_3) = x_3 + x_1 x_3 + x_3^2 + x_1^2$
 - (h) $f(x_1, x_2, x_3) = -x_1^2 4x_2^2 3x_3^2 x_1x_2 + x_2x_3$
 - (i) $f(x_1, x_2, x_3) = -x_1 + x_2 + x_1^2 x_2^2 + 3x_3^2$
- 9. Mostre que $\frac{x}{4} + \frac{3y}{4} \le \sqrt{\ln\left(\frac{e^{x^2}}{4} + \frac{3}{4}e^{y^2}\right)}$, para quaisquer x, y > 0.
- 10. Mostre que $\frac{1}{\sqrt{2}}|\arctan(x+y)| \leq \sqrt{x^2+y^2}$.
- 11. Seja $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função côncava em \mathbb{R}^n . Mostre que f definida por f(x) = 1/g(x) é convexa no conjunto $S = \{x \in \mathbb{R}^n : g(x) > 0\}$.
- 12. Sejam $f_i : \mathbb{R}^n \longrightarrow \mathbb{R}$, i = 1, ..., k, funções convexas em \mathbb{R}^n . Mostre que a função definida por $f(x) = \max\{f_1(x), ..., f_k(x)\}$ é convexa em \mathbb{R}^n .
- 13. Determine as aproximações lineares e quadráticas das seguintes funções nos pontos indicados e estude as suas convexidade e concavidade
 - (a) $f(x_1, x_2) = e^{x_1^2 + x_2^2} 5x_1 + 10x_2, \bar{x} = (0, 0)$
 - (b) $f(x_1, x_2, x_3) = x_1 x_3^2 + x_2 e^{x_1 x_3} + x_1^2, \bar{x} = (1, 0, 0)$
 - (c) $f(x_1, x_2) = \log(x_1 x_2) + e^{x_1/x_2}, \bar{x} = (1, 1)$
 - (d) $f(x_1, x_2, x_3) = \sin(x_1) + \log(x_2 x_3) + x_2^2 x_3, \bar{x} = (0, 1, 1)$
- 14. Utilizando as instruções do Mat Lab em cada uma das funções de duas varíave
is do exercício $8\,$
 - (a) visualize o gráfico de f,
 - (b) determine os minimizantes e maximizantes de f.

Verifique se as condições de optimalidade de primeira e segunda ordem são satisfeitas nos pontos determinados anteriormente.

Mestrado em Matemática

Ano lectivo 2007/2008

Folha 2

15. Considere a função quadrática

$$f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

onde $A \in \mathbb{R}^{n \times n}$ simétrica, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$.

- (a) Caracterize algebricamente os pontos estacionários de f.
- (b) Indique uma condição para que f só tenha um ponto estacionário e calcule o valor de f nesse ponto.
- (c) Indique uma condição para que um ponto estacionário seja minimizante/maximizante de f.
- (d) Seja \bar{x} um minimizante local de f. Mostre que \bar{x} é minimizante global de f.
- 16. Determine um mínimo global da função $f(x_1, x_2) = 34x_1^2 24x_1x_2 + 41x_2^2$, usando as condições de optimalidade.
- 17. Considere a função $f(x) = (x_1 1)^2 x_2$ e os pontos de \mathbb{R}^2 da forma $\bar{x} = (1, x_2)^T$.
 - (a) Analise as condições de optimalidade de primeira e segunda ordem para esses pontos.
 - (b) O que pode afirmar sobre \bar{x} utilizando essas informações?
 - (c) Use a expressão da função para obter afirmações mais conclusivas sobre as características de \bar{x} .
- 18. Considere a função de Rosenbrock $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$.
 - (a) Obtenha expressões para as derivadas de 1^a e 2^a ordem de f.
 - (b) Verifique que $x^* = (1,1)^T$ é um minimizante local.
 - (c) Mostre que $\nabla^2 f(x)$ é não singular se e somente se $x_2 x_1^2 = 0.005$.
- 19. Encontre os pontos estacionários de $f(x) = (x_1 x_2^2)(x_1 \frac{1}{2}x_2^2)$ e diga quais são minimizantes ou maximizantes, local ou globais.
- 20. Sejam $g: \mathbb{R} \to \mathbb{R}$ uma função estritamente crescente e $f: \mathbb{R}^n \to \mathbb{R}$. Mostre que minimizar f(x) é equivalente a minimizar g(f(x)).
- 21. Calcule o gradiente e a Hessiana das funções:
 - (a) $f(x) = \frac{1}{2}x^T A x + b^T x + c$, com $A \in \mathbb{R}^{n \times n}$ e $b, c \in \mathbb{R}^n$.
 - (b) f(x) = g(Ax + b), com $A \in \mathbb{R}^{m \times n}$ e $b \in \mathbb{R}^m$.

