Cauchy completions and \mathcal{V} -fully faithful lax epimorphisms

Rui Prezado

joint work with Fernando Lucatelli Nunes Lurdes Sousa

CMUC – University of Coimbra – Portugal Portuguese Category Seminar XIV

September 13, 2023

Goal

Exhibit the relationship between

- *V*-Cauchy completions,
- *V*-fully faithful lax epimorphisms.

Overview

- Metric spaces as illustration $(\mathcal{V} = [0, \infty])$.
- Results for general \mathcal{V} .
- Application to descent theory.
- The case of (monad, quantale)-enrichment.

Generalized metric spaces

Set M, distance function $d: M \times M \to [0, \infty]$,

- $0 \ge d(x, x),$
- $d(y,z) + d(x,y) \ge d(x,z),$
- d(x,y) = d(y,x),
- $d(x,y) = 0 \implies x = y.$

Function $f: M \to N$

 $d(x,y) \ge d(fx,fy)$

Isometries and lax epimorphisms

Let $f: M \to N$ be a metric map.

 $f\colon M\to N$ is an isometry if d(x,y)=d(fx,fy)

for all $x, y \in M$.

f is a lax epimorphism if

$$h \circ f \geqslant g \circ f \implies h \geqslant g$$

for all $g, h \colon N \to [0, \infty]$.

Lax epimorphisms and density

f is $left/right\ dense$ if $\inf_{x\in X} d(y,fx) = 0 \qquad \inf_{x\in X} d(fx,y) = 0$ for all $y\in N.$

f is absolutely dense if

$$\inf_{x\in X} d(fx,z) + d(y,fx) = d(y,z)$$

for all $y, z \in Y$.

Lemma (Lucatelli Nunes, Sousa, 2022)

f is absolutely dense \iff f is a law epimorphism \implies f is left and right dense.

Cauchy completion

 ${\cal M}$ metric space.

Theorem (Lawvere, 1973)

There is a bijection between

- Equivalence classes of Cauchy sequences in M.
- Pairs of metric maps $L: M^{\mathsf{op}} \to [0, \infty], R: M \to [0, \infty]$ such that

$$\label{eq:eq:starsest} \begin{split} 0 &\geqslant \inf_{y \in Y} Ry + Ly, \\ Ly + Rz &\geqslant d(y,z). \end{split}$$

\mathcal{V} -categories

A (small) \mathcal{V} -category \mathcal{C} consists of

- a (small) set ob C of objects,
- a hom-object $\mathcal{C}(x, y) \in \mathcal{V}$ for each pair x, y,
- a unit morphism $u_x \colon I \to \mathcal{C}(x, x)$ for each x,
- a composition morphism $c_{x,y,z} \colon C(y,z) \otimes C(x,y) \to C(x,z)$,

satisfying adequate identity and associativity laws.

\mathcal{V} -functors

A \mathcal{V} -functor $F \colon \mathcal{C} \to \mathcal{D}$ consists of

- A function $F: \operatorname{ob} \mathcal{C} \to \operatorname{ob} \mathcal{D}$,
- A hom-morphism $F_{x,y} \colon \mathcal{C}(x,y) \to D(Fx,Fy)$

satisfying adequate unit and composition preservation properties.

 \mathcal{V} -CAT and \mathcal{V} -Cat are the 2-categories of \mathcal{V} -categories and small \mathcal{V} -categories.

Two notions of full faithfulness

Let $F: \mathcal{C} \to \mathcal{D}$ be a \mathcal{V} -functor.

F is \mathcal{V} -fully faithful if

$$F_{x,y} \colon \mathcal{C}(x,y) \to \mathcal{D}(Fx,Fy)$$

is an isomorphism for all x, y.

 ${\cal F}$ is a fully faithful morphism if

$$F_! \colon \mathcal{V}\text{-}\mathsf{Cat}(\mathcal{B}, \mathcal{C}) \to \mathcal{V}\text{-}\mathsf{Cat}(\mathcal{B}, \mathcal{D})$$
$$G \mapsto F \circ G$$

is fully faithful for all \mathcal{B} .

Two notions of full faithfulness

Lemma (Lucatelli Nunes, Sousa, 2022) If F is \mathcal{V} -fully faithful, then F is a fully faithful morphism.

The converse holds if F has a (left or right) adjoint.

Lax epimorphisms

Let $F \colon \mathcal{C} \to \mathcal{D}$ be a \mathcal{V} -functor.

F is a *lax epimorphism* if

$$F^* \colon \mathcal{V}\operatorname{-Cat}(\mathcal{D}, \mathcal{B}) \to \mathcal{V}\operatorname{-Cat}(\mathcal{C}, \mathcal{B})$$

 $G \mapsto G \circ F$

is fully faithful for all \mathcal{B} .

Lax epimorphisms

Let $F: \mathcal{C} \to \mathcal{D}$ be a \mathcal{V} -functor.

Lemma (Lucatelli Nunes, Sousa, 2022) F is a lax epimorphism if and only if

 $F^* \colon \mathcal{V}\text{-}\mathsf{CAT}(\mathcal{D}, \mathcal{V}) \to \mathcal{V}\text{-}\mathsf{CAT}(\mathcal{C}, \mathcal{V})$

is fully faithful.

Relationship with adjunctions

Lemma If we have an adjunction

then

- F is a fully faithful morphism \iff G is a lax epimorphism,
- F is a lax epimorphism \iff G is a fully faithful morphism.

Relationship with Cauchy completion

Let $F: \mathcal{C} \to \mathcal{D}$ be a \mathcal{V} -functor, let $\mathfrak{C}F: \mathfrak{C}X \to \mathfrak{C}Y$ be the induced \mathcal{V} -functor.

Lemma (Lucatelli Nunes, P., Sousa, 2023)

The following are equivalent:

- F is V-fully faithful.
- $\mathfrak{C}F$ is \mathcal{V} -fully faithful.
- \mathcal{V} -CAT (F, \mathcal{V}) is a lax epimorphism.

Lemma (Lucatelli Nunes, P., Sousa, 2023)

- F is a lax epimorphism.
- $\mathfrak{C}F$ is a lax epimorphism.

Relationship with Cauchy completion

Let $F: \mathcal{C} \to \mathcal{D}$ be a \mathcal{V} -functor, let $\mathfrak{C}F: \mathfrak{C}X \to \mathfrak{C}Y$ be the induced \mathcal{V} -functor.

Theorem (Lucatelli Nunes, P., Sousa, 2023)

- F is a V-fully faithful lax epimorphism.
- $\mathfrak{C}F$ is an equivalence.

Application to descent theory

Let $F \colon \mathcal{C} \to \mathcal{D}$ be a functor.

Lemma (Lucatelli Nunes, P., Sousa 2023)

- F is a fully faithful lax epimorphism.
- CAT(F, Set) is an equivalence.
- CAT(F, Cat) is an equivalence.

Application to descent theory

Let $F \colon \mathcal{C} \to \mathcal{D}$ be a functor.

Theorem (Lucatelli Nunes, P., Sousa, 2023)

- F is an effective Cat(-, Cat)-descent morphism.
- F is an effective Cat(-, Set)-descent morphism.
- \mathcal{K}_F is a fully faithful lax epimorphism.

The case of (monad, quantale)-enrichment

Open problem

Find conditions for a functor of (T, \mathcal{V}) -categories to be of effective étale descent.

Thank you!