CAUCHY COMPLETENESS FOR NORMED CATEGORIES

Dirk Hofmann
Based on joint work with Maria Manuel Clementino and Walter Tholen.

Coimbra, September 14, 2023
CIDMA, Department of Mathematics, University of Aveiro, Portugal
dirk@ua.pt, http://sweet.ua.pt/dirk

1. BACKGROUND

Reference

Lawvere, F. William (1973). "Metric spaces, generalized logic, and closed categories". In: Rendiconti del Seminario Matemàtico e Fisico di Milano 43.(1), pp. 135-166. Republished in: Reprints in Theory and Applications of Categories, No. 1 (2002), 1-37.

Reference

(19WVERE, F. William (1973). "Metric spaces, generalized logic, and closed categories". In: Rendiconti del Seminario Matemàtico e Fisico di Milano 43.(1), pp. 135-166. Republished in: Reprints in Theory and Applications of Categories, No. 1 (2002), 1-37.

Neeman (2020)

"... To the best of my knowledge the myriad applications have essentially all gone in directions totally different from the one we will be pursuing in this note. There is only a handful of exceptions ..."

Neeman, Amnon (2020). "Metrics on triangulated categories". In: Journal of Pure and Applied Algebra 224.(4), p. 106206.

Reference

國 LaWVERE, F. WILLIAM (1973). "Metric spaces, generalized logic, and closed categories". In: Rendiconti del Seminario Matemàtico e Fisico di Milano 43.(1), pp. 135-166. Republished in: Reprints in Theory and Applications of Categories, No. 1 (2002), 1-37.

The notion of «normed category» ...
Arrows have "lengths"

Reference

國 LaWVERE, F. WILLIAM (1973). "Metric spaces, generalized logic, and closed categories". In: Rendiconti del Seminario Matemàtico e Fisico di Milano 43.(1), pp. 135-166. Republished in: Reprints in Theory and Applications of Categories, No. 1 (2002), 1-37.

The notion of «normed category» ...
Arrows have "lengths" subject to

$$
0 \geqslant|1|, \quad|f|+|g| \geqslant|g f| .
$$

AN EXAMPLE

Lawvere (1973)

The notion of «normed category» can also be related to the (non-symmetric) Hausdorff metric

$$
2^{X}(A, B)=\sup _{a \in A} \inf _{b \in B} X(a, b) \ldots
$$

Let X be a metric space. Define the normed category $H(X)$ as follows.

AN EXAMPLE

Lawvere (1973)

The notion of «normed category» can also be related to the (non-symmetric) Hausdorff metric

$$
2^{X}(A, B)=\sup _{a \in A} \inf _{b \in B} X(a, b) \ldots
$$

Example

Let X be a metric space. Define the normed category $H(X)$ as follows.

- Objects: subsets of X.

An arrow $f: A \longrightarrow B$ in $H(X)$ is a map from A to B, with "norm"

AN EXAMPLE

Lawvere (1973)
The notion of «normed category» can also be related to the (non-symmetric) Hausdorff metric

$$
2^{X}(A, B)=\sup _{a \in A} \inf _{b \in B} X(a, b) \ldots
$$

Example

Let X be a metric space. Define the normed category $H(X)$ as follows.

- Objects: subsets of X.
- An arrow $f: A \longrightarrow B$ in $H(X)$ is a map from A to B, with "norm"

AN EXAMPLE

Lawvere (1973)

The notion of «normed category» can also be related to the (non-symmetric) Hausdorff metric

$$
2^{X}(A, B)=\sup _{a \in A} \inf _{b \in B} X(a, b) \ldots
$$

Example

Let X be a metric space. Define the normed category $H(X)$ as follows.

- Objects: subsets of X.
- An arrow $f: A \longrightarrow B$ in $H(X)$ is a map from A to B, with "norm"

$$
|f|=\sup _{a \in A} X(a, f a) .
$$

(Kubiś, WIEStAW (2017). Categories with norms. Tech. rep. arXiv: 1705.10189 [math.CT].

- LaWvere, F. William (1973). "Metric spaces, generalized logic, and closed categories". In: Rendiconti del Seminario Matemàtico e Fisico di Milano 43.(1), pp. 135-166. Republished in: Reprints in Theory and Applications of Categories, No. 1 (2002), 1-37.
目 Luckhardt, DANIEL and InSALL, MATT (2021). Norms on Categories and Analogs of the Schröder-Bernstein Theorem. Tech. rep. math.CT: 2105.06832 (arXiv).

囯 NeEMAN, AMNON (2020). "Metrics on triangulated categories". In: Journal of Pure and Applied Algebra 224.(4), p. 106206. arXiv: 1901.01453 [math.CT].

Definition

A normed category \mathbb{X} is an ordinary category with (small) normed hom-sets
so that

$$
0 \geqslant\left|1_{x}\right|, \quad|f|+|g| \geqslant|g f| .
$$

A functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ is normed whenever

$$
|f| \geqslant|F f| .
$$

Remark (Lawvere (1973))
We will leave as an exercise for the reader to define a closed category
$\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathrm{R})$-valued categories
and a «closed functor» inf: $\mathcal{S}(\mathbf{R}) \longrightarrow \mathbf{R}$ which induces the passage from
any «normed category» to a metric space with the same objects.

Definition

A normed category \mathbb{X} is an ordinary category with (small) normed hom-sets
so that

$$
0 \geqslant\left|1_{x}\right|, \quad|f|+|g| \geqslant|g f| .
$$

A functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ is normed whenever

$$
|f| \geqslant|F f| .
$$

Remark (Lawvere (1973))

We will leave as an exercise for the reader to define a closed category $\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathbf{R})$-valued categories and a «closed functor» inf: $\mathcal{S}(\mathbf{R}) \longrightarrow \mathbf{R}$ which induces the passage from any «normed category» to a metric space with the same objects.

