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Abstract. A collection of inverse eigenvalue problems are identified and classified according
to their characteristics. Current developments in both the theoretic and the algorithmic aspects
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1. Introduction.

1.1. Objective. An inverse eigenvalue problem concerns the reconstruction of
a matrix from prescribed spectral data. The spectral data involved may consist of
the complete or only partial information of eigenvalues or eigenvectors. The objective
of an inverse eigenvalue problem is to construct a matrix that maintains a certain
specific structure as well as that given spectral property.

Associated with any inverse eigenvalue problem are two fundamental questions—
the theoretic issue on solvability and the practical issue on computability. A major
effort in solvability has been to determine a necessary or a sufficient condition under
which an inverse eigenvalue problem has a solution. The main concern in computabil-
ity, on the other hand, has been to develop a procedure by which, knowing a priori
that the given spectral data are feasible, a matrix can be constructed numerically.
Both questions are difficult and challenging.

Studies on inverse eigenvalue problems have been intensive, ranging from engi-
neering application to algebraic theorization. Yet the results are scattered even within
the same field of discipline. Despite the many efforts found in the literature, only a
handful of the problems discussed in this paper have been completely understood
or solved. Our goal in this work is to gather together a collection of inverse eigen-
value problems, to identify and classify their characteristics, and to summarize current
developments in both the theoretic and the algorithmic aspects. We hope this pre-
sentation will help to better define the regimen of inverse eigenvalue problems as a
whole and hence to stimulate further research.

1.2. Application. Inverse eigenvalue problems arise in a remarkable variety of
applications. The list includes but is not limited to control design, system identifica-
tion, seismic tomography, principal component analysis, exploration and remote sens-
ing, antenna array processing, geophysics, molecular spectroscopy, particle physics,
structure analysis, circuit theory, mechanical system simulation, and so on.
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To mention a few examples, we note that the state feedback as well as the output
feedback pole assignment problems have been of major interest in system identification
and control theory. There is vast literature of research on this subject alone. An
excellent recount of recent activities in this area can be found in the survey paper by
Byrnes [35]. We shall see that pole assignment problems are a special case of what
we call parameterized inverse eigenvalue problems in this article.

Also, one of the basic problems in classical vibration theory is to determine the
natural frequencies and normal modes of the vibrating body. But inverse problems
are concerned with the construction of a model of a given type, e.g., a mass-spring
system, a string, and so on, with prescribed spectral data. Thus inverse problems
have practical value to applied mechanics and structure design [9, 61, 90, 91, 92, 120,
156, 157, 158, 159, 161]. Discussion for higher dimensional problems can be found in
[10, 124, 137, 138, 198, 199, 200].

Applications to other types of engineering problems can be found in the books by
Gladwell [93], Helmke and Moore [111], and articles such as [125, 174, 188, 191, 196].
Examples of geophysics applications can be found in [153]. Examples of physics
applications can be found in [8, 12, 59, 63, 72, 188]. Even within the field of numerical
analysis, where a specific algorithm is to be designed, an inverse eigenvalue problem
may arise. See, for example, [145].

Much of the discussion for inverse problems in the literature has been due to
an interest in the inverse Sturm–Liouville problem [5, 107, 109, 152, 154, 168, 202].
See also [57, 58, 107, 151] for a comprehensive study of the connection between the
continuous problem and the matrix problem.

A significant common phenomenon in all these applications is that the physical
parameters of a certain system are to be reconstructed from knowledge of its dy-
namical behavior, in particular its natural frequencies and/or normal modes. If the
physical parameters can be (and often are) described mathematically in the form of
a matrix, then we have an inverse eigenvalue problem. In order to make the resulting
model physically realizable, it should be noted that sometimes additional stipulations
must be imposed upon the matrix.

