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Normal categories

The notion of normal category was introduced by Z. Janelidze (2010) :

Definition
Let C be a finitely complete category with a zero object 0. Then C is a normal
category if

• any morphism f : A → B in C admits a factorization f = m · q, where q is a
normal epimorphism and m is a monomorphism :

A f //

q     

B

C
>> m

>>

• normal epimorphisms are stable under pullbacks.
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Examples
Any homological category is normal.

In particular, the categories Grp of groups, Rng of rings, K-Alg of associative
algebras, LieK of Lie algebras, Heyt of Heyting semi-lattices, DiGrp of digroups are
all normal.

The categories Grp(Top), HopfK ,coc , C∗-Alg, Setop
∗ are homological, hence normal.

In all these categories the Split Short Five Lemma holds.
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A preordered group (G,≤,+) is a group G endowed with a preorder relation ≤ on
G that is “compatible” with the group operation + :

[a ≤ c, and b ≤ d ] ⇒ [a + b ≤ c + d ].

A morphism f : (G,≤,+) → (H,≤,+) in the category PreOrdGrp of preordered
groups is a monotone group homomorphism.

PreOrdGrp is a normal category that is not homological, as shown by
M.M. Clementino, N. Martins-Ferreira and A. Montoli, 2019.
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What kind of results can one prove in a normal category?

Noether’s Isomorphism Theorems
The first isomorphism theorem of group theory holds in any normal category C :
for any regular epimorphism f : A → B,

0 // Ker (f ) // A f // //

π
##

B

A/Ker (f )

∼=

;;

there is an isomorphism B ∼= A
Ker (f ) .

This uses the property that f : A → B is monomorphism if and only if Ker (f ) = 0.
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The double quotient isomorphism theorem also holds in any normal category C
(T. Everaert and M. Gran, 2013) : given normal subobjects K ⊂ L ⊂ A of an A ∈ C,
there is an isomorphism

A/L ∼=
A/K
L/K

.

The Zassenhaus Lemma, used in the proof of the Jordan-Hölder theorem, also
holds in any normal category (O. Ngaha and F. Sterck, 2019).
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The quasi-variety of L-algebras
The category LAlg of L-algebras will turn out to be another interesting example of
a normal category that is not homological.

Definition (W. Rump, 2008)
An L-algebra is a set X with a binary operation · and a 0-ary operation 1 such that

x · x = x · 1 = 1, 1 · x = x , (1)
(x · y) · (x · z) = (y · x) · (y · z), (2)
x · y = y · x = 1 =⇒ x = y (3)

for every x , y , z ∈ X .

Remark
The identity (2) holds in most generalizations of classical logic, including
intuitionistic and many valued logic (“·” can represent an implication “→”).
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The category LAlg of L-algebras, with morphisms preserving · and 1, is clearly a
quasivariety, because of the implications

x · y = y · x = 1 =⇒ x = y .

Many examples of LAlg come from logic, where the binary operation x · y is
thought as an “implication” x → y .

These include Heyting algebras, Boolean algebras, MV-algebras and other
algebraic structures in logic.
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Boolean algebras
Any Boolean algebra can be seen as an L-algebra by setting x → y = x ′ ∨ y ,
where x ′ is the complement of x .

MV-algebras
In 2005 Gispert and Mundici characterised MV-algebras as commutative monoids
(M, ·,1) with an involution ( )′ : M → M (the “negation”) such that 0 = 1′ satisfies
x · 0 = 0 and

x · (x · y ′)′ = y · (y · x ′)′.

Rump proved that the operation x → y = (x · y ′)′ defines an L-algebra.
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The constant 1, called the logical unit, is the unique element with the property that

x · x = x · 1 = 1, 1 · x = x .

If we think of · as an “implication” these identities become

x → x = x → 1 = 1, 1 → x = x ,

where 1 can be interpreted as “truth”.



The constant 1, called the logical unit, is the unique element with the property that

x · x = x · 1 = 1, 1 · x = x .

If we think of · as an “implication” these identities become

x → x = x → 1 = 1, 1 → x = x ,

where 1 can be interpreted as “truth”.



Proposition
LAlg is a normal category.

Proof (sketch) :
Any quasivariety is a regular category, with regular epimorphisms given by
surjective homomorphisms.