Definition

A \mathcal{V}-normed category \mathbb{X} is an ordinary category with (small) normed hom-sets
so that

$$
k \leq\left|1_{x}\right|, \quad|f| \otimes|g| \leq|g f| .
$$

A functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ is \mathcal{V}-normed whenever

$$
|f| \leq|F f| .
$$

Remark (Lawvere (1973))

We will leave as an exercise for the reader to define a closed category $\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathbf{R})$-valued categories and a «closed functor» inf: $\mathcal{S}(\mathbf{R}) \longrightarrow \mathbf{R}$ which induces the passage from any «normed category» to a metric space with the same objects.

Definition

$A \mathcal{V}$-normed set is a set A that comes with a function $|-|: A \longrightarrow \mathcal{V}$, and a \mathcal{V}-normed map $(A,|-|) \longrightarrow(B,|-|)$ is a mapping $f: A \longrightarrow B$ satisfying $|a| \leq|f a|$ for all $a \in A$.

This defines the category Set $/ / \nu$.
Betti, Renato and Galuzzi, Massimo (1975). "Categorie normate". In:
Bollettino dell'Unione Matematica Italiana 4.(11), pp. 66-75.

Remark
V-normed Category = Category enriched in Set//V.

Definition

$A \mathcal{V}$-normed set is a set A that comes with a function $|-|: A \longrightarrow \mathcal{V}$, and a \mathcal{V}-normed map $(A,|-|) \longrightarrow(B,|-|)$ is a mapping $f: A \longrightarrow B$ satisfying $|a| \leq|f a|$ for all $a \in A$.

This defines the category Set $/ / \nu$.
Betti, Renato and Galuzzi, Massimo (1975). "Categorie normate". In:
Bollettino dell'Unione Matematica Italiana 4.(11), pp. 66-75.

Remark

\mathcal{V}-normed Category $=$ Category enriched in Set $/ / \mathcal{V}$.

THE MONOIDAL CLOSED CATEGORY Set $/ / \mathcal{V}$

Theorem

The category Set $/ / \mathcal{V}$ is symmetric monoidal-closed.
Proof.

Notation

W/e simny mute
instead of $(\operatorname{Set} / / \mathcal{V})$-Cat respectively $(\operatorname{Set} / / \mathcal{V})$-CAT.

THE MONOIDAL CLOSED CATEGORY Set $/ / \mathcal{V}$

Theorem

The category Set $/ / \mathcal{V}$ is symmetric monoidal-closed.

Proof.

- For \mathcal{V}-normed sets A and B, their tensor product $A \otimes B$ is carried by the cartesian product $A \times B$, normed by $|(a, b)|=|a| \otimes|b|$ in \mathcal{V}.

The tensor-neutral set E is the set $\{*\}$ normed by $|*|=k$.

- $[A, B]$ has carrier set $\operatorname{Set}(A, B)$ (all mappings $\varphi: A \longrightarrow B$), with their
norm defined by

Notation

We simny write

instead of $(\operatorname{Set} / / \mathcal{V})$-Cat respectively $(\operatorname{Set} / / \mathcal{V})$-CAT.

THE MONOIDAL CLOSED CATEGORY Set $/ / \mathcal{V}$

Theorem

The category Set $/ / \mathcal{V}$ is symmetric monoidal-closed.

Proof.

- For \mathcal{V}-normed sets A and B, their tensor product $A \otimes B$ is carried by the cartesian product $A \times B$, normed by $|(a, b)|=|a| \otimes|b|$ in \mathcal{V}.
- The tensor-neutral set E is the set $\{*\}$ normed by $|*|=k$.
norm defined by

Notation

We simpy write

instead of $(\operatorname{Set} / / \mathcal{V})$-Cat respectively $(\operatorname{Set} / / \mathcal{V})$-CAT.

Theorem

The category Set $/ / \mathcal{V}$ is symmetric monoidal-closed.

Proof.

- For \mathcal{V}-normed sets A and B, their tensor product $A \otimes B$ is carried by the cartesian product $A \times B$, normed by $|(a, b)|=|a| \otimes|b|$ in \mathcal{V}.
- The tensor-neutral set E is the set $\{*\}$ normed by $|*|=k$.
- $[A, B]$ has carrier set $\operatorname{Set}(A, B)$ (all mappings $\varphi: A \longrightarrow B$), with their norm defined by

$$
|\varphi|=\bigwedge_{a \in A}[|a|,|\varphi a|] .
$$

Notation

We simpy write

Theorem

The category Set $/ / \mathcal{V}$ is symmetric monoidal-closed.

Proof.

- For \mathcal{V}-normed sets A and B, their tensor product $A \otimes B$ is carried by the cartesian product $A \times B$, normed by $|(a, b)|=|a| \otimes|b|$ in \mathcal{V}.
- The tensor-neutral set E is the set $\{*\}$ normed by $|*|=k$.
- $[A, B]$ has carrier set $\operatorname{Set}(A, B)$ (all mappings $\varphi: A \longrightarrow B$), with their norm defined by

$$
|\varphi|=\bigwedge_{a \in A}[|a|,|\varphi a|] .
$$

Notation

We simpy write

$$
\mathbf{C a t} / / \mathcal{V} \text { and } \mathbf{C A T} / / \mathcal{V}
$$

instead of $($ Set $/ / \mathcal{V})$-Cat respectively $($ Set $/ / \mathcal{V})$-CAT.

EXAMPLES OF \mathcal{V}-NORMED CATEGORIES

Examples

- For $\mathcal{V}=1$ the terminal quantale, a 1 -normed category is just an ordinary category.

For the Boolean quantale $\mathcal{V}=2$, a 2 -normed category \mathbb{X} can be described as a category \mathbb{X} that comes with a distinguished class \mathcal{M} of morphisms which is closed under composition and contains all identity morphisms.

The 2-normed functors preserve the distinguished morphisms. Me may concider the categnry Set as [n, mi-normed.

