Building pretorsion theories from torsion theories

Federico Campanini

Joint work with Francis Borceux, Marino Gran and Walter Tholen (first part) and Francesca Fedele (second part)

Torsion theories in abelian categories

[Dickson]

Definition: Let ${\mathbb C}$ be an abelian category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of \mathbb{C} is a torsion theory if

- Hom(T, F) = 0 for all $T \in \mathfrak{T}, F \in \mathfrak{F}$;
- for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Example:

 $(\mathbb{T}, \mathfrak{F})$ in the category Ab of abelian groups, where • $\mathbb{T} =$ torsion groups; • $\mathfrak{F} =$ torsionfree groups

$$0 \longrightarrow t(G) \longrightarrow G \longrightarrow G/t(G) \longrightarrow 0 \qquad s.e.s$$

with t(G) =torsion subgroup of G.

Definition: Let \mathbb{C} be any pointed category.

- A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of $\mathbb C$ is a torsion theory if
 - Hom $(\overline{T}, F) = 0$ for all $\overline{T} \in \mathfrak{T}, F \in \mathfrak{F}$;
 - for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Two examples of non-abelian torsion theories

- (NilCRng, RedCRng) in the category CRngs of commutative rings, where
 - NilCRng = nilpotent rings RedCRng = reduced rings

$$0 \longrightarrow Nil(R) \longrightarrow R \longrightarrow R/Nil(R) \longrightarrow 0 \qquad s.e.s.$$

- (GrpInd, GrpHaus) in the category GrpTop of topological groups, where
 - GrpInd = groups with the indiscrete topology GrpHauss = Hausdorff groups

$$0 \longrightarrow \overline{\{1\}} \longrightarrow G \longrightarrow G / \overline{\{1\}} \longrightarrow 0 \qquad s.e.s.$$

Definition: Let \mathbb{C} be any pointed category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of $\mathbb C$ is a torsion theory if

- Hom(T, F) = 0 for all $T \in \mathfrak{T}, F \in \mathfrak{F}$;
- for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Definition: Let \mathbb{C} be any category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of $\mathbb C$ is a pretorsion theory if

- Hom(T, F) = ?...? for all $T \in \mathfrak{T}, F \in \mathfrak{F}$;
- for every $X \in \mathbb{C}$ there exists ?...?...?...?

$$T_X \to X \to F_X$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Let ${\mathbb C}$ be any category.

- Consider two full replete subcategories ${\mathfrak T}$ and ${\mathfrak F}$ of ${\mathbb C}.$
- Define $\mathcal{Z} := \mathcal{T} \cap \mathcal{F}$, the class of trivial objects.
- We say that a morphism $X \xrightarrow{f} Y$ in \mathbb{C} is \mathcal{Z} -trivial if it factors through an object in \mathcal{Z} :

• The class of trivial morphisms forms an ideal of morphisms (denoted by Triv) in \mathbb{C} : if $f \in \text{Triv}(A, B)$ or $g \in \text{Triv}(B, C)$, then $g \cdot f \in \text{Triv}(A, C)$.

Remark: if \mathbb{C} is pointed and $\mathbb{Z} = \mathcal{T} \cap \mathcal{F} = 0$, then the ideal of trivial morphisms is the ideal of zero morphisms of \mathbb{C} .

Kernels and cokernels with respect to an ideal of morphisms

A morphism $k: K \to X$ is a \mathcal{Z} -kernel of $f: X \to Y$ if

(i)
$$K \xrightarrow{k} X \xrightarrow{f} Y$$
 is \mathbb{Z} -trivial;

(ii) for any $g: L \to X$ such that $f \cdot g$ is trivial, there is a unique $h: L \to K$ such that $k \cdot h = g$

The notion of \mathcal{Z} -cokernel is defined dually. A sequence

$$W \xrightarrow{f} X \xrightarrow{g} Y$$

is a short \mathcal{Z} -exact sequence if f is the \mathcal{Z} -kernel of g and g is the \mathcal{Z} -cokernel of f.

Remark: Any \mathcal{Z} -kernel is a monomorphisms and any \mathcal{Z} -cokernel is an epimorphisms.

Definition: Let \mathbb{C} be any pointed category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of $\mathbb C$ is a torsion theory if

- Hom(T, F) = 0 for all $T \in \mathfrak{T}, F \in \mathfrak{F}$;
- for every $X \in \mathbb{C}$ there exists a short exact sequence

$$0 \to T_X \to X \to F_X \to 0$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Definition: Let \mathbb{C} be any category.

