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Applications of Categories, No. 1 (2002), 1–37.
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Neeman (2020)
“… To the best of my knowledge the myriad applications have es-
sentially all gone in directions totally different from the one we
will be pursuing in this note. There is only a handful of excep-
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of Pure and Applied Algebra 224.(4), p. 106206.
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An example 7

Lawvere (1973)
The notion of «normed category» can also be related to the
(non-symmetric) Hausdorff metric

2X(A,B) = sup
a∈A

inf
b∈B

X(a,b) . . .

Example
Let X be a metric space. Define the normed category H(X) as follows.
• Objects: subsets of X.
• An arrow f : A −→ B in H(X) is a map from A to B, with “norm”

|f | = sup
a∈A

X(a, fa).
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Definition
A normed category X is an ordinary category with (small) normed
hom-sets

|−| : X(x, y) −→ [0,∞]

so that
0 > |1x|, |f |+ |g| > |gf |.

A functor F : X −→ Y is normed whenever

|f | > |Ff |.

Remark (Lawvere (1973))
We will leave as an exercise for the reader to define a closed category
S(R) such that «normed categories» are just S(R)-valued categories
and a «closed functor» inf : S(R) −→ R which induces the passage from
any «normed category» to a metric space with the same objects.
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Definition
A V-normed category X is an ordinary category with (small) normed
hom-sets

|−| : X(x, y) −→ V

so that
k ≤ |1x|, |f | ⊗ |g| ≤ |gf |.

A functor F : X −→ Y is V-normed whenever

|f | ≤ |Ff |.

Remark (Lawvere (1973))
We will leave as an exercise for the reader to define a closed category
S(R) such that «normed categories» are just S(R)-valued categories
and a «closed functor» inf : S(R) −→ R which induces the passage from
any «normed category» to a metric space with the same objects.
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Definition
A V-normed set is a set A that comes with a function |−| : A −→ V , and a
V-normed map (A, |−|) −→ (B, |−|) is a mapping f : A −→ B satisfying
|a| ≤ |fa| for all a ∈ A.

A B

V

f

|−|

≤
|−|

This defines the category Set//V .

Betti, Renato and Galuzzi, Massimo (1975). “Categorie normate”. In:
Bollettino dell’Unione Matematica Italiana 4.(11), pp. 66–75.

Remark
V-normed Category = Category enriched in Set//V .
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Theorem
The category Set//V is symmetric monoidal-closed.

Proof.
• For V-normed sets A and B, their tensor product A⊗ B is carried by
the cartesian product A× B, normed by |(a,b)| = |a| ⊗ |b| in V .

• The tensor-neutral set E is the set {∗} normed by | ∗ | = k.
• [A,B] has carrier set Set(A,B) (all mappings ϕ : A −→ B), with their
norm defined by

|ϕ| =
∧
a∈A

[|a|, |ϕa|].

Notation
We simpy write

Cat//V and CAT//V

instead of (Set//V)-Cat respectively (Set//V)-CAT.
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Examples
• For V = 1 the terminal quantale, a 1-normed category is just an
ordinary category.

• For the Boolean quantale V = 2, a 2-normed category X can be
described as a category X that comes with a distinguished classM
of morphisms which is closed under composition and contains all
identity morphisms.
The 2-normed functors preserve the distinguished morphisms.

• We may consider the category Set as [0,∞]-normed:

|f : X −→ Y| = “size of Y \ f (X)” ∈ N ∪ {∞}.

Hence |f | may be seen as a (predominantly finitary) measure of the
degree to which f fails to be surjective.
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Examples
• The monoidal functor Set//V −→ Set (“forget norm”) induces the
forgetful functor

Cat//V −→ Cat.

Note. This functor is topological.
• The lax mondoidal functor

s : Set//V −→ V, A 7−→
∨
a∈A

|a|

induces the functor

s : Cat//V −→ V-Cat, X 7−→ (objects of X, sX(x, y) =
∨

f : x→y

|f |).