Hence $|f|$ may be seen as a (predominantly finitary) measure of the degree to which f fails to be surjective.

Examples

- For $\mathcal{V}=\mathbf{1}$ the terminal quantale, a 1 -normed category is just an ordinary category.
- For the Boolean quantale $\mathcal{V}=\mathbf{2}$, a 2-normed category \mathbb{X} can be described as a category \mathbb{X} that comes with a distinguished class \mathcal{M} of morphisms which is closed under composition and contains all identity morphisms.
The 2-normed functors preserve the distinguished morphisms.
We may consider the category Set as $[0, \infty]$-normed:

Hence $|f|$ may be seen as a (predominantly finitary) measure of the degree to which f fails to be surjective.

Examples

- For $\mathcal{V}=\mathbf{1}$ the terminal quantale, a 1 -normed category is just an ordinary category.
- For the Boolean quantale $\mathcal{V}=\mathbf{2}$, a 2-normed category \mathbb{X} can be described as a category \mathbb{X} that comes with a distinguished class \mathcal{M} of morphisms which is closed under composition and contains all identity morphisms.
The $\mathbf{2}$-normed functors preserve the distinguished morphisms.
- We may consider the category Set as $[0, \infty]$-normed:

$$
|f: X \longrightarrow Y|=\text { "size of } Y \backslash f(X)^{\prime \prime} \in \mathbb{N} \cup\{\infty\}
$$

Hence $|f|$ may be seen as a (predominantly finitary) measure of the degree to which f fails to be surjective.

Examples

- The monoidal functor Set//V\longrightarrow Set ("forget norm") induces the forgetful functor

$$
\text { Cat } / / \mathcal{V} \longrightarrow \text { Cat. }
$$

Note. This functor is topological.
The lax mondoidal functor
induces the functor

Examples

- The monoidal functor Set// $\mathcal{V} \longrightarrow$ Set ("forget norm") induces the forgetful functor

$$
\text { Cat } / / \mathcal{V} \longrightarrow \text { Cat. }
$$

Note. This functor is topological.

- The lax mondoidal functor

$$
\text { s: Set } / / \mathcal{V} \longrightarrow \mathcal{V}, \quad A \longmapsto \bigvee_{a \in A}|a|
$$

induces the functor

$$
\text { s: Cat } / / \mathcal{V} \longrightarrow \mathcal{V} \text {-Cat, } \quad \mathbb{X} \longmapsto\left(\text { objects of } \mathbb{X}, s \mathbb{X}(x, y)=\bigvee_{f: x \rightarrow y}|f|\right)
$$

Note. For every metric space X,
$s(H(X))=$ the usual (non-symm etric) Hausdorff metric space.

Examples

- The monoidal functor Set// $\mathcal{V} \longrightarrow$ Set ("forget norm") induces the forgetful functor

$$
\text { Cat } / / \mathcal{V} \longrightarrow \text { Cat. }
$$

Note. This functor is topological.

- The lax mondoidal functor

$$
\text { s: Set } / / \mathcal{V} \longrightarrow \mathcal{V}, \quad A \longmapsto \bigvee_{a \in A}|a|
$$

induces the functor

$$
s: \text { Cat } / / \mathcal{V} \longrightarrow \mathcal{V} \text {-Cat, } \quad \mathbb{X} \longmapsto\left(\text { objects of } \mathbb{X}, s \mathbb{X}(x, y)=\bigvee_{f: x \rightarrow y}|f|\right)
$$

Note. For every metric space X,
$s(H(X))=$ the usual (non-symmetric) Hausdorff metric space.

Examples

- The functor $\mathrm{s}:$ Set $/ / \mathcal{V} \longrightarrow \mathcal{V}$ has a right adjoint

$$
i: \mathcal{V} \longrightarrow \operatorname{Set} / / \mathcal{V}, \quad v \longmapsto(\{\star\},|\star|=v)
$$

which induces the functor
$i: \mathcal{V}$-Cat $\longrightarrow \mathbf{C a t} / / \mathcal{V}, \quad i(X)=\mathbb{X}$ indiscrete with $|(x, y)|=X(x, y)$
which is right adjoint to s: Cat $/ / \mathcal{V} \longrightarrow \mathcal{V}$-Cat.

Remark

There is also the "forgetful functor"

$$
(-)_{0}: \mathbf{C a t} / / \mathcal{V} \rightarrow \mathbf{C a t}
$$

represented by the tensor-neutral element E.
That is, $(-)_{\circ}$ sends a small \mathcal{V}-normed category \mathbb{X} to the category \mathbb{X} 。 with the same objects as \mathbb{X}, but with only those morphisms $f: x \longrightarrow y$ in \mathbb{X} with $k \leq|f|$.

THE NORMED CATEGORY Set //V

Recall

For every closed symmetric monoidal category \mathcal{W},

$$
[-,-]: \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W}
$$

makes \mathcal{W} a \mathcal{W}-category.
Example
Set.//V hernmes a V-normed category whose objects are V-normed sets, but whose hom-sets of morphisms $A \rightarrow B$ are given by the internal hom $[A, B]$ of Set $/ / \mathcal{V}$, that is,

To avoid (orinerease) confusion, we write to denote this normed
category.

Remark

$(\text { Set. } \| \mathcal{V})_{n}=$ Set $/ \mathcal{V}$

THE NORMED CATEGORY Set //V

Recall

For every closed symmetric monoidal category \mathcal{W},

$$
[-,-]: \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W}
$$

makes \mathcal{W} a \mathcal{W}-category.

Example

Set $/ / \mathcal{V}$ becomes a \mathcal{V}-normed category whose objects are \mathcal{V}-normed sets, but whose hom-sets of morphisms $A \rightarrow B$ are given by the internal hom $[A, B]$ of Set $/ / \mathcal{V}$, that is, by all Set-maps $A \rightarrow B$.

