L-algebras, normality and exact completions

Marino Gran

joint work with Alberto Facchini and Mara Pompili

Institut de recherche en mathématique et physique

Portuguese Category Seminar Universidade de Coimbra

The quasi-variety of *L*-algebras

Exact completion

Commutator of ideals

(ロ) (型) (E) (E) (E) の(C)

The quasi-variety of *L*-algebras

Exact completion

Commutator of ideals

(ロ) (国) (E) (E) (E) (O)(C)

The notion of normal category was introduced by Z. Janelidze (2010) :

The notion of normal category was introduced by Z. Janelidze (2010) :

Definition

Let $\mathbb C$ be a finitely complete category with a zero object 0. Then $\mathbb C$ is a normal category if

any morphism *f*: *A* → *B* in C admits a factorization *f* = *m* · *q*, where *q* is a normal epimorphism and *m* is a monomorphism :

The notion of normal category was introduced by Z. Janelidze (2010) :

Definition

Let $\mathbb C$ be a finitely complete category with a zero object 0. Then $\mathbb C$ is a normal category if

any morphism *f*: *A* → *B* in C admits a factorization *f* = *m* · *q*, where *q* is a normal epimorphism and *m* is a monomorphism :

• normal epimorphisms are stable under pullbacks.

Any homological category is normal.

Any homological category is normal.

In particular, the categories Grp of groups, Rng of rings, K-Alg of associative algebras, Lie_K of Lie algebras, Heyt of Heyting semi-lattices, DiGrp of digroups are all normal.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Any homological category is normal.

In particular, the categories Grp of groups, Rng of rings, K-Alg of associative algebras, Lie_{K} of Lie algebras, Heyt of Heyting semi-lattices, DiGrp of digroups are all normal.

The categories $\operatorname{Grp}(\operatorname{Top})$, $\operatorname{Hopf}_{K, coc}$, \mathbb{C}^* -Alg, $\operatorname{Set}^{op}_*$ are homological, hence normal.

Any homological category is normal.

In particular, the categories Grp of groups, Rng of rings, K-Alg of associative algebras, Lie_{K} of Lie algebras, Heyt of Heyting semi-lattices, DiGrp of digroups are all normal.

The categories $\operatorname{Grp}(\operatorname{Top})$, $\operatorname{Hopf}_{K,coc}$, \mathbb{C}^* -Alg, $\operatorname{Set}^{op}_*$ are homological, hence normal.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

In all these categories the Split Short Five Lemma holds.

A preordered group $(G, \leq, +)$ is a group *G* endowed with a preorder relation \leq on *G* that is "compatible" with the group operation +:

$$[a \leq c, \text{ and } b \leq d] \Rightarrow [a+b \leq c+d].$$

A preordered group $(G, \leq, +)$ is a group *G* endowed with a preorder relation \leq on *G* that is "compatible" with the group operation +:

$$[a \leq c, \text{ and } b \leq d] \Rightarrow [a + b \leq c + d].$$

A morphism $f: (G, \leq, +) \rightarrow (H, \leq, +)$ in the category PreOrdGrp of preordered groups is a monotone group homomorphism.

A preordered group $(G, \leq, +)$ is a group *G* endowed with a preorder relation \leq on *G* that is "compatible" with the group operation +:

$$[a \leq c, \text{ and } b \leq d] \Rightarrow [a+b \leq c+d].$$

A morphism $f: (G, \leq, +) \rightarrow (H, \leq, +)$ in the category PreOrdGrp of preordered groups is a monotone group homomorphism.

PreOrdGrp is a normal category that is not homological, as shown by M.M. Clementino, N. Martins-Ferreira and A. Montoli, 2019.

What kind of results can one prove in a normal category?

What kind of results can one prove in a normal category?

Noether's Isomorphism Theorems

The first isomorphism theorem of group theory holds in any normal category \mathbb{C} : for any regular epimorphism $f: A \to B$,

there is an isomorphism $B \cong \frac{A}{\operatorname{Ker}(f)}$.

What kind of results can one prove in a normal category?

Noether's Isomorphism Theorems

The first isomorphism theorem of group theory holds in any normal category \mathbb{C} : for any regular epimorphism $f: A \to B$,

there is an isomorphism $B \cong \frac{A}{\operatorname{Ker}(f)}$.

This uses the property that $f: A \to B$ is monomorphism if and only if Ker (f) = 0.