- 22. Considere o problema sem restrições min $f(x_1, x_2) = x_1 x_2$.
 - (a) Analise os pontos estacionários deste problema.
 - (b) Analise os pontos estacionários do problema dado, depois de acrescentada a restrição: i. $x_1 + x_2 = 0$; ii. $x_1 - x_2 = 0$.
- 23. Considere o problema quadrático

$$\begin{array}{ll} \min & \frac{1}{2}x^TQx + p^Tx + q \\ \text{s. a} & Ax = b, \end{array}$$

onde $Q \in \mathbb{R}^{n \times n}$ é simétrica, $x, p \in \mathbb{R}^n$, $q \in \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Seja Z uma base de $\mathcal{N}(A)$ com $Z^T Q Z$ definida positiva e x_0 tal que $A x_0 = b$.

Mostre que a solução deste problema é:

$$x^* = x_0 - Z(Z^T Q Z)^{-1} Z^T (Q x_0 + p).$$

- 24. Seja $f(x_1, x_2, x_3) = x_1^4 + x_2^4 + x_3^4 4x_1x_2x_3$.
 - (a) Determine os pontos estacionários de f e verifique se correspondem a minimizantes ou maximizantes de f.
 - (b) Considere o conjunto $\{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 3\}$. Determine os pontos estacionários para o problema $min\{f(x) : x \in S\}$ e verifique quais correspondem a minimizantes ou maximizantes de f em S.
- 25. Resolva os problemas:
 - (a) maximizar $\prod_{i=1}^{n} x_i$ sujeita a $\sum_{i=1}^{n} \frac{x_i}{a_i} = 1, a_i > 0, i = 1, \dots, n;$
 - (b) minimizar $\sum_{i=1}^{n} \frac{1}{x_i}$ sujeita a $\sum_{i=1}^{n} x_i^2 = n$ e $x_i > 0$, i = 1, ..., n.
- 26. Considere o problema de minimizar f, sujeita às restrições Ax = b, com $f : \mathbb{R}^n \to \mathbb{R}$ uma função duas vezes continuamente diferenciável. Seja x^* um ponto admissível e $Z \in \mathbb{R}^{n \times r}$ (r > n m) uma matriz cujas colunas constituem um conjunto gerador do espaço nulo de A mas que não é uma base.
 - (a) Mostre que a matriz $Z^T \nabla^2 f(x^*) Z$ não pode ser definida positiva.
 - (b) Mostre que se

$$Z^T \nabla f(x^*) = 0$$
 e $p^T \nabla^2 f(x^*) p > 0$, para qualquer $p \in \mathcal{N}(A) - \{0\}$,

então x^* é um minimizante local estrito de f na região admissível.

(c) Considere o problema

min
$$f(x) = x_1^2 + x_2^2$$

s. a $x_1 + x_2 = 2$,

e a matriz do espaço nulo das restrições

$$Z = \left[\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{array} \right].$$

Verifique que $x^* = (1,1)^T$ satisfaz as condições necessárias de 1^a ordem, mas que a matriz $Z^T \nabla^2 f(x^*) Z$ não é definida positiva. Usando as alíneas anteriores mostre que x^* é um minimizante local estrito.

