L-algebras, normality and exact completions

Marino Gran

joint work with Alberto Facchini and Mara Pompili

B UCLouvain

Institut de recherche
en mathématique et physique

Portuguese Category Seminar
Universidade de Coimbra



Outline

Normal categories

The quasi-variety of L-algebras

Exact completion

Commutator of ideals



Outline

Normal categories



Normal categories

The notion of normal category was introduced by Z. Janelidze (2010) :



Normal categories

The notion of normal category was introduced by Z. Janelidze (2010) :
Definition

Let C be a finitely complete category with a zero object 0. Then C is a normal
category if

e any morphism f: A — Bin C admits a factorization f = m- g, where g is a
normal epimorphism and m is a monomorphism :
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The notion of normal category was introduced by Z. Janelidze (2010) :
Definition

Let C be a finitely complete category with a zero object 0. Then C is a normal
category if

e any morphism f: A — Bin C admits a factorization f = m- g, where g is a
normal epimorphism and m is a monomorphism :

e normal epimorphisms are stable under pullbacks.
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Examples
Any homological category is normal.

In particular, the categories Grp of groups, Rng of rings, K-Alg of associative
algebras, Liek of Lie algebras, Heyt of Heyting semi-lattices, DiGrp of digroups are
all normal.

The categories Grp(Top), Hopfx ¢, C*-Alg, Set” are homological, hence normal.

In all these categories the Split Short Five Lemma holds.
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A preordered group (G, <,+) is a group G endowed with a preorder relation < on
G that is “compatible” with the group operation + :

[a<c,andb<d] = [a+b<c+d|.

A morphism f: (G, <,+) — (H, <, +) in the category PreOrdGrp of preordered
groups is a monotone group homomorphism.

PreOrdGrp is a normal category that is not homological, as shown by
M.M. Clementino, N. Martins-Ferreira and A. Montoli, 2019.
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What kind of results can one prove in a normal category ?

Noether’s Isomorphism Theorems

The first isomorphism theorem of group theory holds in any normal category C :
for any regular epimorphism f: A — B,

0 ——=Ker(f) A \ f B
A/Ker (f)
there is an isomorphism B = Kef‘(f).

This uses the property that f: A — Bis monomorphism if and only if Ker (f) = 0.



The double quotient isomorphism theorem also holds in any normal category C

(T. Everaert and M. Gran, 2013) : given normal subobjects K c L c Aofan A € C,
there is an isomorphism

A/K

A/LgL/K.



The double quotient isomorphism theorem also holds in any normal category C

(T. Everaert and M. Gran, 2013) : given normal subobjects K c L c Aofan A € C,
there is an isomorphism

A/K

A/LgL/K.

The Zassenhaus Lemma, used in the proof of the Jordan-Hdlder theorem, also
holds in any normal category (O. Ngaha and F. Sterck, 2019).
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The quasi-variety of L-algebras

The category LAlg of L-algebras will turn out to be another interesting example of
a normal category that is not homological.

Definition (W. Rump, 2008)

An L-algebra is a set X with a binary operation - and a 0-ary operation 1 such that

X-x=x-1=1,1.-x=x, (1)
(x-y)-(x-2)=(y-x)-(y-2), (2)
X-y=y-x=1= x=y (3)

for every x,y,z € X.

Remark
The identity (2) holds in most generalizations of classical logic, including
intuitionistic and many valued logic (“-” can represent an implication “—”).
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The category LAIg of L-algebras, with morphisms preserving - and 1, is clearly a
quasivariety, because of the implications

X-y=y-x=1= x=y.

Many examples of LAlg come from logic, where the binary operation x - y is
thought as an “implication” x — y.

These include Heyting algebras, Boolean algebras, MV-algebras and other
algebraic structures in logic.
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Boolean algebras
Any Boolean algebra can be seen as an L-algebra by setting x — y = x’ v y,
where x’ is the complement of x.

MV-algebras
In 2005 Gispert and Mundici characterised MV-algebras as commutative monoids
(M, -, 1) with an involution ()': M — M (the “negation”) such that 0 = 1’ satisfies
x-0=0and

x-(x-y)=y-(y-x).

Rump proved that the operation x — y = (x - y’)’ defines an L-algebra.



The constant 1, called the logical unit, is the unique element with the property that



The constant 1, called the logical unit, is the unique element with the property that

If we think of - as an “implication” these identities become
X=>x=x—-1=1,1->x=x,

where 1 can be interpreted as “truth”.
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Proposition
LAlg is a normal category.

Proof (sketch) :
Any quasivariety is a regular category, with regular epimorphisms given by
surjective homomorphisms.