The double quotient isomorphism theorem also holds in any normal category \mathbb{C} (T. Everaert and M. Gran, 2013) : given normal subobjects $K \subset L \subset A$ of an $A \in \mathbb{C}$, there is an isomorphism

$$A/L \cong \frac{A/K}{L/K}.$$

The double quotient isomorphism theorem also holds in any normal category \mathbb{C} (T. Everaert and M. Gran, 2013) : given normal subobjects $K \subset L \subset A$ of an $A \in \mathbb{C}$, there is an isomorphism

$$A/L \cong rac{A/K}{L/K}.$$

The Zassenhaus Lemma, used in the proof of the Jordan-Hölder theorem, also holds in any normal category (O. Ngaha and F. Sterck, 2019).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The quasi-variety of *L*-algebras

Exact completion

Commutator of ideals

(ロ) (国) (E) (E) (E) (O)(C)

The quasi-variety of *L*-algebras

The category LAIg of *L*-algebras will turn out to be another interesting example of a normal category that is not homological.

The quasi-variety of *L*-algebras

The category LAIg of *L*-algebras will turn out to be another interesting example of a normal category that is not homological.

Definition (W. Rump, 2008)

An L-algebra is a set X with a binary operation \cdot and a 0-ary operation 1 such that

$$\boldsymbol{x} \cdot \boldsymbol{x} = \boldsymbol{x} \cdot \boldsymbol{1} = \boldsymbol{1}, \ \boldsymbol{1} \cdot \boldsymbol{x} = \boldsymbol{x}, \tag{1}$$

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z), \tag{2}$$

$$x \cdot y = y \cdot x = 1 \implies x = y \tag{3}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for every $x, y, z \in X$.

The quasi-variety of *L*-algebras

The category LAIg of *L*-algebras will turn out to be another interesting example of a normal category that is not homological.

Definition (W. Rump, 2008)

An L-algebra is a set X with a binary operation \cdot and a 0-ary operation 1 such that

$$\boldsymbol{x} \cdot \boldsymbol{x} = \boldsymbol{x} \cdot \boldsymbol{1} = \boldsymbol{1}, \ \boldsymbol{1} \cdot \boldsymbol{x} = \boldsymbol{x}, \tag{1}$$

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z), \tag{2}$$

$$x \cdot y = y \cdot x = 1 \implies x = y \tag{3}$$

for every $x, y, z \in X$.

Remark

The identity (2) holds in most generalizations of classical logic, including intuitionistic and many valued logic (" \cdot " can represent an implication " \rightarrow ").

The category LAIg of *L*-algebras, with morphisms preserving \cdot and 1, is clearly a quasivariety, because of the implications

$$x \cdot y = y \cdot x = 1 \implies x = y.$$

The category LAIg of *L*-algebras, with morphisms preserving \cdot and 1, is clearly a quasivariety, because of the implications

$$x \cdot y = y \cdot x = 1 \implies x = y.$$

Many examples of LAIg come from logic, where the binary operation $x \cdot y$ is thought as an "implication" $x \rightarrow y$.

The category LAIg of *L*-algebras, with morphisms preserving \cdot and 1, is clearly a quasivariety, because of the implications

$$x \cdot y = y \cdot x = 1 \implies x = y.$$

Many examples of LAIg come from logic, where the binary operation $x \cdot y$ is thought as an "implication" $x \rightarrow y$.

These include Heyting algebras, Boolean algebras, MV-algebras and other algebraic structures in logic.

Boolean algebras

Any Boolean algebra can be seen as an *L*-algebra by setting $x \rightarrow y = x' \lor y$, where x' is the complement of x.

Boolean algebras

Any Boolean algebra can be seen as an *L*-algebra by setting $x \rightarrow y = x' \lor y$, where x' is the complement of x.

MV-algebras

In 2005 Gispert and Mundici characterised MV-algebras as commutative monoids $(M, \cdot, 1)$ with an involution ()': $M \to M$ (the "negation") such that 0 = 1' satisfies $x \cdot 0 = 0$ and

$$x \cdot (x \cdot y')' = y \cdot (y \cdot x')'.$$

Rump proved that the operation $x \rightarrow y = (x \cdot y')'$ defines an *L*-algebra.