Note. For every metric space X,
s(H(X)) = the usual (non-symmetric) Hausdorff metric space.
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Examples
• The functor s : Set//V −→ V has a right adjoint

i : V −→ Set//V, v 7−→ ({?}, |?| = v)

which induces the functor

i : V-Cat −→ Cat//V, i(X) = X indiscrete with |(x, y)| = X(x, y)

which is right adjoint to s : Cat//V −→ V-Cat.
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Remark
There is also the “forgetful functor”

(−)◦ : Cat//V → Cat

represented by the tensor-neutral element E.

That is, (−)◦ sends a small V-normed category X to the category X◦ with
the same objects as X, but with only those morphisms f : x −→ y in X
with k ≤ |f |.
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Recall
For every closed symmetric monoidal categoryW ,

[−,−] : W ×W −→ W

makesW aW-category.

Example
Set//V becomes a V-normed category whose objects are V-normed sets,
but whose hom-sets of morphisms A→ B are given by the internal hom
[A,B] of Set//V , that is, by all Set-maps A→ B.

To avoid (or increase) confusion, we write Set||V to denote this normed
category.

Remark
(Set||V)◦ = Set//V
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2. Convergence for normed categories
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Definition (Bonsangue, Breugel, and Rutten (1998))
A sequence s = (xn) in a metric space X is forward Cauchy whenever

inf
N∈N

sup
n≥m≥N

X(xm, xn) = 0.

An element x ∈ X is a forward limit of s whenever

X(x, y) = inf
N∈N

sup
n≥N

X(xn, y),

for all y ∈ X.

Reference
Bonsangue, Marcello M., Breugel, Franck van, and Rutten, Jan (1998).
“Generalized metric spaces: completion, topology, and powerdomains
via the Yoneda embedding”. In: Theoretical Computer Science 193.(1-2),
pp. 1–51.
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Definition (Bonsangue, Breugel, and Rutten (1998))
A sequence s = (xn) in a metric space X is forward Cauchy whenever

inf
N∈N

sup
n≥m≥N

X(xm, xn) = 0.

An element x ∈ X is a forward limit of s whenever

X(x, y) = inf
N∈N

sup
n≥N

X(xn, y),

for all y ∈ X.

Theorem
A metric space X is net-wise forward Cauchy complete if and only if X has
all weighted colimits of flat weights ψ : X −◦−→ 1.

Vickers, Steven (2005). “Localic completion of generalized metric
spaces. I”. In: Theory and Applications of Categories 14.(15), pp. 328–356.
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Definition (Kubiś (2017))

Let s = (xm
sm,n−−→ xn)m≤n∈N be a sequence in the normed category X.

• Then s is Cauchy whenever 0 > infN∈N supn≥m≥N |sm,n|.

• A limit of the diagram s is given by a colimit (xn
γn−→ x) of s in the

ordinary category X so that 0 > infN∈N supn≥N |γn|.

Remark
• Colimits are not unique up to 0-isomorphisms.
• Kubiś constructs a Cauchy completion with a “kind of” universal
property,

• proves a fixpoint theorem, and
• has a further condition in the definition of normed category which,
for a metric space, is equivalent to symmetry.
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Definition

Let s = (xm
sm,n−−→ xn)m≤n∈N be a sequence in the V-normed category X.

An object x is a normed colimit of s in X if
• x is a colimit of s in the ordinary category X, with a colimit cocone
(xn

γn−→ x) so that
• for all objects y in X, the canonical Set-bijections

Nat(s,∆y) −→ X(x, y)

is an isomorphism in Set//V , that is

|f | =
∧
n∈N

|f · γn|.
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Definition

Let s = (xm
sm,n−−→ xn)m≤n∈N be a sequence in the V-normed category X.

An object x is a normed colimit of s in X if
• x is a colimit of s in the ordinary category X, with a colimit cocone
(xn

γn−→ x) so that
• for all objects y in X, the canonical Set-bijections

Nat(s|N,∆y) −→ X(x, y)

form a colimit in Set//V , that is

|f | =
∨
N∈N

∧
n≥N

|f · γn|.
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Lemma
For any cocone α : s −→ ∆x over a sequence s = (xn)n∈N in X, tfae:
(i) k ≤

∨
N∈N

∧
n≥N |αn|,

(ii) |1X | ≤
∨
N∈N

∧
n≥N |αn|,

(iii) |f | ≤
∨
N∈N

∧
n≥N |f · αn|, for every morphism f : x → y in X.