1.3. Diversity. Depending on the application, inverse eigenvalue problems may
be described in several different forms. Translated into mathematics, it is often neces-
sary, in order that the inverse eigenvalue problem be meaningful, to restrict the con-
struction to special classes of matrices, especially to those with specified structures.
A problem without any restriction on the matrix is generally of little interest. The
solution to an inverse eigenvalue problem therefore should satisfy two constraints—
the spectral constraint referring to the prescribed spectral data and the structural
constraint referring to the desirable structure. These constraints define a variety of
inverse eigenvalue problems that will be surveyed in this paper.

In practice, it may occur that one of the two constraints of the problem should be
enforced more critically than the other due to, for example, the physical realizability.
Without the realizability, the physical system simply cannot be built. There are
also situations when one constraint could be more relaxed than the other due to,
for example, the physical uncertainty. The uncertainty arises when there is simply
no accurate way to measure the spectrum or reasonable means to obtain all the
information. When the two constraints cannot be satisfied simultaneously, sometimes
we are interested in a least squares solution.

Gladwell suggests from the standpoint of engineering application that there should
also be a distinction between determination and estimation in the nature of an inverse
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problem. He calls it an essentially mathematical problem when the given data is exact
and complete so that the system can be precisely determined, and an essentially
engineering problem when the data is only approximate and often incomplete, and
when only an estimation of the parameters of the system is sought so that the resulting
behavior agrees approximately with the prescribed data [94, 97]. It is important
to formulate the right question since research based on inappropriate or ill-chosen
questions leads to unsatisfying and unnecessarily complicated answers.

1.4. Literature overview. Classical approaches to determining the solvability
of inverse eigenvalue problems involve techniques developed from algebraic curves,
degree theory, or algebraic geometry. See, for example, [2, 11, 16, 66, 80, 81, 86, 127].
Although in most cases the algebraic theory is still incomplete or missing, there are
also numerical algorithms developed for computation purpose. A partial list includes,
for example, [18, 28, 43, 54, 99, 104, 115, 128, 129, 144, 146, 169, 184, 187].

A review of recent literature on inverse eigenvalue problems related exclusively to
small vibrations of mechanical system can be found in [94] and is then updated in [97].
An early survey of direct methods for solving certain symmetric inverse eigenvalue
problems was given by Boley and Golub [27]. Algorithms of iterative nature for more
general problems were considered by Friedland, Nocedal, and Overton [85]. This
paper covers an even larger scope of inverse eigenvalue problems.

An earlier attempt similar to the objective of this paper was made by Zhou and
Dai in their book [203] that greatly motivates this author to continue the current
extension. We build our presentation upon that in [203] by bringing in the latest
results known to this date. In particular, an extensive bibliography of pertinent
literature is compiled. Regretfully, many Chinese references in [203] are not included
because of difficulties in translation and availability. Other excellent resources for
references, particularly those related to mechanical systems, can be found in [87, 93,
94, 97], and those to inverse Sturm–Liouville problems in [5].

We mention that entries of the matrix to be constructed usually represent phys-
ical parameters to be determined. So an inverse eigenvalue problem can generally
be regarded as a parameter estimation problem. Each inverse eigenvalue problem,
however, also carries its own characteristic. In the literature, the study is usually
focused on one characteristic at a time. Following the practice in the literature, we
categorize inverse eigenvalue problems according to characteristics such as additive,
multiplicative, parameterized, structured, partially described, or least squares. This
classification along with review articles by Gladwell [94, 97], who differentiates prob-
lems according to the type of mechanical system, i.e., continuous or discrete, damped
or undamped, and the type of prescribed data, i.e., spectral, modal, or nodal, com-
plete or incomplete, should complement each other to offer a fairly broad view of
research activities in this area.

1.5. Outline and notation. This paper discusses explicitly 37 inverse eigen-
value problems, not counting the many other implied variations. The forms and al-
gorithms differ noticeably from problem to problem. Thus, it is almost impossible to
bring any unity into this collection. Also, an inverse eigenvalue problem often carries
overlapping characteristics. It is sometimes difficult to determine which characteristic
is the most prominent.