Mestrado em Matemática

Ano lectivo 2007/2008

Folha 3

- 27. Mostre que a matriz $A = ss^T$, com $s \in \mathbb{R}^n \{0\}$, tem característica 1.
- 28. Sejam $u, v \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ uma matriz não singular e $B = A + uv^T$. Assumindo que $\sigma = 1 + v^T A^{-1} u \neq 0$, verifique a fórmula de Sherman-Morrison:

$$B^{-1} = A^{-1} - \frac{1}{\sigma} A^{-1} u v^T A^{-1}.$$

- 29. Mostre que se A é uma matriz simétrica, então existe $\lambda \geq 0$ tal que $A + \lambda I$ é definida positiva.
- 30. Determine todas as direcções de descida para a função linear $f(x) = x_1 2x_2 + 3x_3$.
- 31. Considere o problema não linear min f(x), onde $f(x) = x_1^2 x_1x_2 + 2x_2^2 2x_1 + e^{x_1 + x_2}$.
 - (a) Escreva as condições necessárias de 1^a ordem. Diga se são suficientes e porquê.
 - (b) O ponto $\bar{x} = (0,0)^T$ é óptimo?
 - (c) Encontre uma direcção $p \in \mathbb{R}^2$ tal que $\nabla f(\bar{x})^T p < 0$.
 - (d) Minimize a função f a partir de \bar{x} na direcção obtida em (c).
- 32. Sejam $f: \mathbb{R}^n \to \mathbb{R}$, $\bar{x} \in \mathbb{R}^n$ com $\nabla f(\bar{x}) \neq 0$. Seja $M \in \mathbb{R}^{n \times n}$ definida positiva. Mostre que $p = -M \nabla f(\bar{x})$ é uma direcção de descida em \bar{x} .
- 33. Considere a minimização de $f(x) = x_1^4 + x_1x_2 + (1 x_2)^2$. Usando a aproximação inicial $x_0 = (0,0)^T$, mostre que escolhendo a direcção de Newton para p_0 , $p_0 = -(\nabla^2 f(x_0))^{-1} \nabla f(x_0)$, nem p_0 nem $-p_0$ são direcções de descida.
- 34. Seja $f(x,y) = (y-x^2)^2 + (1-x)^2$.
 - (a) Qual é o mínimo global de f?
 - (b) Efectue uma iteração do método de Newton clássico começando com $x_0 = (2, 2)^T$ e diga se se trata de um bom passo.
 - (c) Repita a alínea anterior utilizando os métodos de descida máxima e BFGS (sem controle do passo).
 - (d) Proceda ao controle do passo utilizando um esquema de *backtracking* nos métodos anteriores (efectue duas iterações em cada método).
 - (e) Repita a alínea anterior fazendo pesquisa unidirecccional exacta.

- 35. Considere a função $f(x) = x_1^4 + x_2^2$ e a direcção de procura p_0 determinada pelo passo de Newton a partir de $x_0 = (1,1)^T$. Calcule, com uma iteração, novas aproximações do minimizante de f, usando:
 - (a) O passo de Newton clássico.
 - (b) Procura unidirectional. (Faça $\beta = 1/2$.)
 - (c) Procura unidireccional exacta. (Pode considerar apenas um valor aproximado de α_0 .)

Compare os resultados obtidos com os diferentes métodos.

- 36. Determine todos os pontos estacionários de cada um dos problemas seguintes, indicando quais são mínimos e máximos locais ou globais:
 - (a) $\min g(x,y) = x^2 + y^2 x^2y$
 - (b) $\min h(x,y) = x^2 + y^2 + 2xy + 7$
 - (c) $\min i(x,y) = x^2 + y^2 + xy 3x + 2$

Para cada um dos problemas, efectue duas iterações com o método de pesquisa linear e com as direcções de descida máxima, Newton e Quase-Newton (fórmula de actualização de BFGS), começando no ponto (1,0).

37. Aplique o método BFGS com procura unidireccional exacta à função $f(x) = x_1^2 + 4x_2^2$, a partir de $x_0 = (1,0)^T$ usando:

(a)
$$B_0 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, (b) $B_0 = I$, (c) $B_0 = |f(x_0)|I$.