Corollary
A normed colimit of a sequence in a V-normed category X is uniquely
determined up to an isomorphism in X◦.

Corollary
Let X be a V-normed category satisfying the condition

|f | ≥ |f · h| ⊗ |h| for all composable morphisms h and f .

Then an object x is a normed colimit of a sequence s in X if, and only if, x
is an ordinary colimit of s with a colimit cocone that is a k-cocone.
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|f | ≥ |f · h| ⊗ |h| for all composable morphisms h and f .

Then an object x is a normed colimit of a sequence s in X if, and only if, x
is an ordinary colimit of s with a colimit cocone that is a k-cocone.
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Lemma
For any cocone α : s −→ ∆x over a sequence s = (xn)n∈N in X, tfae:
(i) k ≤

∨
N∈N

∧
n≥N |αn|,

(ii) |1X | ≤
∨
N∈N

∧
n≥N |αn|,

(iii) |f | ≤
∨
N∈N

∧
n≥N |f · αn|, for every morphism f : x → y in X.

Corollary
A normed colimit of a sequence in a V-normed category X is uniquely
determined up to an isomorphism in X◦.

Corollary
Let X be a V-normed category satisfying the condition

|f | ≥ |f · h| ⊗ |h| for all composable morphisms h and f .

Then an object x is a normed colimit of a sequence s in X if, and only if, x
is an ordinary colimit of s with a colimit cocone that is a k-cocone.
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Remark
if X = i(X) is given by a V-category X, then the condition of the page
before means equivalently that X is symmetric.

Remark
The dual condition reads as

|f | ≥ |g · f | ⊗ |g| for all composable morphisms f and g,

as above, for X = i(X) this means that X is symmetric.

For V = [0,∞], Kubiś included this condition in the definition of normed
category; however, this does not make colimits unique up to a
0-isomorphism.
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Remark
The dual condition reads as

|f | ≥ |g · f | ⊗ |g| for all composable morphisms f and g,

as above, for X = i(X) this means that X is symmetric.

For V = [0,∞], Kubiś included this condition in the definition of normed
category; however, this does not make colimits unique up to a
0-isomorphism.
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Remark
if X = i(X) is given by a V-category X, then the condition of the page
before means equivalently that X is symmetric.

Remark
The dual condition reads as

|f | ≥ |g · f | ⊗ |g| for all composable morphisms f and g,

as above, for X = i(X) this means that X is symmetric.

For V = [0,∞], Kubiś included this condition in the definition of normed
category; however, this does not make colimits unique up to a
0-isomorphism.
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Definition
For a V-normed category X, we say that
• a sequence s = (xm

sm,n−−→ xn)m≤n∈N in X is Cauchy if

k ≤
∨
N∈N

∧
n≥m≥N

|sm,n|,

• and X is Cauchy cocomplete if every Cauchy sequence in X has a
normed colimit in X.
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Example
We consider the case X = iX for a metric space X.
The sequence s = (xn) is Cauchy in X if, and only if,

inf
N∈N

sup
n≥m≥N

X(xm, xn) = 0,

if and only if s is forward Cauchy in X.

Since the category X is indiscrete, any cocone (xn −→ x)n∈N is a colimit
cocone.

Finally, x is a normed colimit of s if, and only if,

X(x, y) = inf
N∈N

sup
n≥N

X(xn, y)

for all y ∈ X, which means that x is a forward limit of s.
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Example
We consider the case X = iX for a metric space X.
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if and only if s is forward Cauchy in X.

Since the category X is indiscrete, any cocone (xn −→ x)n∈N is a colimit
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n≥N
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Example
We consider the case X = iX for a metric space X.
The sequence s = (xn) is Cauchy in X if, and only if,

inf
N∈N

sup
n≥m≥N

X(xm, xn) = 0,

if and only if s is forward Cauchy in X.