A pair $(\mathfrak{T},\mathfrak{F})$ of full replete subcategories of \mathbb{C} is a pretorsion theory if

- Hom(T, F) = Triv(T, F) for all $T \in \mathfrak{T}, F \in \mathfrak{F}$;
- for every $X \in \mathbb{C}$ there exists a short \mathcal{Z} -exact sequence

$$T_X \to X \to F_X$$
 with $T \in \mathfrak{T}, F \in \mathfrak{F}$.

Basic properties of pretorsion theories

Given a pretorsion theory $(\mathfrak{T},\mathfrak{F})$ in a category $\mathbb{C},$ there are two functors:

• a "torsion functor" $T: \mathbb{C} \to \mathbb{T}$ which is a left-inverse right-adjoint of the full embedding $E_T: \mathbb{T} \hookrightarrow \mathbb{C}$;

• a "torsion-free functor" $F : \mathbb{C} \to \mathcal{F}$ which is a left-inverse left-adjoint of the full embedding $E_F : \mathcal{F} \hookrightarrow \mathbb{C}$. For every object $X \in \mathbb{C}$ there is a short \mathcal{Z} -exact sequence

$$T(X) \xrightarrow{\varepsilon_X} X \xrightarrow{\eta_X} F(X)$$

where the monomorphism ε_X is the X-component of the counit ε of the adjunction

while the epimorphism η_X is the X-component of the unit η of the adjunction

- $X \in \mathfrak{T} \iff T(X) \cong X$ and $Y \in \mathfrak{F} \iff F(Y) \cong Y$.
- Two classes determine the third one, in the sense that:
 - if $Hom(X, \mathfrak{F}) = Triv(X, \mathfrak{F})$ then $X \in \mathfrak{T}$ and
 - if Hom $(\mathfrak{T}, Y) = \text{Triv}(\mathfrak{T}, Y)$ then $Y \in \mathfrak{F}$.
- $\bullet~{\mathfrak T}$ is closed under extremal quotients and ${\mathfrak F}$ is closed under extremal monomorphisms.
- $\bullet\,$ The three classes $\mathfrak{T},\mathfrak{F}$ and \mathfrak{Z} are all closed under retracts.
- The initial object 0 is in \mathcal{T} , while the terminal object 1 is in \mathcal{F} (if they exist).
 - In particular, if $\mathbb C$ is pointed, the zero object is in $\mathcal Z.$

Some examples

Objects: sets endowed with a preorder (A, ρ) (reflexive + transitive relation)

Morphisms: monotone maps between (preordered) sets.

There is a pretorsion theory $(\mathfrak{T},\mathfrak{F})$ in PreOrd given by:

- T = equivalence relations (symmetric preorders)
- $\mathfrak{F} = \mathsf{partial}$ orders (antysimmetric preorders)
- $\mathcal{Z} = \text{discrete relations}$ (the "equality" relations).

The short \mathcal{Z} -exact sequence of an object (A, ρ) is of the form

$$(A,\equiv) \xrightarrow{Id_A} (A,\rho) \xrightarrow{\pi} (A/\equiv,\leq)$$

where

• $a \equiv b$ if and only if $a\rho b$ and $b\rho a$; • $[a] \leq [b]$ if and only if $a\rho b$.

Federico Campanini

There is an isomorphism of categories:

$$(A,
ho) \longrightarrow (A, au_{
ho})$$

where

- AlexTop is the category of Alexandrov-discrete spaces (arbitrary intersections of open sets is open).
- $0 \in \tau_{\rho}$ if and only if [$x \in 0$ and $a\rho x \Rightarrow a \in 0$].