The trivial algebra {1} is the zero object of LAlg.

Let us show that any surjective homomorphism is the cokernel of its kernel.
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First observe that the terms t1(x , y) = x · y and t2(x , y) = y · x satisfy

t1(x , x) = x · x = 1 = t2(x , x).

Let A f // // B be a surjective homomorphism, K // k // A its kernel, and

A
g // C any morphism such that g ◦ k = 1

K // k //

��

A f // //

g
��

B

{1} // C
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For any b ∈ B there is an a ∈ A such that f (a) = b. Let us show that by setting

ϕ(b) := g(a)

we get a well-defined function ϕ : B → C.

Indeed, let a and a′ be such that f (a) = f (a′). Then, for any i ∈ {1,2},

f (ti(a,a′)) = ti(f (a), f (a′)) = ti(f (a), f (a)) = 1,

hence ti(a,a′) ∈ K .

This implies that ti(g(a),g(a′)) = g(ti(a,a′)) = 1, so that g(a) = g(a′) by (3).
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In the commutative diagram

K // k //

��

A f // //

g
��

B

∃!ϕ��
{1} // C

the homomorphism ϕ such that ϕ ◦ f = g is unique by the surjectivity of f .

It follows that f = coker(k), and f is then a normal epimorphism.
Accordingly, LAlg is a normal category.
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The quasivariety LAlg is a full subcategory of the variety PreLAlg of pre-L-algebras
(also called unital cycloids in the literature), determined by

x · x = x · 1 = 1, 1 · x = x , (1)
(x · y) · (x · z) = (y · x) · (y · z) (2)

There is then an adjunction

LAlg
U
// PreLAlg,

F
⊥
oo

where the reflection A
ηA // // UF (A) = A

∼ of a pre-L-algebra A is a quotient, with

(x , y) ∈∼ ⇔ x · y = 1 = y · x .
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Exact completion of a regular category
What is the relationship between the regular category LAlg and the exact category
PreLAlg in terms of the exact completion Cex/reg of a regular C?

Given a regular category C, there is a fully faithful functor Γ: C → Cex/reg to an
exact category Cex/reg .

A functor F : C → D between regular categories is regular if it preserves
finite limits and regular epimorphisms.
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This functor Γ: C → Cex/reg satisfies the following universal property : for any
regular functor F : C → D

C Γ //

∀F !!

Cex/reg

F
��
D

there is an essentially unique regular functor F : Cex/reg → D with F ◦ Γ ∼= F .



Theorem (W. Rump, 2023)
The variety PreLAlg is the exact completion of LAlg.

A key argument in the proof of this result comes from the fact that free algebras of
LAlg are in PreLAlg.

Note that the exact completion of a normal category is not normal, in general
(M. Gran and Z. Janelidze, 2014). We observe that a new example is given here
by the variety PreLAlg = LAlg

ex/reg
.

The quotient X
∼ of a pre-L-algebra X by the congruence ∼ defined by (x , y) ∈∼ if

and only if x · y = 1 = y · x “forces” the quasivariety LAlg to be normal.
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A property that is “stable” under the exact completion is the Mal’tsev property.

Indeed, one can show that a regular C is a Mal’tsev category
if and only if Cex/reg is a Mal’tsev category.
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Given a regular Mal’tsev category C, consider a reflexive relation

R
d **

c
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in Cex/reg,

there is a regular epimorphism p : X → A with X ∈ C :

X

p
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It is then easy to complete the diagram

R

p′
����

**
44 Xoo

p
����

R
d **

c
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with R a reflexive relation on X in C, p and p′ regular epis.
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This implies that R is a symmetric relation in Cex/reg as well.



The fact that

[ C is a Mal’tsev category ] if and only if [Cex/reg is a Mal’tsev category]

is due to the fact that the Mal’tsev property is expressed in terms of relations.

Similar results can be proved for other exactness properties, such as :
- protomodularity (M. Gran and S. Lack, 2014)
- subtractivity and unitality (M. Gran and D. Rodelo, 2012).
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Both LAlg and PreLAlg are clearly subtractive (A. Ursini, 1994), with subtractive
term s(x , y) = y · x :

s(x ,1) = 1 · x = x , s(x , x) = x · x = 1.