The constant 1, called the logical unit, is the unique element with the property that

$$x \cdot x = x \cdot 1 = 1, \ 1 \cdot x = x.$$

▲ロト▲掃ト▲目ト▲目ト 目 のへぐ

The constant 1, called the logical unit, is the unique element with the property that

$$x \cdot x = x \cdot 1 = 1, \ 1 \cdot x = x.$$

If we think of . as an "implication" these identities become

$$x \rightarrow x = x \rightarrow 1 = 1, \ 1 \rightarrow x = x,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

where 1 can be interpreted as "truth".

Proof (sketch) :

Any quasivariety is a regular category, with regular epimorphisms given by surjective homomorphisms.

Proof (sketch) :

Any quasivariety is a regular category, with regular epimorphisms given by surjective homomorphisms.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The trivial algebra $\{1\}$ is the zero object of LAIg.

Proof (sketch) :

Any quasivariety is a regular category, with regular epimorphisms given by surjective homomorphisms.

The trivial algebra $\{1\}$ is the zero object of LAIg.

Let us show that any surjective homomorphism is the cokernel of its kernel.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

First observe that the terms $t_1(x, y) = x \cdot y$ and $t_2(x, y) = y \cdot x$ satisfy

$$t_1(x,x) = x \cdot x = 1 = t_2(x,x).$$

First observe that the terms $t_1(x, y) = x \cdot y$ and $t_2(x, y) = y \cdot x$ satisfy

$$t_1(x,x) = x \cdot x = 1 = t_2(x,x).$$

Let $A \xrightarrow{f} B$ be a surjective homomorphism, $K \xrightarrow{k} A$ its kernel, and $A \xrightarrow{g} C$ any morphism such that $g \circ k = 1$

$$K \xrightarrow{k} A \xrightarrow{f} B$$

$$\downarrow g$$

$$\{1\} \longrightarrow C$$

(日) (同) (E) (E) (E) (O) (O)

For any $b \in B$ there is an $a \in A$ such that f(a) = b. Let us show that by setting

 $\phi(b) := g(a)$

we get a well-defined function $\phi \colon B \to C$.
For any $b \in B$ there is an $a \in A$ such that f(a) = b. Let us show that by setting

 $\phi(b) := g(a)$

we get a well-defined function $\phi \colon B \to C$.

Indeed, let *a* and *a'* be such that f(a) = f(a'). Then, for any $i \in \{1, 2\}$,

$$f(t_i(a, a')) = t_i(f(a), f(a')) = t_i(f(a), f(a)) = 1,$$

hence $t_i(a, a') \in K$.

This implies that $t_i(g(a), g(a')) = g(t_i(a, a')) = 1$, so that g(a) = g(a') by (3).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

In the commutative diagram

▲□▶▲□▶▲□▶▲□▶ □ のQ@

the homomorphism ϕ such that $\phi \circ f = g$ is unique by the surjectivity of *f*.

In the commutative diagram

the homomorphism ϕ such that $\phi \circ f = g$ is unique by the surjectivity of *f*.

It follows that f = coker(k), and f is then a normal epimorphism. Accordingly, LAlg is a normal category. The quasivariety LAIg is a full subcategory of the variety PreLAIg of pre-*L*-algebras (also called *unital cycloids* in the literature), determined by

$$x \cdot x = x \cdot 1 = 1, \ 1 \cdot x = x,$$
(1)
(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) (2)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The quasivariety LAIg is a full subcategory of the variety PreLAIg of pre-*L*-algebras (also called *unital cycloids* in the literature), determined by

$$x \cdot x = x \cdot 1 = 1, \ 1 \cdot x = x, \tag{1}$$
$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{2}$$

There is then an adjunction

$$\mathsf{LAlg} \xrightarrow{F} \mathsf{PreLAlg}_{}^{}$$

where the reflection $A \xrightarrow{\eta_A} UF(A) = \frac{A}{\sim}$ of a pre-L-algebra A is a quotient, with

$$(x, y) \in \sim \Leftrightarrow x \cdot y = 1 = y \cdot x$$

Normal categories

The quasi-variety of *L*-algebras

Exact completion

Commutator of ideals

(ロ) (国) (E) (E) (E) (O)(C)

Exact completion of a regular category

What is the relationship between the regular category LAIg and the exact category PreLAIg in terms of the exact completion $\mathbb{C}_{ex/reg}$ of a regular \mathbb{C} ?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Exact completion of a regular category

What is the relationship between the regular category LAIg and the exact category PreLAIg in terms of the exact completion $\mathbb{C}_{ex/reg}$ of a regular \mathbb{C} ?