- 38. Considere a função $f(x_1, x_2) = 2x_1^2 + x_2^2 2x_1x_2 + 2x_1^3 + x_1^4$.
 - (a) Suponha que se pretende minimizar f, começando no ponto $x_0 = (0, -2)^T$. Verifique que $p_0 = (0, 1)^T$ é uma direcção de descida.
 - (b) Suponha que é utilizada procura unidireccional para minimizar a função

$$F(\alpha) = f(x_0 + \alpha p_0)$$

e que é utilizado um esquema de backtracking para encontrar o passo óptimo α . Diga se o passo $\alpha=1$ satisfaz a condição de decréscimo suficiente para $\beta=0.5$ e indique todos os valores de β para os quais $\alpha=1$ satisfaz tal condição.

39. Considere a função real $f(x) = \frac{1}{2}||F(x)||_2^2$, onde $F: \mathbb{R}^n \to \mathbb{R}^n$ é continuamente diferenciável em \mathbb{R}^n . Suponha que J(x) é não-singular para todo o x e considere o método iterativo definido por

$$x_{k+1} = x_k - \alpha_k J(x_k)^{-1} F(x_k).$$

Mostre que usando $\beta = 0.5$ na condição de Armijo, se tem $\frac{f(x_{k+1})}{f(x_k)} \leq 1 - \alpha_k \frac{||F(x)||_{J_F(x_k)}^2}{||F(x)||_2^2}.$

40. Leia e execute os códigos Rosenbrock em Matlab para a minimização da função de Rosenbrock do exercício 15. disponíveis em http://www.mat.uc.pt/~lnv/pnl/Rosenbrock.tar.gz. Utilize o comando diary para registar os resultados.

Comente os resultados para os pontos iniciais $x_0 = (1.2, 1.2)$ e $x_0 = (-1.2, 1)$, usando passo inicial $\alpha_0 = 1$ e imprimindo o passo usado pelos métodos em cada iteração.

Mestrado em Matemática

Ano lectivo 2007/2008

Folha 4

- 41. Mostre que no algoritmo de descida máxima com procura unidireccional exacta se tem:
 - (a) $(x_{k+1} x_k)^T (x_{k-1} x_k) = 0$,
 - (b) $\nabla f(x_k)^T \nabla f(x_{k+1}) = 0$,

para qualquer k. Interprete geometricamente.

- 42. Considere a aplicação de um método de direcções de descida com procura unidireccional exacta para minimizar uma função quadrática $f(x) = \frac{1}{2}x^TQx c^Tx$, onde $Q \in \mathbb{R}^{n \times n}$ é uma matriz definida positiva e $c \in \mathbb{R}^n$.
 - (a) Seja p_k uma direcção de descida para f, a partir do ponto x_k . Mostre que, neste caso, o passo óptimo é dado por

$$\alpha_k = -\frac{p_k^T \nabla f(x_k)}{p_k^T \nabla^2 f(x_k) p_k},$$

- (b) Verifique que, utilizando procura unidireccional exacta, p_k é ortogonal a $\nabla f(x_{k+1})$.
- (c) Mostre que o método de Newton determina o minimizante de f em apenas uma iteração, independentemente do ponto inicial considerado.
- (d) Mostre que o passo de Newton satisfaz a condição de Armijo para $0 < \beta \leq \frac{1}{2}$, a partir de qualquer $x_k \in \mathbb{R}^n$.
- 43. Considere o problema min $x^4 + 2x^3 + 24x^2 + y^4 + 12y^2$. Partindo da aproximação inicial $(x_0, y_0) = (2, 1)$ e fazendo $\Delta_0 = 1$, $\eta_1 = 1/4$ e $\eta_2 = 3/4$, determine o valor de (x_1, y_1) e Δ_1 .
- 44. Repita os exercícios anteriores onde se procura o minimizante de f aplicando agora o método da região de confiança (começe com $\Delta_0 = 1$) utilizando para matriz H_k na definição de $\psi_k(s)$:
 - (a) $\nabla_f^2(x_k)$
 - (b) a matriz da fórmula de actualizção BFGS
 - (c) Compare o resultados.