The trivial algebra {1} is the zero object of LAIg.

Let us show that any surjective homomorphism is the cokernel of its kernel.
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First observe that the terms t;(x,y) = x - y and k(x, y) = y - x satisfy

hix,x)=x-x=1=b(x,Xx).

Let A—'~B bea surjective homomorphism, K=—X*~ A its kernel, and
A-2.¢C any morphism such that go k = 1

Kk oa_fo B

g
\l

{1t >0C



For any b € Bthere is an a € A such that f(a) = b. Let us show that by setting

we get a well-defined function ¢: B — C.



For any b € Bthere is an a € A such that f(a) = b. Let us show that by setting

we get a well-defined function ¢: B — C.

Indeed, let aand & be such that f(a) = f(&). Then, for any i € {1,2},
f(ti(a, &) = ti(f(a), (&) = ti(f(a). f(a)) = 1,
hence ti(a,d) € K.

This implies that ti(g(a). 9(&')) = g(ti(a, &)) = 1, so that g(a) = g(&) by (3).



In the commutative diagram
K—*-A—'sB

v igkalo
{1} > C

the homomorphism ¢ such that ¢ o f = g is unique by the surjectivity of f.



In the commutative diagram

Ly -

{1} =C

the homomorphism ¢ such that ¢ o f = g is unique by the surjectivity of f.

It follows that f = coker(k), and f is then a normal epimorphism.
Accordingly, LAlg is a normal category.
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(also called unital cycloids in the literature), determined by
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The quasivariety LAlg is a full subcategory of the variety PreLAlg of pre-L-algebras
(also called unital cycloids in the literature), determined by

X-x=x-1=1,1-x=x, (1)

There is then an adjunction

F
LAIg PrelLAlg,
U

where the reflection A—2~ UF(A) = A of a pre-L-algebra A is a quotient, with

(x,y)e~ex-y=1=y-x.
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Exact completion of a regular category
What is the relationship between the regular category LAIg and the exact category
PreLAlg in terms of the exact completion Cqgyyeq Of a regular C?

Given a regular category C, there is a fully faithful functor I': C — Cgy /e to an
exact category Ceyeg-

A functor F: C — D between regular categories is regular if it preserves
finite limits and regular epimorphisms.



This functor': C —» C satisfies the following universal property : for any

ex/reg

regular functor F: C - D

r
(C Cex/reg

F

D

there is an essentially unique regular functor F: C — Dwith Fol @ F.

ex/reg
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Theorem (W. Rump, 2023)
The variety PreLAlg is the exact completion of LAIg.

A key argument in the proof of this result comes from the fact that free algebras of
LAlg are in PreLAlg.

Note that the exact completion of a normal category is not normal, in general
(M. Gran and Z. Janelidze, 2014). We observe that a new example is given here
by the variety PreLAlg = LAlg

ex/reg )

The quotient % of a pre-L-algebra X by the congruence ~ defined by (x, y) e~ if
andonly if x -y =1 = y - x “forces” the quasivariety LAlg to be normal.



A property that is “stable” under the exact completion is the Mal'tsev property.



A property that is “stable” under the exact completion is the Mal'tsev property.

Indeed, one can show that a regular C is a Mal'tsev category
if and only if C is a Mal’tsev category.

ex/reg



Given a regular Mal'tsev category C, consider a reflexive relation

R=e= A

c

in Cex/reg,



Given a regular Mal'tsev category C, consider a reflexive relation
R=e=A
c

in Cex/reg,

there is a regular epimorphism p: X — Awith X € C:



It is then easy to complete the diagram

with R a reflexive relation on X in C, p and p’ regular epis.



Since C is a Mal'tsev category, R is a symmetric relation in C :



Since C is a Mal'tsev category, R is a symmetric relation in C :

This implies that A is a symmetric relation in Ceyeq as well.



The fact that
[ Cis a Mal'tsev category | if and only if [Cey/eq is @ Mal'tsev category]

is due to the fact that the Mal’tsev property is expressed in terms of relations.



The fact that

[ Cis a Mal'tsev category | if and only if [Cey/eq is @ Mal'tsev category]
is due to the fact that the Mal’tsev property is expressed in terms of relations.
Similar results can be proved for other exactness properties, such as :

- protomodularity (M. Gran and S. Lack, 2014)
- subtractivity and unitality (M. Gran and D. Rodelo, 2012).
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Both LAlg and PreLAlg are clearly subtractive (A. Ursini, 1994), with subtractive
term s(x,y) =y - x:

s(x,1)=1-x=x, s(x,x)=x-x=1.