In an attempt to provide a better grasp of the scenarios, we shall adopt the name
scheme *IEP# to identify a problem throughout the paper. Letter or letters “ ∗ ” in
front of IEP indicate the type of problem. The number “#” following IEP indicates the
sequence of variation within type “*IEP.” We first introduce the following acronyms:
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AIEP

MIEP

PIEP

SIEP

LSIEP

MVIEP

(single variate)

PDIEP

FIG. 1. Classification of inverse eigenvalue problems.

MVIEP = Multivariate inverse eigenvalue problem
LSIEP = Least square inverse eigenvalue problem
PIEP = Parameterized inverse eigenvalue problem
SIEP = Structured inverse eigenvalue problem

PDIEP = Partially described inverse eigenvalue problem
AIEP = Additive inverse eigenvalue problem
MIEP = Multiplicative inverse eigenvalue problem.

The precise definition for each type of problem will be described in what follows.
We suggest using Figure 1 to lay down a possible inclusion relationship between the
different problems. We hope readers will agree after perusing through our argument
that this diagram, though not precise, provides a reasonable connection between the
problems.

We intend to imply several points from Figure 1 that affect our presentation:
• The MVIEP is basically an unexplored territory because most of the studies

in the literature have been for the single variate only. We shall touch upon
its general setting in section 6, but concentrate on the single variate problem
for the rest of this paper. There should be plenty of new research topics in
this area alone.

• All problems have a natural generalization to the least squares formulation.
• The AIEP and the MIEP are two extensively studied special cases of the

PIEP.
• The relationship depicted in Figure 1 is not necessarily definite because many

characteristics may overlap. We should not be surprised if there are other
types of characterizations overlooked in this classification.

In this survey, we choose to call attention to three major types of problems. In
section 2 we describe the PIEP where the emphasis is on the way that these parameters
modulate the problem. In section 3 we discuss the SIEP where the emphasis is on the
structure that a solution matrix is supposed to maintain. In section 4 we discuss the
LSIEP where the best solution exists only in the sense of least squares approximation.
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We shall consider these three problems slightly more in breadth and depth with regard
to the motivation, main results, and algorithmic issues.

In addition, we shall briefly discuss the PDIEP in section 5 because it is dif-
ficult to place properly in Figure 1. The PDIEP arises when there are simply no
reasonable tools available to evaluate the entire spectral information due to, for in-
stance, the complexity or the size of the physical system. Often only partial data are
readily obtainable and the engineers have to build the system based on that partial
information.

To emphasize the modular representative in each category, we begin each section
with a paradigmatic description of the problem. We then discuss variations by being
more specific on conditions of the underlying matrices. It quickly becomes clear that
we will not be able to give a full account of each of the problems in this presentation.
We can only try to provide the readers with a few references whenever some kind
of theory or algorithms have been derived. Despite our efforts, it is obvious that we
will have left out some interesting problems from our collection. Yet we shall see that
there are already more questions than answers in this exposition—the reason why this
treatise is originally motivated.

Being tossed between the vast diversity of problems, theories, algorithms, and
open questions, we find it very difficult to achieve any uniformity in this presentation.
By presenting the discussion as a synthesis of subsections entitled generic form, vari-
ations, solvability issues, and numerical methods, we hope we have provided a grasp
of the different aspects of inverse eigenvalue problems.

Because of the scope of problems covered in this paper, we inevitably have to call
upon a lot of jargon in this presentation. We shall explain some of the unusual terms,
but for most of the technical linear algebra terms we suggest that readers refer to the
classical book by Horn and Johnson [118]. To facilitate the discussion, we shall adopt
the following notation hereinafter:

F represents the scalar field of either real R or complex C.
A, B, . . . denote matrices.
b(ν), q

(ν)
i , vi, . . . denote vectors.

σ(A) denotes the spectrum of A.
‖ · ‖ denotes either the 2-norm of a vector or the Frobenius norm of a matrix.
M,N , . . . denote certain subsets of square matrices of which the size is clear from the
context. In particular, we have:

R(n) := Rn×n,

S(n) := {All symmetric matrices in R(n)},

O(n) := {All orthogonal matrices in R(n)},

DR(n) := {All diagonal matrices in R(n)},

C(n) := Cn×n,

H(n) := {All Hermitian matrices in C(n)},

DC(n) := {All diagonal matrices in C(n)}.