Compare ainda os resultados obtidos entre os métodos de pesquisa unidereccional e região de confiança.

45. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função continuamente diferenciável. A condição de descréscimo suficiente em métodos de procura unidireccional, dada por

$$f(x_k + \alpha_k p_k) \le f(x_k) + \beta \alpha_k \nabla f(x_k)^T p_k, \quad \beta \in]0, 1[,$$

desempenha um papel semelhante à condição

$$\frac{f(x_k) - f(x_k + s_k)}{\psi_k(0) - \psi_k(s_k)} \ge \eta, \quad \eta \in]0, \frac{1}{4}[,$$

dos métodos de região de confiança, em que $\psi_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T B_k s$ e $B_k \in \mathbb{R}^{n \times n}$ é uma matriz simétrica.

Mostre que esta afirmação faz sentido, escolhendo para o efeito $B_k=0$ em $\psi_k(s)$ e associando s_k a $\alpha_k p_k$.

46. Considere $\psi_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T \nabla^2 f(x_k) p$ e a direcção $c_k = -\frac{\Delta_k}{||\nabla f(x_k)||} \nabla f(x_k)$.

Mostre que o escalar $\tau_k = \min \left\{ 1, \frac{||\nabla f(x_k)||^3}{\Delta_k \nabla f(x_k)^T \nabla^2 f(x_k) \nabla f(x_k)} \right\}$ é solução do problema

$$\min \quad \psi_k(\tau c_k)$$

s. a $||\tau c_k|| \le \Delta_k$

Mestrado em Matemática

Ano lectivo 2007/2008

Folha 5

- 47. Considere o sistema Ax = b, onde $A = \begin{bmatrix} 2 & -1 & 4 & 6 \\ 1 & -1 & 7 & -5 \end{bmatrix}$ e $b = \begin{bmatrix} 10 \\ 2 \end{bmatrix}$. Determine uma solução particular do sistema, uma base para o núcleo e resolva o sistema $A^T\lambda = \begin{bmatrix} 3 & -1 & 1 & 17 \end{bmatrix}^T$, utilizando:
 - (a) o método da redução de variável;
 - (b) a factorização $A^{T} = QR$.
- 48. Mostre que a direcção de descida máxima reduzida é uma direcção de descida em qualquer ponto não estacionário.
- 49. Considere o problema de optimização:

min
$$f(x) = \frac{1}{2}x^TQx + c^Tx$$

s. a $Ax = b$

onde $Q \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ e $Z^T Q Z$ é definida positiva, com Z uma matriz do espaço nulo de A.

- (a) Utilize o método de Newton, com passo 1 e começando num ponto admissível x_0 , para mostrar que $x^* = x_0 Z(Z^TQZ)^{-1}Z^T\nabla f(x_0)$.
- (b) Considere agora $f(x, y, z) = x^2 + y^2 + z^2$, $A = [1 \ 1 \ 1] e b = 3$.
 - i. Determine uma matriz associada à geração do espaço nulo de ${\cal A}.$
 - ii. Seguindo o método na alínea (a) resolva o problema, partindo de $x_0 = (2, 0, 1)$.
- 50. Utilize o método de Newton reduzido para resolver o problema $\min 0.5x^{\mathsf{T}}Qx:Ax=b,$ onde

$$Q = \begin{bmatrix} 0 & -13 & -6 & -3 \\ -13 & 23 & -9 & 3 \\ -6 & -9 & -12 & 1 \\ -3 & 3 & 1 & -1 \end{bmatrix}, A = \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 3 & -1 \end{bmatrix} e b = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Inicialize o metodo com $x_o = [1 \ 1 \ 0 \ 0]^T$.

- 51. Repita o exercício anterior com o método da descida máximo partindo do mesmo ponto inicial. Calcule 3 iterações utilizando pesquisa linear exacta.
- 52. Prove que a direcção de Newton reduzida é invariante realtivamente à base escolhida para Nu(A). Diga se o mesmo acontece relativamente à direção de descida máxima (prove ou dê um contra-exemplo).