Accordigly, some homological lemmas (such as the “upper” and “lower”
3 × 3-Lemma) hold true in LAlg.

However, the quasivariety of LAlg is not a Mal’tsev category, as we now explain.

Consider the two element L-algebra X whose multiplication is defined by

· 0 1
0 1 1
1 0 1
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The relation R = {(0,1), (1,0), (1,1)} on X is a subalgebra of the L-algebra X ×X .

The kernel pairs Eq(p1) and Eq(p2) of the projections

R
p2

��

p1

����
X X

do not permute : Eq(p1) ◦ Eq(p2) ̸= Eq(p2) ◦ Eq(p1).
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Indeed,

Eq(p1) = {((0,1), (0,1)), ((1,0), (1,0)), ((1,1), (1,1)), ((1,0), (1,1)), ((1,1), (1,0))}

and

Eq(p2) = {((0,1), (0,1)), ((1,0), (1,0)), ((1,1), (1,1)), ((0,1), (1,1)), ((1,1), (0,1))}.

Accordingly,
(1,0)Eq(p1)(1,1)Eq(p2)(0,1)

showing that
((1,0), (0,1)) ∈ Eq(p2) ◦ Eq(p1).

However,
((1,0), (0,1)) ̸∈ Eq(p1) ◦ Eq(p2), since (0,0) ̸∈ R
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Proposition
LAlg and PreLAlg are not Mal’tsev categories.

Under this respect these categories are very different from Boolean algebras,
Heyting algebras and MV-algebras.

Remark
It is interesting to note that both LAlg and PreLAlg are “permutable at 1”,
this meaning that

(x ,1) ∈ S ◦ R ⇔ (x ,1) ∈ R ◦ S,

for any pair of congruences R and S on the same algebra.

Indeed, consider the “subtractive” term s(x , y) = y · x .
If there is y such that xRyS1, then

x = 1 · x = s(x ,1)S s(x , y)R s(y , y) = y · y = 1, and (x ,1) ∈ R ◦ S.
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Commutator of ideals
A subset I of a pre-L-algebra X is an ideal of X if

1 ∈ I,
x ∈ I and x · y ∈ I =⇒ y ∈ I,
x ∈ I =⇒ (x · y) · y ∈ I,
x ∈ I =⇒ y · x ∈ I,
x ∈ I =⇒ y · (x · y) ∈ I

for every x , y ∈ X .

Ideals of a pre-L-algebra X correspond to equivalence relations R on X such that
the quotient X/R is in LAlg.



The correspondence between equivalence relations in PreLAlg and ideals is the
following :

given an equivalence relation R on a pre-L-algebra X , the associated ideal is the
equivalence class [1]R = [1] of the unit 1 ;

given an ideal I of X , the associated equivalence relation ∼ is defined by

(x , y) ∈∼ ⇔ (x · y ∈ I) ∧ (y · x ∈ I).
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Commutator of ideals
Let X be an L-algebra and I, J two ideals of X . Define their commutator [I, J] as
the smallest ideal of X for which the multiplication · in X , i.e., the mapping

µ : I × J → X/[I, J]

µ(i , j) = [i · j][I,J]

is an L-algebra morphism.

Proposition
For every pair I, J of ideals of an L-algebra X , one has

[I, J] = I ∩ J.

Proof
This will follow from the fact that, for any x ∈ I ∩ J, the equivalence class
[x ][I,J] = [x ] is the neutral element in the quotient X/[I, J] : [x ] = [1].
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Indeed, for any i ∈ I, j ∈ J, x ∈ I ∩ J one has the equality

([x ] · [x ]) · ([i] · [j]) = ([x ] · [i]) · ([x ] · [j]).

By choosing i = 1 and j = x we get

([x ] · [x ]) · ([1] · [x ]) = ([x ] · [1]) · ([x ] · [x ]),

from which it follows that [x ] = [1], and I ∩ J = [I, J] as desired.
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The result that I ∩ J = [I, J] implies that the only abelian object is 0, since
[A,A] = 0 implies that A ∩ A = A = 0.

It would be interesting to investigate - from a categorical perspective - the
commutator theory of congruences in relatively modular quasivarieties and in
relatively distributive quasivarieties, such as LAlg.
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