2. Parameterized inverse eigenvalue problem.

2.1. Generic form. Although almost every inverse eigenvalue problem can be
regarded as a parameter estimation problem, the emphasis in this section is on the
meticulous way that these parameters regulate the problem. A generic PIEP can be
described as follows:
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(PIEP) Given a family of matrices A(c) ∈ M with c = [c1, . . . , cm] ∈ Fm and
scalars {λ1, . . . , λn} ⊂ F, find a parameter c such that σ(A(c)) = {λ1, . . . , λn}.

Note that the number m of parameters in c may be different from n. Depending
upon how the family of matrices A(c) is specifically defined in terms of c, the PIEP
can appear and be solved very differently. Inverse eigenvalue problems in the above
PIEP format arise frequently in discrete modeling [90, 107, 151] and factor analysis
[110]. We shall illustrate several different aspects by examples in the following, but
a common feature in all variations of the PIEP is that the parameter c is used as a
“control” that modulates to the underlying problem in a certain specific, predestined
way.

2.2. Variations. The inclusion of PIEP is quite broad. We mention a few in-
teresting variations below.

The case when A(c) is affine in c has attracted considerable attention recently:
(PIEP1) A(c) = A0 +

∑n
i=1 ciAi where Ai ∈ R(n), F = R.

(PIEP2) A(c) = A0 +
∑n

i=1 ciAi where Ai ∈ S(n), F = R [85].
Also, the following two problems have been under extensive investigation in the

literature:
(AIEP) Given a matrix A ∈ M, scalars {λ1, . . . , λn} ⊂ F, and a class of matrices

N , find a matrix X ∈ N such that σ(A + X) = {λ1, . . . , λn}.
(MIEP) Given a matrix A ∈ M, scalars {λ1, . . . , λn} ⊂ F, and a class of matrices

N , find a matrix X ∈ N such that σ(XA) = {λ1, . . . , λn}.
It is clear that the AIEP is a special case of the PIEP with A(X) = A+X and X

playing the role of c, and that the MIEP corresponds to the case where A(X) = XA.
By being more specific on the class N of matrices, the problems themselves can be
divided into further subclasses. Since both AIEP and MIEP have been of long and
independent interest in various applications, we name them as separate types and
shall examine them more carefully later.

The following example is yet another more complicated PIEP arising in descriptor
systems:

(PIEP3) Given matrices A ∈ C(n), Bi ∈ Cn×mi , Ci ∈ Cli×n, i = 1, . . . , q, and
scalars {λ1, . . . , λn} ⊂ C, find matrices Ki ∈ Cmi×li such that σ(A+

∑q
i=1 BiKiCi) =

{λ1, . . . , λn} [189].
When q = 1, the PIEP3 includes as special cases the state feedback as well the

output feedback pole assignment problems. This problem stands alone as an impor-
tant issue for decades. It has been studied extensively by different approaches ranging
from linear system theory, combinatorics, complex function theory to algebraic geom-
etry. See, for example, [34, 35, 111] and the references contained therein. Yet the
results are still incomplete.

2.2.1. Additive inverse eigenvalue problem. As indicated above, the em-
blem of an AIEP is that a given matrix A is perturbed by the addition of a specially
structured matrix X in order to match the eigenvalues. The eigenvalue information
can provide at most n equations, so sometimes it may be desirable to limit the number
of free parameters in X. Other than this, the set N can be taken quite liberally. We
may therefore use the set N to impose a certain structural constraint on the solution
matrix X. For example, it may be that matrices in N are required to introduce no
more nonzero entries (fill-in) than what are already in A, or that only certain positions
of the matrix A are allowed to be added to. Structure on N sometimes arises naturally
because of engineers’ design constraints. When the number of unknown parameters in
X and the number of equations provided through the eigenvalue information are not
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consistent, an AIEP may be considered in the context of least squares. See section 4
for more details.