Accordigly, some homological lemmas (such as the “upper” and “lower”
3 x 3-Lemma) hold true in LAlg.

However, the quasivariety of LAlg is not a Mal’tsev category, as we now explain.

Consider the two element L-algebra X whose multiplication is defined by




The relation R = {(0,1),(1,0),(1,1)} on X is a subalgebra of the L-algebra X x X.



The relation R = {(0,1),(1,0),(1,1)} on X is a subalgebra of the L-algebra X x X.

The kernel pairs Eq(p1) and Eq(p2) of the projections

R
N\
X X

do not permute : Eq(p1) o Eq(p2) # Eq(p2) o Eq(p1).



Indeed,

Eq(ps) = {((0,1),(0,1)),((1,0),(1,0)),((1,1),(1,1)),((1,0), (1,1)), ((1,1),(1,0))}

and
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Indeed,
Eq(p1) = {((0,1),(0,1)),((1,0),(1,0)),((1,1),(1,1)),((1,0),(1,1)),((1,1),(1,0))}
and

Eq(p2) = {((0,1),(0,1)),((1,0),(1,0)),((1,1),(1,1)),((0, 1), (1,1)), (1, 1), (0, 1))}

Accordingly,

showing that
((1,0),(0,1)) € Eq(p2) o Eq(p4).

However,
((1,0),(0,1)) ¢ Eq(p1) o Eq(p2), since (0,0) ¢ R
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Under this respect these categories are very different from Boolean algebras,
Heyting algebras and MV-algebras.



Proposition
LAlg and PreLAlg are not Mal’tsev categories.

Under this respect these categories are very different from Boolean algebras,
Heyting algebras and MV-algebras.

Remark
It is interesting to note that both LAlg and PreLAlg are “permutable at 17,
this meaning that

(x,1)e SoR< (x,1) € Ro S,

for any pair of congruences R and S on the same algebra.

Indeed, consider the “subtractive” term s(x,y) =y - x.
If there is y such that xRyS1, then

x=1-x=s8(x,1)Ss(x,y)Rs(y,y)=y-y=1, and (x,1)€ RoS.
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Commutator of ideals
A subset | of a pre-L-algebra X is an ideal of X if

1el,

xelandx-yel = yel,
xel = (x-y)-yel,
xel = y-xel,

xel = y-(x-y)el

for every x,y € X.

ldeals of a pre-L-algebra X correspond to equivalence relations R on X such that
the quotient X/R is in LAlg.
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The correspondence between equivalence relations in PreLAlg and ideals is the
following :

given an equivalence relation R on a pre-L-algebra X, the associated ideal is the
equivalence class [1]7 = [1] of the unit 1;

given an ideal / of X, the associated equivalence relation ~ is defined by

(x,y)e~ < (x-yehAn(y-xel).



Commutator of ideals
Let X be an L-algebra and /, J two ideals of X. Define their commutator [/, J] as
the smallest ideal of X for which the multiplication - in X, i.e., the mapping
prlxdJd— X/[1,J]
u(ig) = [i-
is an L-algebra morphism.
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For every pair /,J of ideals of an L-algebra X, one has

[1,J] = InJ.



Commutator of ideals
Let X be an L-algebra and /, J two ideals of X. Define their commutator [/, J] as
the smallest ideal of X for which the multiplication - in X, i.e., the mapping
prlxdJd— X/[1,J]
pinj) = 1i- ]
is an L-algebra morphism.
Proposition
For every pair /, J of ideals of an L-algebra X, one has

[I,J] =1Ind.
Proof

This will follow from the fact that, for any x € / N1 J, the equivalence class
[x]l"I = [x] is the neutral element in the quotient X /[/,J] : [x] = [1].



Indeed, forany i € I, j € J, x € INnJ one has the equality

(X1 - D)) - (1 - UD) = (- 1) - (BT - )



Indeed, forany i € I, j € J, x € INnJ one has the equality

(X1 - D)) - (1 - UD) = (- 1) - (BT - )

By choosing i = 1 and j = x we get

(X1 IxD) - (O] - D) = (XD - 0] - (DD - [xD),

from which it follows that [x] = [1], and /N J = [/, J] as desired.



The result that /N J = [/, J] implies that the only abelian object is 0, since
[A,A] = 0 impliesthat ANA=A=0.



The result that /N J = [/, J] implies that the only abelian object is 0, since
[A,A] = 0 impliesthat ANA=A=0.

It would be interesting to investigate - from a categorical perspective - the
commutator theory of congruences in relatively modular quasivarieties and in
relatively distributive quasivarieties, such as LAIg.
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