Since the category X is indiscrete, any cocone (xn −→ x)n∈N is a colimit
cocone.

Finally, x is a normed colimit of s if, and only if,

X(x, y) = inf
N∈N
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n≥N

X(xn, y)

for all y ∈ X, which means that x is a forward limit of s.
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Assumption
In the sequel we consider a quantale V satisfying one of the following
conditions.
(A) k is approximated from totally below, that is:

k =
∨

{u ∈ V | u� k},

where u� k means that, whenever k ≤
∨
i∈I vi, then u ≤ vi for some

i ∈ I.
(B) k ∧-distributes over arbitrary joins, that is:

k ∧
∨
i∈I

vi =
∨
i∈I

k ∧ vi.
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Proposition
The V-normed category [X,Set||V] is Cauchy cocomplete, for every small
V-normed category X.

Proof.

For a Cauchy sequence σ = (Pm
σm,n−−→ Pn)m≤n∈N in [X,Set||V].

1. Take its colimit (γn : Pn −→ P)n∈N.
2. For every object x of X, n ∈ N and c ∈ Px, put

|c| =
∧
N∈N

∨
n≥N

∨
a∈(γn)

−1
x c

|a|.

3. P : X → Set||V is indeed a normed functor.
Therefore (γn : Pn −→ P)n∈N is a colimit in the category [X,Set||V].

4. The difficult part is to get that (γn : Pn −→ P)n∈N is a k-cocone.
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Proposition
The V-normed category [X,Set||V] is Cauchy cocomplete, for every small
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Proposition
The V-normed category [X,Set||V] is Cauchy cocomplete, for every small
V-normed category X.
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Proposition
The V-normed category [X,Set||V] is Cauchy cocomplete, for every small
V-normed category X.

Proof.

For a Cauchy sequence σ = (Pm
σm,n−−→ Pn)m≤n∈N in [X,Set||V].

1. Take its colimit (γn : Pn −→ P)n∈N.
2. For every object x of X, n ∈ N and c ∈ Px, put

|c| =
∧
N∈N

∨
n≥N

∨
a∈(γn)

−1
x c

|a|.

3. P : X → Set||V is indeed a normed functor.
Therefore (γn : Pn −→ P)n∈N is a colimit in the category [X,Set||V].
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Proposition
The V-normed category [X,Set||V] is Cauchy cocomplete, for every small
V-normed category X.

Proof.

For a Cauchy sequence σ = (Pm
σm,n−−→ Pn)m≤n∈N in [X,Set||V].

1. Take its colimit (γn : Pn −→ P)n∈N.
2. For every object x of X, n ∈ N and c ∈ Px, put

|c| =
∧
N∈N

∨
n≥N

∨
a∈(γn)

−1
x c

|a|.

3. P : X → Set||V is indeed a normed functor.
Therefore (γn : Pn −→ P)n∈N is a colimit in the category [X,Set||V].

4. The difficult part is to get that (γn : Pn −→ P)n∈N is a k-cocone.



Adjoints vs. normed colimits 64

Remark
Normed functors preserve Cauchy sequences.

Proposition
Every left adjoint normed functor F : X −→ Y preserves normed colimits
of Cauchy sequences.

Proof.
The diagram

Nat(s|N,∆Gy) Nat(Fs|N,∆u)

X(x,Gy) Y(Fx, y)

∼

∼

commutes.
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Remark
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∼

∼

commutes.
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Remark
Let s be a Cauchy sequence in the normed category X. Consider the
Yoneda embedding

yX : X −→ PX := [Xop,Set||V].

Put Φ = ncolim(yX ·s) in PX. Then, for every object y in X,

Cocone(s|N, y) X(x, y)

Cocone(yX ·s|N, yX(y)) Nat(Φ, yX(y)) colimit in Set//V

∼ ∼∼
For every object x in X,

x = ncolim(s) =⇒ x = colimΦ

Hence, X is Cauchy cocomplete if, and only if, X has all colimits weighted
by normed colimits of representables.
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