Thus far, most of the attention has been paid to the case where N contains only
diagonal matrices. Even so, differences among the following special cases should be
carefully distinguished:

(AIEP1) M = R(n), F = R, N = DR(n).
(AIEP2) M = S(n), F = R, N = DR(n).
(AIEP3) M = C(n), F = C, N = DC(n) [81].
(AIEP4) M = H(n), F = R, N = DR(n) [69].
The AIEP4 was first posed by Downing and Householder [69]. Its special case

AIEP2 with A being a Jacobi matrix is of particular interest because the discretization
of the boundary value problem, for example,

−u
′′
(x) + p(x)u(x) = λu(x),(1)

u(0) = u(π) = 0,

by the central difference formula with uniform mesh h = π
n+1 naturally leads to the

eigenvalue problem in tridiagonal structure,
1
h2



2 −1 0
−1 2 −1

0 −1 2 . . . 0
...

. . .
0 2 −1
0 −1 2


+ X


u = λu,(2)

where X is a diagonal matrix representing the discretization of p(x). Thus an AIEP2
may be interpreted as a discrete analogue of the inverse Strum–Liouville problem, a
classical subject where the potential p(x) is to be found so that the system possesses
a prescribed spectrum.

Another interesting variant of the AIEP arises in, e.g., control or algorithm design,
where the stability is at issue. In such a problem it is more practically critical to have
eigenvalues located in a certain region than at certain points. One such problem can
be stated as follows:

(AIEP5) Given A ∈ R(n), find X ∈ N with σ(A + X) lies in a certain fixed
region, say the right-half, of the complex plane.

Related to the AIEP5, for example, is the nearest unstable matrix problem [33].
The problem concerns the distance from a given matrix, stable in the sense that all
its eigenvalues have negative real parts, to the nearest matrix with one eigenvalue on
the imaginary axis. Also related is the communality problem in factor analysis [110]
and the educational testing problem [53, 77]. The former concerns finding a diagonal
matrix D so that the sum A + D in which A is a given real symmetric matrix with
zero diagonal entries has as many zero eigenvalues as possible. The latter concerns
finding a positive diagonal matrix D so that the difference A − D in which A is a
given real symmetric positive definite matrix remains positive semidefinite while the
trace of D is maximized.

2.2.2. Multiplicative inverse eigenvalue problem. In contrast to the AIEP,
a MIEP stands out when the task is to premultiply a given matrix A by a specially
structured matrix X to reposition or precondition the distribution of its eigenvalues.
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FIG. 2. Vibration of particles on a string.

This is very similar to but more general than the idea of preconditioning the matrix
A where it is desired to find an efficient preconditioner M for A so that the prod-
uct M−1A approximates the identity. It is known that preconditioning plays a very
important role in many computational issues. Although the sense in which M−1A
should approximate the identity differs according to the underlying method to be
used, the general setting in the MIEP can be applied to the optimal preconditioning
of a given matrix A. The set N can be used particularly to exploit a certain sparsity
pattern of the preconditioner [101, 102].

Similar to the AIEP, perhaps the simplest possible preconditioners are the diag-
onal scalings:

(MIEP1) M = R(n), F = R, N = DR(n).
(MIEP2) M = S(n), F = R, N = DR(n)
(MIEP3) M = C(n), F = C, N = DC(n) [80].
We illustrate one example of MIEP2 arising from engineering application. Con-

sider the vibration of particles on a string sketched in Figure 2. Suppose four particles,
each with mass mi, are uniformly spaced with distance h and are vibrating vertically
subject to the horizontal tension F . Then the equation of motion is given by [203]:

m1
d2x1

dt2
= −F

x1

h
+ F

x2 − x1

h
,

m2
d2x2

dt2
= −F

x2 − x1

h
+ F

x3 − x2

h
,

m3
d2x3

dt2
= −F

x3 − x2

h
+ F

x4 − x3

h
,

m4
d2x4

dt2
= −F

x4 − x3

h
− F

x4

h
,

which can be summarized as the system

d2x

dt2
= −DAx(3)

where x = [x1, x2, x3, x4]T ,

A =


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 ,

and D = diag(d1, d2, d3, d4) with di = F
mih

. To solve (3), we typically consider the
eigenvalue problem

DAx = λx
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where λ is the square of the so-called natural frequency of the system. The inverse
problem then amounts to calculating the mass mi, i = 1, . . . , 4, so that the resulting
system vibrates at a prescribed natural frequency.