- 53. do problema min $f(x,y) = 0.5(x-3)^2 + (y-2)^2$): $x \in S$, onde $S = \{x \in \mathbb{R}^3 : y 2x \le 0, x + y \le 0, y \ge 0\}$,
 - (a) Represente graficamente a região admissível e as curvas de nível de f.
 - (b) Determine a solução óptima através do método das restrições activas. Utilize o método de Newton reduzido para resolver o subproblema com restrições de igualdade e determine Z pelo método de redução de variável.
 - (c) Repita o exercício anterior utilizando a direcção de descida máxima, a factorização $A^{\mathsf{T}} = QR$ e pesquisa linear exacta.
- 54. Considere o programa não linear com restrições:

$$\min\{f(x,y) = (x+1)^2 + (y-1)^2 : 0 \le x \le 2, 0 \le y \le 2\}$$

- (a) Determine graficamente a solução óptima do problema.
- (b) Confirme, utilizando as condições de optimalidade, que a solução óptima encontrada na alínea anterior é óptima. (Nota: caso não tenha resolvido a alínea anterior, utilize as condições de optimalidade para determinar a solução óptima do problema).
- (c) Determine a solução óptima do problema utilizando o método das restrições activas partindo da aproximação inicial $(x_0, y_0) = (2, 0)$. Utilize a direcção de descida máxima (com controlo do passo por *backtracking*) para resolver os sub-problemas com restrições de igualdede que vão surgindo.
- 55. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 4x_1x_2x_3$.
 - (a) Determine os pontos estacionários de f e verifique se correspondem a minimizantes ou maximizantes de f.
 - (b) Considere o conjunto $S = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 3\}$. Determine os pontos estacionários para o problema $\min\{f(x) : x \in S\}$ e verifique quais correspondem a minimizantes ou maximizantes de f em S.
 - (c) Caraterize algebricamente as direcções de descida admissíveis para f em $x \in S$.
 - (d) Determine uma base para espaço nulo de A, Nu(A).
 - (e) Determine uma direcção de descida admissível p para f em $x_0 = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}^T$.
 - (f) Determine uma aproximação para a solução de $min\{f(x): x \in S\}$ partindo de x_0 , seguindo a direcção p e utilizando o critério de Armijo ($\beta = 1/2$) para controlar o passo.
- 56. Considere o problema

min
$$x_1^2 + x_2^2$$

s. a $x_1 + x_2 = 1$

- (a) Determine a solução óptima x^* .
- (b) Considere o problema "penalizado" $\min x_1^2 + x_2^2 + \mu(x_1 + x_2 1)^2$ e calcule a solução óptima $x^*(\mu)$, para cada $\mu > 0$.
- (c) Verifique que $\lim_{u\to\infty} x^*(\mu) = x^*$.

Mestrado em Matemática

Ano lectivo 2007/2008

Folha 6

57. Dados uma função $f:\mathbbm{R}^n \to \mathbbm{R}, \ x^* \in \mathbbm{R}^n$ e $\Delta>0$, resolva o problema de regiões de confiança:

$$\min \quad f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(x^*) p,$$

s. a $||p|| \le \Delta$.

58. Considere o problema de optimização não linear

min
$$f(x,y) = 2x + 3y$$

s. a $2x^2 + y^2 \le 1$

- (a) Caracterize a trajectória $x(\mu)$ e $\lambda(\mu)$, com μ um parmetro positivo, para o método de barreira logarítmica.
- (b) Mostre que quando μ tende para 0 se obtêm a solução do problema e o vector de multiplicadores de Lagrange que lhe está associado.
- 59. Considere o problema

$$min y^2 - 3x$$
s. a $x + y = 1$
 $x - y = 0$

Caracterize a trajectória dos minimizantes e os multiplicadores de Lagrange da função de penalização quadrática deste problema em função de ρ . Mostre que no limite se obtêm o minimizante global do problema dado e os multiplicadores de Lagrange associados.