To avoid (or increase) confusion, we write Set $\| \mathcal{V}$ to denote this normed category.

Remark

THE NORMED CATEGORY Set//V

Recall

For every closed symmetric monoidal category \mathcal{W},

$$
[-,-]: \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W}
$$

makes \mathcal{W} a \mathcal{W}-category.

Example

Set $/ / \mathcal{V}$ becomes a \mathcal{V}-normed category whose objects are \mathcal{V}-normed sets, but whose hom-sets of morphisms $A \rightarrow B$ are given by the internal hom $[A, B]$ of Set $/ / \mathcal{V}$, that is, by all Set-maps $A \rightarrow B$.

To avoid (or increase) confusion, we write Set $\| \mathcal{V}$ to denote this normed category.

Remark

$(\operatorname{Set} \| \mathcal{V})_{\circ}=\operatorname{Set} / / \mathcal{V}$

2. CONVERGENCE FOR NORMED CATEGORIES

Definition (Bonsangue, Breugel, and Rutten (1998))

A sequence $s=\left(x_{n}\right)$ in a metric space X is forward Cauchy whenever

$$
\inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N} X\left(x_{m}, x_{n}\right)=0
$$

An element $x \in X$ is a forward limit of s whenever

$$
X(x, y)=\inf _{N \in \mathbb{N}} \sup _{n \geq N} X\left(x_{n}, y\right)
$$

for all $y \in X$.

Reference

Bonsangue, Marcello M., Breugel, Franck van, and Rutten, Jan (1998). "Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding". In: Theoretical Computer Science 193.(1-2), pp. 1-51.

Definition (Bonsangue, Breugel, and Rutten (1998))

A sequence $s=\left(x_{n}\right)$ in a metric space X is forward Cauchy whenever

$$
\inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N} X\left(x_{m}, x_{n}\right)=0
$$

An element $x \in X$ is a forward limit of s whenever

$$
X(x, y)=\inf _{N \in \mathbb{N}} \sup _{n \geq N} X\left(x_{n}, y\right)
$$

for all $y \in X$.

Theorem

A metric space X is net-wise forward Cauchy complete if and only if X has all weighted colimits of flat weights $\psi: X \rightarrow 1$.

Vickers, Steven (2005). "Localic completion of generalized metric spaces. I". In: Theory and Applications of Categories 14.(15), pp. 328-356.

Definition (Kubiś (2017))

Let $S=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the normed category \mathbb{X}.

Definition (Kubiś (2017))

Let $S=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the normed category \mathbb{X}.

- Then s is Cauchy whenever $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N}\left|s_{m, n}\right|$.
ordinary category \mathbb{X} so that $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq N}\left|\gamma_{n}\right|$.

Remark

Definition (Kubiś (2017))

Let $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the normed category \mathbb{X}.

- Then s is Cauchy whenever $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N}\left|s_{m, n}\right|$.
- A limit of the diagram s is given by a colimit $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ of s in the ordinary category \mathbb{X} so that $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq N}\left|\gamma_{n}\right|$.

Remark

Definition (Kubiś (2017))

Let $S=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the normed category \mathbb{X}.

- Then s is Cauchy whenever $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N}\left|s_{m, n}\right|$.
- A limit of the diagram s is given by a colimit $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ of s in the ordinary category \mathbb{X} so that $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq N}\left|\gamma_{n}\right|$.

Remark

- Colimits are not unique up to 0-isomorphisms.
- Kubiś constructs a Cauchy completion with a "kind of" universal property,
- proves a fixp oint theorem, and
- has a further condition in the definition of normed category which, for a metric space, is equivalent to symmetry.

Definition (Kubiś (2017))

Let $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the normed category \mathbb{X}.

- Then s is Cauchy whenever $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N}\left|s_{m, n}\right|$.
- A limit of the diagram s is given by a colimit $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ of s in the ordinary category \mathbb{X} so that $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq N}\left|\gamma_{n}\right|$.

Remark

- Colimits are not unique up to 0-isomorphisms.
- Kubiś constructs a Cauchy completion with a "kind of" universal property,
- proves a fixpoint theorem, and
- has a further condition in the definition of normed category which, for a metric space, is equivalent to symmetry.

Definition (Kubiś (2017))

Let $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the normed category \mathbb{X}.

- Then s is Cauchy whenever $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N}\left|s_{m, n}\right|$.
- A limit of the diagram s is given by a colimit $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ of s in the ordinary category \mathbb{X} so that $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq N}\left|\gamma_{n}\right|$.

Remark

- Colimits are not unique up to 0-isomorphisms.
- Kubiś constructs a Cauchy completion with a "kind of" universal property,
- proves a fixpoint theorem, and
- has a further condition in the definition of normed category which, for a metric space, is equivalent to symmetry.

Definition (Kubiś (2017))

Let $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the normed category \mathbb{X}.

- Then s is Cauchy whenever $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N}\left|s_{m, n}\right|$.
- A limit of the diagram s is given by a colimit $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ of s in the ordinary category \mathbb{X} so that $0 \geqslant \inf _{N \in \mathbb{N}} \sup _{n \geq N}\left|\gamma_{n}\right|$.

Remark

- Colimits are not unique up to 0-isomorphisms.
- Kubiś constructs a Cauchy completion with a "kind of" universal property,
- proves a fixpoint theorem, and
- has a further condition in the definition of normed category which, for a metric space, is equivalent to symmetry.