The corresponging pretorsion theory in AlexTop is (PartAlex, T_0)

- T = PartAlex = partition spaces (there exists a partition of the set which is a basis)
- $\mathcal{F} = \mathcal{T}_0$ spaces
- * $\mathcal{Z} = \text{discrete topological spaces}$

A pretorsion theory in the category Cat of all small categories [Xarez]:

- $\mathfrak{T} =$ "symmetric categories" $\operatorname{Hom}(X, Y) \neq \emptyset \Rightarrow \operatorname{Hom}(Y, X) \neq \emptyset$
- $\mathfrak{F} =$ "antisymmetric categories" $\operatorname{Hom}(X, Y) \neq \emptyset$, $\operatorname{Hom}(Y, X) \neq \emptyset \Rightarrow X = Y$
- $\mathcal{Z} =$ classes of monoids (no morphisms between distinct objects)

- A pretorsion theory in the category $PreOrd(\mathbb{C})$ of internal preorders in an <u>exact</u> category [Facchini, Finocchiaro, Gran]:
 - $\mathfrak{T}=\mathsf{Eq}(\mathbb{C})=\mathsf{equivalence}$ relations in \mathbb{C}
 - $\mathfrak{F} = \mathsf{ParOrd}(\mathbb{C}) = \mathsf{partial} \text{ orders in } \mathbb{C}$
 - $\mathcal{Z} = \mathsf{Dis}(\mathbb{C}) = \mathsf{discrete}$ relations in \mathbb{C} .

Cat = category of small categories

There is another pretorsion theory in Cat:

- T = groupoids (every morphism is an isomorphism)
- $\mathcal{F} =$ skeletal categories (every isomorphism is an automorphism)
- $\mathcal{Z} =$ classes of groups (every morphism is an automorphism)

The short 2-exact sequence of a category ${\mathbb C}$ is of the form

$$\mathsf{lso}(\mathbb{C}) \longrightarrow \mathbb{C} \overset{\mathsf{Q}}{\longrightarrow} \mathbb{Q}$$

where the second functor is the following coequalizer in Cat

$$\coprod_{iso} 1 \xrightarrow[]{d} \mathbb{C} \xrightarrow{Q} \mathbb{Q}$$

Stable category $\mathsf{Stab}(\mathbb{L})$ associated with a pretorsion theory

Question: is it possible to associate a torsion theory (in an universal way) to a given pretorsion theory $(\mathfrak{T}, \mathfrak{F})$ in a category \mathbb{C} ?

The idea is to consider a congruence ${\mathcal R}$ on ${\mathbb C}$ and a quotient pointed category

 $\Sigma \colon \mathbb{C} \longrightarrow \mathbb{C}/\mathcal{R} =: \mathsf{Stab}(\mathbb{C})$

Let $(\mathbb{A}, \mathcal{T}, \mathcal{F})_{pret}$ be a category \mathbb{A} with a given pretorsion theory $(\mathcal{T}, \mathcal{F})$ in \mathbb{A} . If $(\mathbb{B}, \mathcal{T}', \mathcal{F}')_t$ is a pointed category \mathbb{B} with a given torsion theory $(\mathcal{T}', \mathcal{F}')$ in it, we say that a torsion theory functor is a functor $G : \mathbb{A} \to \mathbb{B}$ satisfying the following two properties:

- $G(\mathfrak{T}) \subseteq \mathfrak{T}'$ and $G(\mathfrak{F}) \subseteq \mathfrak{F}';$
- if $T_A \to A \to F_A$ is the canonical short \mathcal{Z} -exact sequence associated with $A \in \mathbb{A}$ in the pretorsion theory $(\mathfrak{T}, \mathfrak{F})$, then

$$0
ightarrow G(T_A)
ightarrow G(A)
ightarrow G(F_A)
ightarrow 0$$

is a short exact sequence in \mathbb{B} .

Theorem [F. Borceux, —, M. Gran]

Let $(\mathfrak{T}, \mathfrak{F})$ be a pretorsion theory in a lextensive category \mathbb{L} and assume that \mathfrak{T} is closed under complemented subobjects. Then, there exists a "stable category" $\mathrm{Stab}(\mathbb{L})$ and a torsion theory functor $\Sigma \colon \mathbb{L} \to \mathrm{Stab}(\mathbb{L})$ which is universal among all finite coproduct preserving torsion theory functors $G \colon \mathbb{C} \to \mathbb{X}$.

Building pretorsion theories from torsion theories

Comparable torsion theories [—, Fedele]:

Let \mathbb{C} be a pointed category and consider two torsion theories $(\mathfrak{T}_1,\mathfrak{F}_1)$ and $(\mathfrak{T}_2,\mathfrak{F}_2)$ in it.

For i = 1, 2, let $T_i: \mathbb{C} \to \mathfrak{T}_i$ and $F_i: \mathbb{C} \to \mathfrak{F}_i$ denote respectively the torsion and torsion-free functors induced by the torsion theory $(\mathfrak{T}_i, \mathfrak{F}_i)$.