Given a regular category \mathbb{C} , there is a fully faithful functor $\Gamma : \mathbb{C} \to \mathbb{C}_{ex/reg}$ to an exact category $\mathbb{C}_{ex/reg}$.

Exact completion of a regular category

What is the relationship between the regular category LAIg and the exact category PreLAIg in terms of the exact completion $\mathbb{C}_{ex/reg}$ of a regular \mathbb{C} ?

Given a regular category \mathbb{C} , there is a fully faithful functor $\Gamma : \mathbb{C} \to \mathbb{C}_{ex/reg}$ to an exact category $\mathbb{C}_{ex/reg}$.

A functor $F : \mathbb{C} \to \mathbb{D}$ between regular categories is regular if it preserves finite limits and regular epimorphisms.

This functor $\Gamma : \mathbb{C} \to \mathbb{C}_{ex/reg}$ satisfies the following universal property : for any regular functor $F : \mathbb{C} \to \mathbb{D}$

there is an essentially unique regular functor $\overline{F} : \mathbb{C}_{ex/reg} \to \mathbb{D}$ with $\overline{F} \circ \Gamma \cong F$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The variety **PreLAIg** is the exact completion of **LAIg**.

The variety **PreLAIg** is the exact completion of **LAIg**.

A key argument in the proof of this result comes from the fact that free algebras of LAIg are in PreLAIg.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The variety **PreLAIg** is the exact completion of **LAIg**.

A key argument in the proof of this result comes from the fact that free algebras of LAIg are in PreLAIg.

Note that the exact completion of a normal category is not normal, in general (M. Gran and Z. Janelidze, 2014). We observe that a new example is given here by the variety $PreLAlg = LAlg_{ex/reg}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The variety **PreLAIg** is the exact completion of **LAIg**.

A key argument in the proof of this result comes from the fact that free algebras of LAIg are in PreLAIg.

Note that the exact completion of a normal category is not normal, in general (M. Gran and Z. Janelidze, 2014). We observe that a new example is given here by the variety $PreLAlg = LAlg_{ex/reg}$.

The quotient $\frac{X}{\sim}$ of a pre-*L*-algebra X by the congruence \sim defined by $(x, y) \in \sim$ if and only if $x \cdot y = 1 = y \cdot x$ "forces" the quasivariety LAlg to be normal.

A property that is "stable" under the exact completion is the Mal'tsev property.

<ロト < 団 ト < 巨 ト < 巨 ト 三 の < で</p>

A property that is "stable" under the exact completion is the Mal'tsev property.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Indeed, one can show that a regular \mathbb{C} is a Mal'tsev category if and only if $\mathbb{C}_{ex/reg}$ is a Mal'tsev category.

Given a regular Mal'tsev category C, consider a reflexive relation

in $\mathbb{C}_{ex/reg}$,

Given a regular Mal'tsev category C, consider a reflexive relation

in $\mathbb{C}_{ex/reg}$,

there is a regular epimorphism $p: X \to A$ with $X \in \mathbb{C}$:

・ロト・雪ト・雪ト・雪ト・ 目・ 今々で

It is then easy to complete the diagram

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

with \overline{R} a reflexive relation on X in \mathbb{C} , p and p' regular epis.

Since \mathbb{C} is a Mal'tsev category, \overline{R} is a symmetric relation in \mathbb{C} :

Since \mathbb{C} is a Mal'tsev category, \overline{R} is a symmetric relation in \mathbb{C} :

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

This implies that *R* is a symmetric relation in $\mathbb{C}_{ex/reg}$ as well.

The fact that

[\mathbb{C} is a Mal'tsev category] if and only if [$\mathbb{C}_{ex/reg}$ is a Mal'tsev category]

is due to the fact that the Mal'tsev property is expressed in terms of relations.

The fact that

[\mathbb{C} is a Mal'tsev category] if and only if [$\mathbb{C}_{ex/reg}$ is a Mal'tsev category]

is due to the fact that the Mal'tsev property is expressed in terms of relations.

Similar results can be proved for other exactness properties, such as :

- protomodularity (M. Gran and S. Lack, 2014)
- subtractivity and unitality (M. Gran and D. Rodelo, 2012).

$$s(x, 1) = 1 \cdot x = x, \qquad s(x, x) = x \cdot x = 1.$$

$$s(x, 1) = 1 \cdot x = x, \qquad s(x, x) = x \cdot x = 1.$$

Accordigly, some homological lemmas (such as the "upper" and "lower" $3\times3\text{-Lemma}$) hold true in LAlg.

$$s(x, 1) = 1 \cdot x = x, \qquad s(x, x) = x \cdot x = 1.$$

Accordigly, some homological lemmas (such as the "upper" and "lower" $3\times3\text{-Lemma}$) hold true in LAlg.