Definition

Let $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the \mathcal{V}-normed category \mathbb{X}. An object x is a normed colimit of s in \mathbb{X} if

- x is a colimit of s in the ordinary category \mathbb{X}, with a colimit cocone $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ so that
- for all objects y in \mathbb{X}, the canonical Set-bijection is an isomorphism in Set $/ / \mathcal{V}$, that is

Definition

Let $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the \mathcal{V}-normed category \mathbb{X}. An object x is a normed colimit of s in \mathbb{X} if

- x is a colimit of s in the ordinary category \mathbb{X}, with a colimit cocone $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ so that
- for all objects y in \mathbb{X}, the canonical Set-bijections

$$
\operatorname{Nat}(s, \Delta y) \longrightarrow \mathbb{X}(x, y)
$$

is an isomorphism in Set $/ / \mathcal{V}$, that is

$$
|f|=\bigwedge_{n \in \mathbb{N}}\left|f \cdot \gamma_{n}\right| .
$$

Definition

Let $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ be a sequence in the \mathcal{V}-normed category \mathbb{X}. An object x is a normed colimit of s in \mathbb{X} if

- x is a colimit of s in the ordinary category \mathbb{X}, with a colimit cocone $\left(x_{n} \xrightarrow{\gamma_{n}} x\right)$ so that
- for all objects y in \mathbb{X}, the canonical Set-bijections

$$
\operatorname{Nat}\left(\left.s\right|_{N}, \Delta y\right) \longrightarrow \mathbb{X}(x, y)
$$

form a colimit in Set $/ / \mathcal{V}$, that is

$$
|f|=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|f \cdot \gamma_{n}\right| .
$$

Lemma

For any cocone $\alpha: s \longrightarrow \Delta x$ over a sequence $s=\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{X}, tfae:
(i) $k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|\alpha_{n}\right|$,
(ii) $\left|1_{X}\right| \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|\alpha_{n}\right|$,
(iii) $|f| \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|f \cdot \alpha_{n}\right|$, for every morphism $f: x \rightarrow y$ in \mathbb{X}.

Corollary

A normed col imit of a sequence in a V-normed category \mathbb{X} is uniquely determined up to an isomorphism in

Corollary

Let \mathbb{X} be a \mathcal{V}.normed category satisfying the condition $|f| \geq|f \cdot h| \otimes|h|$ for all composable morphisms h and f.
Then an object x is a normed colimit of a sequence s in \mathbb{X} if, and only if, x is an ordinary colimit of s with a colimit cocone that is a

Lemma

For any cocone $\alpha: s \longrightarrow \Delta x$ over a sequence $s=\left(x_{n}\right)_{n \in \mathbb{N}}$ in $\mathbb{X}, t f a e:$
(i) $k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|\alpha_{n}\right|$,
(ii) $\left|1_{x}\right| \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|\alpha_{n}\right|$,
(iii) $|f| \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|f \cdot \alpha_{n}\right|$, for every morphism $f: x \rightarrow y$ in \mathbb{X}.

Corollary

A normed colimit of a sequence in a \mathcal{V}-normed category \mathbb{X} is uniquely determined up to an isomorphism in \mathbb{X}_{0}.

Corollary

Lot \mathbb{Y} he a V-normed category satisfying the condition

$$
|f| \geq|f \cdot h| \otimes|h| \quad \text { for all composable morphisms } h \text { and } f \text {. }
$$

Then an object x is a normed colimit of a sequence s in \mathbb{X} if, and only if, x is an ordinary colimit of s with a colimit cocone that is a

Lemma

For any cocone $\alpha: s \longrightarrow \Delta x$ over a sequence $s=\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{X}, tfae:
(i) $k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|\alpha_{n}\right|$,
(ii) $\left|1_{X}\right| \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|\alpha_{n}\right|$,
(iii) $|f| \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N}\left|f \cdot \alpha_{n}\right|$, for every morphism $f: x \rightarrow y$ in \mathbb{X}.

Corollary

A normed colimit of a sequence in a \mathcal{V}-normed category \mathbb{X} is uniquely determined up to an isomorphism in \mathbb{X}_{0}.

Corollary

Let \mathbb{X} be a \mathcal{V}-normed category satisfying the condition

$$
|f| \geq|f \cdot h| \otimes|h| \quad \text { for all composable morphisms } h \text { and } f \text {. }
$$

Then an object x is a normed colimit of a sequence $\sin \mathbb{X}$ if, and only if, x is an ordinary colimit of s with a colimit cocone that is a k-cocone.

ANALYSING FURTHER

49

Remark

if $\mathbb{X}=i(X)$ is given by a \mathcal{V}-category X, then the condition of the page before means equivalently that X is symmetric.

Remark

The dual eondition reads as

$$
|f| \geq|g \cdot f| \otimes|g| \quad \text { for all composable morphisms } f \text { and } g \text {, }
$$

as above, for $\mathbb{X}=i(X)$ this means that X is symmetric.

ANALYSING FURTHER

Remark

if $\mathbb{X}=i(X)$ is given by a \mathcal{V}-category X, then the condition of the page before means equivalently that X is symmetric.

Remark

The dual condition reads as

$$
|f| \geq|g \cdot f| \otimes|g| \quad \text { for all composable morphisms } f \text { and } g,
$$

as above, for $\mathbb{X}=i(X)$ this means that X is symmetric.
For $\mathcal{V}=[0, \infty]$, Kubis included this condition in the definition of normed
category; however, this does not make colimits unique up to a
0 -isomorphism.

Remark

if $\mathbb{X}=i(X)$ is given by a \mathcal{V}-category X, then the condition of the page before means equivalently that X is symmetric.

Remark

The dual condition reads as

$$
|f| \geq|g \cdot f| \otimes|g| \quad \text { for all composable morphisms } f \text { and } g,
$$

as above, for $\mathbb{X}=i(X)$ this means that X is symmetric.
For $\mathcal{V}=[0, \infty]$, Kubiś included this condition in the definition of normed category; however, this does not make colimits unique up to a 0 -isomorphism.

Definition

For a \mathcal{V}-normed category \mathbb{X}, we say that

- a sequence $s=\left(x_{m} \xrightarrow{s_{m, n}} x_{n}\right)_{m \leq n \in \mathbb{N}}$ in \mathbb{X} is Cauchy if

$$
k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq m \geq N}\left|s_{m, n}\right|,
$$

- and \mathbb{X} is Cauchy cocomplete if every Cauchy sequence in \mathbb{X} has a normed colimit in \mathbb{X}.