Similarly, a discretization of the boundary value problem

−u
′′
(x) = λρ(x)u(x)(4)

yields the eigenvalue problem

Au = λXu(5)

where X is a positive diagonal matrix representing ρ(x). Thus an MIEP is to deter-
mine the density function ρ(x) > 0 from the prescribed spectrum.

A conservative, n degrees of freedom mass-spring system with mass matrix X and
stiffness matrix A also ends with the formulation (5). Since the physical realizability
of the stiffness matrix A is usually more complex than the mass matrix X, a practical
way of ensuring the overall physical realizability in engineering design is to determine
A from static constraints and then to find a positive diagonal matrix X so that some
desired natural frequencies are achieved.

There are other types of multiplicative inverse eigenvalue problems:
(MIEP4) Given a matrix A ∈ Hn and scalars {λ1, . . . , λn} ⊂ R, find a matrix

X ∈ DR(n) such that σ(X−1AX−1) = {λ1, . . . , λn} [69].
(MIEP5) Given A ∈ R(n), find X ∈ DR(n) with positive entries such that σ(XA)

lies in the right-half complex plane.

2.3. Solvability issues. It would be nice to be able to address the solvability
issue of the PIEP by one major theorem. But such a result simply does not, and
probably will never, exist because the description of PIEP is too general. Searching
through the literature, on the other hand, reveals that scattered around are pieces of
understanding of its individual variations. The information in fact is so diverse and
massive that we find it extremely difficult to condense the results here. We can only
summarize some of the major developments problem by problem.

It is easy to construct examples, even in R(2), that the PIEP1 and the PIEP2
may have no solution at all. In this case, a least squares formulation becomes more
desirable. We shall discuss this issue in section 4.

Considerable advances toward the understanding of the AIEP have been made
over the years. There is a rich literature on both the theoretic and the numerical
aspects for this type of problem. To see a few necessary and some sufficient conditions
on the solvability, we refer to results in articles [20, 36, 79, 103, 106, 126, 131, 132,
142, 143, 147, 148, 164, 173, 180, 192, 193]. Notably we have the following main result
addressing the existence question for the AIEP3 by Friedland [2, 81]:

THEOREM 2.1. For any specified {λ1, . . . , λn}, the AIEP3 is solvable. The number
of solutions is finite and does not exceed n!. Moreover, for almost all {λ1, . . . , λn},
there are exactly n! solutions.

We hasten to point out that the existence question when F = R, including the
AIEP1 or the AIEP2, has yet to be settled. It would be an interesting research topic
to study the theoretical and algorithmic aspects of the more general AIEP when the
constraint set N imposes a structure other than the diagonal. We are not aware of
any discussion in this regard.

By using degree theory, Friedland has also proved the following theorem for the
MIEP3.
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THEOREM 2.2. If all principal minors of A are distinct from zero, then the MIEP3
is solvable for arbitrary {λ1, . . . , λn} and there exist at most n! distinct solutions.

Although in practice one does not need a preconditioner that exactly repositions
the eigenvalues, an understanding of the MIEP might shed some insights into the
design of a good preconditioner. Friedland’s result suggests that in the complex con-
text the matrix A can be perfectly conditioned by a diagonal matrix. Despite its
elegance in mathematical theory, one should not overlook the practicality of Theo-
rem 2.2. What is missing is an efficient algorithm for implementing Theorem 2.2.
Indeed, we are not even aware of any numerical procedure to do so. In fact, we are
more interested in only the real arithmetic and thus the MIEP1 or MIEP5. Unfortu-
nately, despite the many preconditioners that have been proposed or used in practice,
there are not as many theoretic results known for these types of problems. General
discussions on the MIEP can be found in [67, 105, 149, 170, 181]. In the context of
minimizing the condition number κ(M−1A), one classical result due to Forsythe and
Strauss [78, 101] is worth mentioning.