However, the quasivariety of LAIg is not a Mal'tsev category, as we now explain.

$$s(x, 1) = 1 \cdot x = x, \qquad s(x, x) = x \cdot x = 1.$$

Accordigly, some homological lemmas (such as the "upper" and "lower" $3\times$ 3-Lemma) hold true in LAlg.

However, the quasivariety of LAIg is not a Mal'tsev category, as we now explain.

Consider the two element *L*-algebra *X* whose multiplication is defined by

$$\begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$$

The relation $R = \{(0, 1), (1, 0), (1, 1)\}$ on X is a subalgebra of the L-algebra $X \times X$.

▲ロト▲掃ト▲目ト▲目ト 目 のへぐ

The relation $R = \{(0, 1), (1, 0), (1, 1)\}$ on X is a subalgebra of the L-algebra $X \times X$.

The kernel pairs $Eq(p_1)$ and $Eq(p_2)$ of the projections

▲□▶▲□▶▲□▶▲□▶ □ の000

do not permute : $Eq(p_1) \circ Eq(p_2) \neq Eq(p_2) \circ Eq(p_1)$.

Indeed,

 $Eq(p_1) = \{((0,1), (0,1)), ((1,0), (1,0)), ((1,1), (1,1)), ((1,0), (1,1)), ((1,1), (1,0))\}$ and

 $Eq(p_2) = \{((0,1),(0,1)),((1,0),(1,0)),((1,1),(1,1)),((0,1),(1,1)),((1,1),(0,1))\}.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Indeed,

 $Eq(p_1) = \{((0,1), (0,1)), ((1,0), (1,0)), ((1,1), (1,1)), ((1,0), (1,1)), ((1,1), (1,0))\}$ and

 $Eq(p_2) = \{((0,1),(0,1)),((1,0),(1,0)),((1,1),(1,1)),((0,1),(1,1)),((1,1),(0,1))\}.$

Accordingly,

$$(1,0)Eq(p_1)(1,1)Eq(p_2)(0,1)$$

showing that

$$((1,0),(0,1))\in Eq(p_2)\circ Eq(p_1).$$

However,

 $((1,0),(0,1)) \notin Eq(p_1) \circ Eq(p_2), \text{ since } (0,0) \notin R$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proposition

LAIg and PreLAIg are not Mal'tsev categories.

Proposition

LAIg and PreLAIg are not Mal'tsev categories.

Under this respect these categories are very different from Boolean algebras, Heyting algebras and MV-algebras.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Proposition

LAIg and PreLAIg are not Mal'tsev categories.

Under this respect these categories are very different from Boolean algebras, Heyting algebras and MV-algebras.

Remark

It is interesting to note that both LAIg and PreLAIg are "permutable at 1", this meaning that

$$(x,1)\in S\circ R\Leftrightarrow (x,1)\in R\circ S,$$

for any pair of congruences *R* and *S* on the same algebra.

Indeed, consider the "subtractive" term $s(x, y) = y \cdot x$. If there is y such that xRyS1, then

$$x = 1 \cdot x = s(x, 1) S s(x, y) R s(y, y) = y \cdot y = 1$$
, and $(x, 1) \in R \circ S$.

Normal categories

The quasi-variety of *L*-algebras

Exact completion

Commutator of ideals

<□> <圖> < E> < E> E のQ@

Commutator of ideals

A subset *I* of a pre-*L*-algebra *X* is an ideal of *X* if

$$1 \in I,$$

$$x \in I \text{ and } x \cdot y \in I \implies y \in I,$$

$$x \in I \implies (x \cdot y) \cdot y \in I,$$

$$x \in I \implies y \cdot x \in I,$$

$$x \in I \implies y \cdot (x \cdot y) \in I$$

for every $x, y \in X$.