Example

We consider the case $\mathbb{X}=i X$ for a metric space X.
The sequence $s=\left(x_{n}\right)$ is Cauchy in \mathbb{X} if, and only if,
if and only if s is forward Cauchy in X.
Since the eategomy \mathbb{Y} is indiscrete, any eacone $\left(X_{n} \longrightarrow X\right)$ nel is a colimit
cocone.
Finally, x is a normed colimit of s if, and only if,

for all $y \in X$, which means that x is a forward limit of s.

Example

We consider the case $\mathbb{X}=i X$ for a metric space X.
The sequence $s=\left(x_{n}\right)$ is Cauchy in \mathbb{X} if, and only if,

$$
\inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N} X\left(x_{m}, x_{n}\right)=0
$$

if and only if s is forward Cauchy in X.
Since the category \mathbb{X} is indiscrete, any cocone $\left(x_{n} \longrightarrow x\right)_{n \in \mathbb{N}}$ is a colimit
cocone.
rinally, x is a normed colimit of s if, and only if,
for all $y \in X$, which means that x is a forward limit of s.

Example

We consider the case $\mathbb{X}=i X$ for a metric space X.
The sequence $s=\left(x_{n}\right)$ is Cauchy in \mathbb{X} if, and only if,

$$
\inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N} X\left(x_{m}, x_{n}\right)=0
$$

if and only if s is forward Cauchy in X.
Since the category \mathbb{X} is indiscrete, any cocone $\left(x_{n} \longrightarrow x\right)_{n \in \mathbb{N}}$ is a colimit cocone.

Finally, x is a normed colimit of s if, and only if,
for all $y \in X$, which means that x is a forward limit of s.

Example

We consider the case $\mathbb{X}=i X$ for a metric space X.
The sequence $s=\left(x_{n}\right)$ is Cauchy in \mathbb{X} if, and only if,

$$
\inf _{N \in \mathbb{N}} \sup _{n \geq m \geq N} X\left(x_{m}, x_{n}\right)=0
$$

if and only if s is forward Cauchy in X.
Since the category \mathbb{X} is indiscrete, any cocone $\left(x_{n} \longrightarrow x\right)_{n \in \mathbb{N}}$ is a colimit cocone.

Finally, x is a normed colimit of s if, and only if,

$$
X(x, y)=\inf _{N \in \mathbb{N}} \sup _{n \geq N} X\left(x_{n}, y\right)
$$

for all $y \in X$, which means that x is a forward limit of s.

Assumption

In the sequel we consider a quantale \mathcal{V} satisfying one of the following conditions.
(A) k is approximated from totally below, that is:

$$
k=\bigvee\{u \in \mathcal{V} \mid u \ll k\}
$$

where $u \ll k$ means that, whenever $k \leq \bigvee_{i \in I} v_{i}$, then $u \leq v_{i}$ for some $i \in I$.
(B) $k \wedge$-distributes over arbitrary joins, that is:

$$
k \wedge \bigvee_{i \in I} v_{i}=\bigvee_{i \in I} k \wedge v_{i}
$$

Proposition

The \mathcal{V}-normed category $[\mathbb{X}, S e t \| \mathcal{V}]$ is Cauchy cocomplete, for every small \mathcal{V}-normed category \mathbb{X}.

Proof.
For a Cauchy sequence $\sigma=\left(P_{m} \xrightarrow[\rightarrow]{\rightarrow} P_{n}\right)_{m \leq n \in \mathbb{N}}$ in $[\mathbb{X}$, Set $\mid \nu]$.

Proposition

The \mathcal{V}-normed category $[\mathbb{X}, S e t \| \mathcal{V}]$ is Cauchy cocomplete, for every small \mathcal{V}-normed category \mathbb{X}.

Proof.

For a Cauchy sequence $\sigma=\left(P_{m} \xrightarrow{\sigma_{m, n}} P_{n}\right)_{m \leq n \in \mathbb{N}}$ in $[\mathbb{X}$, Set $\| \mathcal{V}]$.

1. Take its colimit $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$.
2. For every object x of $\mathbb{X}, n \in \mathbb{N}$ and $c \in P x$, put
3. $P: \mathbb{X} \rightarrow$ Set $\| \mathcal{V}$ is indeed a normed functor.

Therefore $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a colimit in the category $[\mathbb{X}$, Set $\mid \nu]$.
4. The difficult part is to get that $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a k-cocone.

Proposition

The \mathcal{V}-normed category $[\mathbb{X}, S e t \| \mathcal{V}]$ is Cauchy cocomplete, for every small \mathcal{V}-normed category \mathbb{X}.

Proof.

For a Cauchy sequence $\sigma=\left(P_{m} \xrightarrow{\sigma_{m, n}} P_{n}\right)_{m \leq n \in \mathbb{N}}$ in $[\mathbb{X}$, Set $\| \mathcal{V}]$.

1. Take its colimit $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$.
2. $P: \mathbb{X} \rightarrow$ Set $\| \mathcal{V}$ is indeed a normed functor. Therefore $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a colimit in the category $[X$, Set $\mid \nu]$.
3. The difficult part is to get that $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a k-cocone.

Proposition

The \mathcal{V}-normed category $[\mathbb{X}, S e t \| \mathcal{V}]$ is Cauchy cocomplete, for every small \mathcal{V}-normed category \mathbb{X}.

Proof.

For a Cauchy sequence $\sigma=\left(P_{m} \xrightarrow{\sigma_{m, n}} P_{n}\right)_{m \leq n \in \mathbb{N}}$ in $[\mathbb{X}$, Set $\| \mathcal{V}]$.