THEOREM 2.3. Assume A is symmetric, positive definite, and has property-A,
i.e., A can be symmetrically permuted into the form [ D1 B

BT D2
] where D1 and D2 are

diagonal matrices. Let D denote the diagonal of A. Then

κ(D−1/2AD−1/2) ≤ κ(D̂AD̂)(6)

for any other positive definite diagonal matrix D̂. In other words, D is the optimal
diagonal preconditioner for the matrix A.

The following theorem is a standard result addressing the solvability issue of
PIEP3 when q = 1 [122, 179].

THEOREM 2.4. Given A ∈ R(n), B ∈ Rn×m, and a set of n complex numbers
{λ1, . . . , λn}, closed under complex conjugation, then there exist a matrix K ∈ Rm×n

such that σ(A+BK) = {λ1, . . . , λn} if and only if the pair (A, B) is controllable, that
is, if and only if the following condition holds:

{yT A = µyT and yT B = 0} ⇐⇒ yT = 0.

Moreover, in the single-input case, i.e., m = 1, if a solution exists, then it is unique.
We shall refer readers to a recent survey paper by Byrnes [35] for pole assignment

problems and not give any more reviews here.

2.4. Sensitivity analysis. Associated with any PIEP, and indeed any inverse
eigenvalue problem, is the important issue of sensitivity analysis. That is, we need to
determine how a solution matrix is subject to change with respect to the perturbation
of the prescribed eigenvalues. This is the inverse problem of the classical matrix
perturbation theory [17, 176].

The difficulty of this inverse sensitivity analysis even for symmetric matrices can
be illustrated from the generalized Wielandt–Hoffman theorem [17, Theorem 8.5] that,
for any two Hermitian matrices A and B, we have

‖Eig↓(A) − Eig↓(B)‖2 ≤ ‖A − B‖2 ≤ ‖Eig↓(A) − Eig↑(B)‖2(7)

where Eig↓(A) (and similarly Eig↑(A)) means the diagonal matrix with eigenvalues of
A arranged in descending (ascending) order. The classical theory concerns the sensi-
tivity of the eigenpairs to random perturbation. The first inequality in (7) provides an
upper bound on the variation of eigenvalues. The inverse problem, however, concerns
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the structural modification, say, of a physical system due to spectral adjustment. Even
if the adjustment is relatively minor, the second inequality in (7) does not necessarily
provide a good bound on the variation of solution matrices. In fact, it is fundamental
that eigenvalues are continuous functions in the entries of a matrix [177]. But the
converse sometimes even does not make any sense because the inverse problem may
have no solution at all if the data is changed. This important yet difficult question so
far as we know has not been addressed thoroughly in the literature.

Some recent work on the validation of a numerical solution to an AIEP can be
found in [1, 178, 195] and the thesis [7]. Some immediate application and related
discussion can be found in, for example, [34, 122, 179] for robust pole assignment
problems, and [15, 133, 155] for incomplete modal analysis. For other situations, the
analysis perhaps needs to be carried out individually. Any advance in this direction
certainly is welcomed.

2.5. Numerical methods. Even though the existence theory or a sensitivity
analysis for a PIEP may still be incomplete or missing, it does not necessarily imply
that the problem is untouchable by some numerical means. In this section we review
some of the methods for the PIEP.

Numerical algorithms for solving the AIEP2 and the AIEP4 can be found, for
example, in [18, 24, 27, 69, 85, 107, 130, 146, 187]. Most methods for symmetric or
Hermitian problems depend heavily on the fact that the eigenvalues are real valued
and, hence, can be totally ordered. In this case, the ith eigenvalue λi(X) of A+X for
each fixed i is continuous and piecewise differentiable in X. Standard techniques for
solving nonlinear algebraic systems may be used. We shall illustrate one such iterative
method for the AIEP under the context of PIEP in a later part of this section.