Ideals of a pre-*L*-algebra X correspond to equivalence relations R on X such that the quotient X/R is in LAIg.
The correspondence between equivalence relations in PreLAlg and ideals is the following :

The correspondence between equivalence relations in PreLAlg and ideals is the following :

given an equivalence relation *R* on a pre-L-algebra *X*, the associated ideal is the equivalence class $[1]^{R} = [1]$ of the unit 1;

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The correspondence between equivalence relations in PreLAlg and ideals is the following :

given an equivalence relation *R* on a pre-L-algebra *X*, the associated ideal is the equivalence class $[1]^{R} = [1]$ of the unit 1;

given an ideal *I* of *X*, the associated equivalence relation \sim is defined by

$$(x,y) \in \sim \quad \Leftrightarrow \quad (x \cdot y \in I) \land (y \cdot x \in I).$$

Commutator of ideals

Let X be an L-algebra and I, J two ideals of X. Define their commutator [I, J] as the smallest ideal of X for which the multiplication \cdot in X, i.e., the mapping

$$\mu \colon I \times J \to X/[I, J]$$
$$\mu(i, j) = [i \cdot j]^{[I, J]}$$

is an *L*-algebra morphism.

Commutator of ideals

Let X be an L-algebra and I, J two ideals of X. Define their commutator [I, J] as the smallest ideal of X for which the multiplication \cdot in X, i.e., the mapping

$$\mu \colon I \times J \to X/[I, J]$$

 $\mu(i, j) = [i \cdot j]^{[I, J]}$

is an *L*-algebra morphism.

Proposition

For every pair I, J of ideals of an *L*-algebra *X*, one has

 $[I,J]=I\cap J.$

Commutator of ideals

Let X be an L-algebra and I, J two ideals of X. Define their commutator [I, J] as the smallest ideal of X for which the multiplication \cdot in X, i.e., the mapping

$$\mu \colon I \times J \to X/[I, J]$$
 $\mu(i, j) = [i \cdot j]^{[I, J]}$

is an *L*-algebra morphism.

Proposition

For every pair I, J of ideals of an *L*-algebra *X*, one has

 $[I,J]=I\cap J.$

Proof

This will follow from the fact that, for any $x \in I \cap J$, the equivalence class $[x]^{[I,J]} = [x]$ is the neutral element in the quotient X/[I,J] : [x] = [1].

Indeed, for any $i \in I$, $j \in J$, $x \in I \cap J$ one has the equality

 $([x] \cdot [x]) \cdot ([i] \cdot [j]) = ([x] \cdot [i]) \cdot ([x] \cdot [j]).$

Indeed, for any $i \in I$, $j \in J$, $x \in I \cap J$ one has the equality

$$([x] \cdot [x]) \cdot ([i] \cdot [j]) = ([x] \cdot [i]) \cdot ([x] \cdot [j]).$$

By choosing i = 1 and j = x we get

$$([x] \cdot [x]) \cdot ([1] \cdot [x]) = ([x] \cdot [1]) \cdot ([x] \cdot [x]),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

from which it follows that [x] = [1], and $I \cap J = [I, J]$ as desired.

The result that $I \cap J = [I, J]$ implies that the only abelian object is 0, since [A, A] = 0 implies that $A \cap A = A = 0$.

The result that $I \cap J = [I, J]$ implies that the only abelian object is 0, since [A, A] = 0 implies that $A \cap A = A = 0$.

It would be interesting to investigate - from a categorical perspective - the commutator theory of congruences in *relatively modular quasivarieties* and in *relatively distributive quasivarieties*, such as LAIg.

References

- M.M. Clementino, N. Martins-Ferreira and A. Montoli, *On the categorical behaviour of preordered groups*, J. Pure Appl. Algebra (2019)
- A. Facchini, M. Gran and M. Pompili, *Ideals and congruences in L-algebras and pre-L-algebras*, arXiv :2305.19042 (2023)
- M. Gran and Z. Janelidze, Star-regular categories and regular completions, J. Pure Appl. Algebra (2014)
- M. Gran and S. Lack, *Semi-localizations of semi-abelian categories*, J. Algebra (2014)
- M. Gran and D. Rodelo, *On the characterisation of Jónsson-Tarski and of subtractive varieties*, Diagrammes (2012)
- Z. Janelidze, *The pointed subobject functor*, 3 × 3 *lemmas and subtractivity of spans*, Theory Appl. Categories (2010)
- O. Ngaha and F. Sterck, *The Zassenhaus Lemma in star-regular categories*, Theory Appl. Categories (2019)
- W. Rump, L-algebras, self-similarity, and I-groups, J. Algebra (2008)
- W. Rump, The category of L-algebras, Theory Appl. Categories (2023)
- A. Ursini, On subtractive varieties, Algebra Univers. (1994)