The following conditions are equivalent:

(i) $\mathfrak{T}_2 \subseteq \mathfrak{T}_1 \ (\mathfrak{F}_1 \subseteq \mathfrak{F}_2)$

(ii) $(\mathfrak{T}_1, \mathfrak{F}_2)$ is a pretorsion theory.

Moreover, if these conditions hold, then $\mathfrak{T}_1 = \mathfrak{T}_2 * \mathfrak{Z}$ and $\mathfrak{F}_2 = \mathfrak{Z} * \mathfrak{F}_1$, where $\mathfrak{Z} := \mathfrak{T}_1 \cap \mathfrak{F}_2$, and the \mathfrak{Z} -short exact sequence of an object $X \in \mathbb{C}$ is given by

$$T_1X \longrightarrow X \longrightarrow F_2X$$

Notice: no hypothesis are required for \mathbb{C} or the torsion theories.

Let *R* be a unital commutative ring and $S \subseteq R$ a multiplicatively closed subset $(1 \in S \text{ and } r, s \in S \Rightarrow r \cdot s \in S)$.

There is a torsion theory $(\mathfrak{T}_{\mathcal{S}}, \mathfrak{F}_{\mathcal{S}})$ in Mod(R) where $M \in \mathfrak{T}_{\mathcal{S}}$ iff $M \otimes_{R} \mathcal{S}^{-1}R = 0$.

Explicitly, $M \in \mathcal{T}_S$ if, for every $m \in M$, there exists $s \in S$ such that sm = 0, while $M \in \mathcal{T}_S$ if there are no non-zero elements of M annihilated by elements of S.

Any inclusion $S \subseteq T$ of multiplicatively closed subsets of R induces a pretorsion theory $(\mathcal{T}_T, \mathcal{F}_S)$ where the class \mathcal{Z} of trivial objects consists of those modules M with the following property: for every non-zero $m \in M$ we have $\operatorname{Ann}_R(m) \cap T \neq \emptyset$ and $\operatorname{Ann}_R(m) \cap S = \emptyset$.

As a particular case of what we have just seen, any inclusion of prime ideals induces a pretorsion theory, since the complement of a prime ideal is a multiplicatively closed set.

Comparable torsion theories: example 1

Let R be a domain of infinite Krull dimension and consider an infinite chain of prime ideals

 $0 = P_0 \subsetneq P_1 \subsetneq P_2 \subsetneq \ldots$

This chain induces a chain of torsion theories $(\mathfrak{T}_i, \mathfrak{F}_i)$, with $\mathfrak{T}_0 \supseteq \mathfrak{T}_1 \supseteq \mathfrak{T}_2 \supseteq \ldots$

Thus we have pretorsion theories $(\mathcal{T}_0, \mathcal{F}_i)$, where \mathcal{T}_0 is the subcategory of "classical" torsion modules, while $N \in \mathcal{F}_i$ iff for every $n \in N$, $Ann_R(n) \subseteq P_i$.

Conclusion:

A subcategory T of a given category \mathbb{C} can be the torsion class of (possibly infinitely) many different pretorsion theories.

Comparable torsion theories: example 2 (suggested by Marino Gran)

Let \mathbb{C} be an homological category and consider $\mathsf{Grpd}(\mathbb{C})$. There are two (comparable) torsion theories:

($Ab(\mathbb{C})$, $Eq(\mathbb{C})$) and (connected groupoids , \mathbb{C})

which then gives us a pretorsion theory

(connected groupoids , $Eq(\mathbb{C})$)

One last remark:

Not all pretorsion theories arise in this way.

Extension with a Serre subcategory [— , Fedele]:

- Let \mathbb{C} be a pointed category where every morphism admits an (epi, mono)-factorization, and assume that \mathbb{C} has pullbacks and pushouts which preserve normal epimorphisms and normal monomorphisms respectively.
- $\,\bullet\,$ Let $\,\mathbb{S}\,$ be a Serre epireflective and monocoreflective subcategory of $\mathbb{C}.$
- Let $(\mathcal{U}, \mathcal{V})$ be a torsion theory in \mathbb{C} .

Then

the pair $(\mathfrak{T},\mathfrak{F}) = (\mathfrak{U} * \mathfrak{S}, \mathfrak{S} * \mathfrak{V})$ is a pretorsion theory with class of trivial objects \mathfrak{S} .

The short S-exact sequence is given by

Thank you