1. Take its colimit $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$.
2. For every object x of $\mathbb{X}, n \in \mathbb{N}$ and $c \in P x$, put

$$
|c|=\bigwedge_{N \in \mathbb{N}} \bigvee_{n \geq N} \bigvee_{a \in\left(\gamma_{n}\right)_{X}^{-1} c}|a| .
$$

3. $P: \mathbb{X} \rightarrow \operatorname{Set} \| \mathcal{V}$ is indeed a normed functor.

$$
\text { Therefore }\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}} \text { is a colimit in the category }
$$

4. The difficult part is to get that $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a k-cocone.

Proposition

The \mathcal{V}-normed category $[\mathbb{X}, S e t \| \mathcal{V}]$ is Cauchy cocomplete, for every small \mathcal{V}-normed category \mathbb{X}.

Proof.

For a Cauchy sequence $\sigma=\left(P_{m} \xrightarrow{\sigma_{m, n}} P_{n}\right)_{m \leq n \in \mathbb{N}}$ in $[\mathbb{X}$, Set $\| \mathcal{V}]$.

1. Take its colimit $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$.
2. For every object x of $\mathbb{X}, n \in \mathbb{N}$ and $c \in P x$, put

$$
|c|=\bigwedge_{N \in \mathbb{N}} \bigvee_{n \geq N} \bigvee_{a \in\left(\gamma_{n}\right)_{x}^{-1} c}|a| .
$$

3. $P: \mathbb{X} \rightarrow \operatorname{Set} \| \mathcal{V}$ is indeed a normed functor.

Therefore $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a colimit in the category $[\mathbb{X}$, Set $\| \mathcal{V}]$.
4. The difficult part is to get that

Proposition

The \mathcal{V}-normed category $[\mathbb{X}, S e t \| \mathcal{V}]$ is Cauchy cocomplete, for every small \mathcal{V}-normed category \mathbb{X}.

Proof.

For a Cauchy sequence $\sigma=\left(P_{m} \xrightarrow{\sigma_{m, n}} P_{n}\right)_{m \leq n \in \mathbb{N}}$ in $[\mathbb{X}$, Set $\| \mathcal{V}]$.

1. Take its colimit $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$.
2. For every object x of $\mathbb{X}, n \in \mathbb{N}$ and $c \in P x$, put

$$
|c|=\bigwedge_{N \in \mathbb{N}} \bigvee_{n \geq N} \bigvee_{a \in\left(\gamma_{n}\right)_{X}^{-1} c}|a| .
$$

3. $P: \mathbb{X} \rightarrow \operatorname{Set} \| \mathcal{V}$ is indeed a normed functor.

Therefore $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a colimit in the category $[\mathbb{X}$, Set $\| \mathcal{V}]$.
4. The difficult part is to get that $\left(\gamma_{n}: P_{n} \longrightarrow P\right)_{n \in \mathbb{N}}$ is a k-cocone.

AdJOINTS VS. NORMED COLIMITS

Remark

Normed functors preserve Cauchy sequences.

Proposition
Everv left adioint normed functor F:X \boldsymbol{Y} preserves normed colimits
of Cauchy sequences.

Proof.

ADJOINTS VS. NORMED COLIMITS

Remark

Normed functors preserve Cauchy sequences.

Proposition

Every left adjoint normed functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ preserves normed colimits of Cauchy sequences.

Proof.

ADJOINTS VS. NORMED COLIMITS

Remark

Normed functors preserve Cauchy sequences.

Proposition

Every left adjoint normed functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ preserves normed colimits of Cauchy sequences.

Proof.

The diagram

$$
\left.\right|_{\mathbb{Y}(F x, y)} ^{\operatorname{Nat}\left(\left.F s\right|_{N}, \Delta u\right)}
$$

ADJOINTS VS. NORMED COLIMITS

Remark

Normed functors preserve Cauchy sequences.

Proposition

Every left adjoint normed functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ preserves normed colimits of Cauchy sequences.

Proof.

The diagram

commutes.

Remark

Let s be a Cauchy sequence in the normed category \mathbb{X}. Consider the
Yoneda embedding

$$
y_{\mathbb{X}}: \mathbb{X} \longrightarrow P \mathbb{X}:=\left[\mathbb{X}^{\mathrm{op}}, \operatorname{Set} \| \mathcal{V}\right] .
$$

Put $\Phi=\operatorname{ncolim}\left(y_{\mathbb{X}} \cdot \mathbf{s}\right)$ in $P \mathbb{X}$. Then, for every object y in \mathbb{X},

For every object x in \mathbb{X},

Hence, \mathbb{X} is Cauchy cocomplete if, and only if, \mathbb{X} has all colimits weighted bv normed colimits of representables.

Remark

Let s be a Cauchy sequence in the normed category \mathbb{X}. Consider the Yoneda embedding

$$
y_{\mathbb{X}}: \mathbb{X} \longrightarrow P \mathbb{X}:=\left[\mathbb{X}^{\mathrm{op}}, \operatorname{Set} \| \mathcal{V}\right]
$$

Put $\Phi=\operatorname{ncolim}\left(y_{\mathbb{X}} \cdot s\right)$ in $P \mathbb{X}$. Then, for every object y in \mathbb{X},

$$
\begin{gathered}
\operatorname{Cocone}\left(\left.s\right|_{N}, y\right) \\
\imath \downarrow
\end{gathered}
$$

$\operatorname{Cocone}\left(y_{\mathbb{X}} \cdot S_{N}, y_{\mathbb{X}}(y)\right) \longrightarrow \operatorname{Nat}\left(\Phi, y_{\mathbb{X}}(y)\right) \quad$ colimit in Set $/ / \mathcal{V}$
For every object x in \mathbb{X},

Hence, X is Cauchy cocomplete if, and only if, X has all colimits weighted hy normed colimits of renresentahles.