60. Considere o problema

$$\begin{array}{ll}
\min & -x^2 \\
\text{s. a} & 1 - x^2 \ge 0
\end{array}$$

- (a) Mostre que a função de barreira logarítmica $\beta(x,u)$ tem um minimizante x=0 se $\mu>1$ e dois $x=\pm\sqrt{1-\mu}$ se $\mu<1$. Que tipo de ponto é x=0 quando $\mu<1$?
- (b) Seja $\{\mu_k\}$ uma sucessão de parmetros de barreira menores do que 1 a convergir para 0 e $x_k = (-1)^k \sqrt{1 \mu_k}$ uma sucessão de minimizantes de $\beta(x, \mu_k)$. Verifique que as subsucessões $\{x_{2k+1}\}$ e $\{x_{2k}\}$ convergem para pontos diferentes, ambos solução do problema original.
- 61. Obtenha uma expressão para as estimativas dos multiplicadores de Lagrange associadas aos pontos na trajectória barreira, com função de barreira inversa, e verifique que estes pontos e estimativas são solução das condições de optimalidade de 1^a ordem perturbadas.

- 62. Considere o problema não linear com restrições $\min\{\frac{-1}{x^2+1}: x \ge 1\}$.
 - (a) Mostre que a função de barreira logarítmica é não limitada inferiormente na região admissível.
 - (b) Mostre ainda que essa função tem um minimizante local que aproxima a solução do problema x^* quando μ tende para 0.
- 63. Considere o problema $\min\{x: x^2 \ge 0, x \ge -1\}$. Mostre que a sequência de minimizantes globais da função de barreira logarítmica converge para o minimizante global do problema com restrições x = -1, mas que a sequência de minimizantes locais (não globais) converge para 0, que não é minimizante do problema com restrições.
- 64. Considere a minimização de $f(x) = x^2$, com $x \ge 1$.
 - (a) Para cada inteiro positivo k calcule o minimizante x_k da função objectivo do problema sem restrições com o termo de penalização quadrática.
 - (b) Repita a alínea anterior utilizando o termo de penalização exacta.
 - (c) Compare os resultados e comente.
- 65. Considere o programa não linear com restrições: $\min\{f(x) = x_1^2 + x_2^2 : x_1 + x_2 = 1\}$
 - (a) Encontre, graficamente, a solução do problema e confirme que encontrou a solução óptima através das condições de optimalidade.
 - (b) Deduza uma expressão para os pontos estacionários da função (de penalização quadrática) $\pi(x,\rho) = f(x) + \frac{\rho}{2} \sum_{i=1}^{m} g_i^2(x)$ e para os multiplicadores de Lagrange associados.
 - (c) Determine agora uma expressão para os pontos estacionários da função (de Lagrange aumentada) $\mathcal{A}(x,\lambda,\rho) = f(x) \lambda^T g(x) + \frac{\rho}{2} g(x)^T g(x)$.
- 66. Considere o programa não linear com restrições:

$$\min\{f(x) = e^{3x_1 + 4x_2} : g(x) = x_1^2 + x_2^2 - 1 = 0\}.$$

- (a) Determine graficamente a solução óptima x* deste problema (confirme depois as condições de optimalidade).
- (b) Aproxime a solução óptima deste problema utilizando os métodos de: penalização quadrática, penalização exacta, lagrangeano aumentado, programação sequencial quadrática e do gradiente reduzido.
- (c) Substitua a restrição de igualdade por uma de desigualdade "≤"e aplique o metodo de barreira com as funções de barreira logarítmica e inversa.
- (d) Compare os resultados obtidos em termos de $||x*-x_k||$, $|f(x*)-f(x_k)|$, $|g(x*)-g(x_k)|$ e $||\nabla \mathcal{L}(x_k, \lambda_k)||$.
- 67. Leia e execute os códigos em Matlab para a minimização da função $x_1 + x_2$, com $x_1^2 + x_2^2 = 2$, disponíveis em http://www.mat.uc.pt/~lnv/pnl/e17ponto1.tar.gz. Utilize o comando diary para registar os resultados e format compact para poupar espaço.

Corra o método de penalização quadrática e o método da função Lagrangeana aumentada. Comente os resultados obtidos.