Remark

Let s be a Cauchy sequence in the normed category \mathbb{X}. Consider the Yoneda embedding

$$
y_{\mathbb{X}}: \mathbb{X} \longrightarrow P \mathbb{X}:=\left[\mathbb{X}^{\mathrm{op}}, \operatorname{Set} \| \mathcal{V}\right] .
$$

Put $\Phi=\operatorname{ncolim}\left(y_{\mathbb{X}} \cdot s\right)$ in $P \mathbb{X}$. Then, for every object y in \mathbb{X},

$$
\operatorname{Cocone}\left(\left.s\right|_{N}, y\right)-----\cdots--->\mathbb{X}(x, y) \quad \text { colimit in Set } / / \mathcal{V}
$$

$$
\imath \downarrow
$$

$\operatorname{Cocone}\left(\left.y_{X} \cdot\right|_{N}, y_{X}(y)\right) \longrightarrow \operatorname{Nat}\left(\Phi, y_{X}(y)\right) \quad$ colimit in Set $/ / \mathcal{V}$
For every object x in \mathbb{X},

$$
x=\operatorname{ncolim}(s) \Longrightarrow x=\operatorname{colim} \Phi
$$

Hence, X is Cauchy cocomplete if, and only if, X has all colimits weighted hy normed colimits of renresentahles.

Remark

Let s be a Cauchy sequence in the normed category \mathbb{X}. Consider the Yoneda embedding

$$
y_{\mathbb{X}}: \mathbb{X} \longrightarrow P \mathbb{X}:=\left[\mathbb{X}^{\mathrm{op}}, \operatorname{Set} \| \mathcal{V}\right] .
$$

Put $\Phi=\operatorname{ncolim}\left(y_{\mathbb{X}} \cdot s\right)$ in $P \mathbb{X}$. Then, for every object y in \mathbb{X},

$$
\begin{aligned}
& \operatorname{Cocone}\left(\left.s\right|_{N}, y\right) \text {------------>} \mathbb{X}(x, y) \quad \text { colimit in Set } / / \mathcal{V} \\
& \text { 2 } \downarrow \\
& \operatorname{Cocone}\left(\left.y_{\mathbb{X}} \cdot\right|_{N}, y_{\mathbb{X}}(y)\right) \longrightarrow \operatorname{Nat}\left(\Phi, y_{\mathbb{X}}(y)\right) \quad \text { colimit in Set } / / \mathcal{V}
\end{aligned}
$$

For every object x in \mathbb{X},

$$
x=\operatorname{ncolim}(s) \Longrightarrow x=\operatorname{colim} \Phi
$$

Hence, X is Cauchy cocomplete if, and only if, X has all colimits weighted hy normed colimits of renresentahles.

Remark

Let s be a Cauchy sequence in the normed category \mathbb{X}. Consider the Yoneda embedding

$$
y_{\mathbb{X}}: \mathbb{X} \longrightarrow P \mathbb{X}:=\left[\mathbb{X}^{\mathrm{op}}, \operatorname{Set} \| \mathcal{V}\right]
$$

Put $\Phi=\operatorname{ncolim}\left(y_{\mathbb{X}} \cdot s\right)$ in $P \mathbb{X}$. Then, for every object y in \mathbb{X},

$$
\operatorname{Cocone}\left(y_{\mathbb{X}} \cdot S_{N}, y_{\mathbb{X}}(y)\right) \longrightarrow \operatorname{Nat}\left(\Phi, y_{\mathbb{X}}(y)\right) \quad \text { colimit in Set } / / \mathcal{V}
$$

For every object x in \mathbb{X},

$$
x=\operatorname{ncolim}(S) \Longleftarrow x=\operatorname{colim} \Phi
$$

Hence, X is Cauchy cocomplete if, and only if, X has all colimits weighted hy normed colimits of renresentahles

Remark

Let s be a Cauchy sequence in the normed category \mathbb{X}. Consider the Yoneda embedding

$$
y_{\mathbb{X}}: \mathbb{X} \longrightarrow P \mathbb{X}:=\left[\mathbb{X}^{\mathrm{op}}, \operatorname{Set} \| \mathcal{V}\right]
$$

Put $\Phi=\operatorname{ncolim}\left(y_{\mathbb{X}} \cdot s\right)$ in $P \mathbb{X}$. Then, for every object y in \mathbb{X},

$$
\begin{array}{ccc}
\operatorname{Cocone}\left(\left.s\right|_{N}, y\right) & \text { colimit in Set } / / \mathcal{V} \\
\operatorname{Cocone}\left(\left.y_{\mathbb{X}} \cdot s\right|_{N}, y_{\mathbb{X}}(y)\right) \longrightarrow \mathbb{X}(x, y) & \\
\operatorname{Nat}\left(\Phi, y_{\mathbb{X}}(y)\right) & \text { colimit in Set } / / \mathcal{V}
\end{array}
$$

For every object x in \mathbb{X},

$$
x=\operatorname{ncolim}(s) \Longleftarrow x=\operatorname{colim} \Phi
$$

Hence, X is Cauchy cocomplete if, and only if, X has all colimits weighted by normed colimits of renresentables.

Remark

Let s be a Cauchy sequence in the normed category \mathbb{X}. Consider the Yoneda embedding

$$
y_{\mathbb{X}}: \mathbb{X} \longrightarrow P \mathbb{X}:=\left[\mathbb{X}^{\mathrm{op}}, \operatorname{Set} \| \mathcal{V}\right] .
$$

Put $\Phi=\operatorname{ncolim}\left(y_{\mathbb{X}} \cdot s\right)$ in $P \mathbb{X}$. Then, for every object y in \mathbb{X},

For every object x in \mathbb{X},

$$
x=\operatorname{ncolim}(s) \Longleftrightarrow x=\operatorname{colim} \Phi
$$

Hence, \mathbb{X} is Cauchy cocomplete if, and only if, \mathbb{X} has all colimits weighted by normed colimits of representables.