When eigenvalues are complex valued, including the case F = C or even the
AIEP1 in general, it becomes more difficult to track the evolution of eigenvalues
because complex numbers do not form an ordered field and one cannot explicitly
identify which value in the spectrum is the ith eigenvalue. An existence proof for the
AIEP3 by the homotopy method which, in return, gives rise to a numerical method
for finding all solutions of the AIEP3 can be found in [43]. See also [194]. Except for
the homotopy method that tracks each individual eigenvalue by a homotopy curve
determined by its initial value, it seems that other methods for solving a complex-
valued AIEP will inevitably involve some kind of matching mechanism [30, 31, 41].

The MIEP1 may be written in the form of the PIEP1 by, for example, selecting
A0 = 0 and Ak = ekaT

k for k = 1, . . . , n where aT
k is the kth row of A and ek denotes

the kth standard basis in Rn. The matrices Ak in this setting, of course, are not
symmetric. If A is symmetric and positive definite, then the matrix XA is similar
to LT XL where L is the Cholesky factor of A = LLT . We may then convert an
MIEP2 to a PIEP2 by using symmetric matrices A0 = 0 and Ak = LT EkL with
Ek := diag(ek).

Assuming the existence of a solution, several numerical methods for the PIEP2
have been studied in [85]. The geometric interpretation of one of these methods,
Method III in [85], as a variant of the Newton method is particularly useful and
interesting [47], since many inverse eigenvalue problems can be written in the PIEP2
form. We discuss the basic idea in a little bit more detail.

For illustration, we shall consider the case that all eigenvalues λ1, . . . , λn are
distinct. Let

Λ := diag{λ1, . . . , λn}(8)
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FIG. 3. Geometry of PIEP.

and let A denote the affine subspace

A := {A(c)|c ∈ Rn}(9)

where A(c) is defined in PIEP2. It can be proved that the set

Me(Λ) := {QΛQT |Q ∈ O(n)},(10)

where O(n) denotes the group of all n × n orthogonal matrices, is a smooth manifold
of dimension n(n − 1)/2. Any tangent vector T (X) to Me(Λ) at a point X ∈ Me(Λ)
must be of the form

T (X) = XK − KX(11)

for some skew-symmetric matrix K ∈ Rn×n [45, 48]. We recall the elementary fact
that the new iterate x(ν+1) of a classical Newton step

x(ν+1) = x(ν) − (f ′(x(ν)))−1f(x(ν))(12)

for a function f : R −→ R is precisely the x-intercept of the line which is tangent to
the graph of f at (x(ν), f(x(ν))). If we think of the surface Me(Λ) as playing the role
of the graph of f and the affine subspace A as playing the role of the x-axis, then an
iterative process analogous to the Newton method can be developed for the PIEP2.
The geometry is illustrated in Figure 3.

Given X(ν) ∈ Me(Λ), there exist a Q(ν) ∈ O(n) such that

Q(ν)T
X(ν)Q(ν) = Λ.(13)

From (11), we know X(ν) + X(ν)K − KX(ν) with any skew-symmetric matrix K
represents a tangent vector to Me(Λ) emanating from X(ν). We thus seek an A-
intercept A(c(ν+1)) of such a vector with the affine subspace A. That is, we want to
find a skew-symmetric matrix K(ν) and a vector c(ν+1) such that

X(ν) + X(ν)K(ν) − K(ν)X(ν) = A(c(ν+1)).(14)

The unknowns K(ν) and c(ν+1) in equation (14) can be solved separately as fol-
lows. Using (13), we transform (14) into the system

Λ + ΛK̃(ν) − K̃(ν)Λ = Q(ν)T
A(c(ν+1))Q(ν)(15)
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where

K̃(ν) := Q(ν)T
K(ν)Q(ν)(16)

is still skew symmetric. Because K̃(ν) has zero diagonal, the scaling by Λ does not
effect a change of the diagonal entries on the left-hand side of (15). This observation
effectively separates c(ν+1) from K(ν). More precisely, a comparison of the diagonals
on both sides of (15) gives rise to the linear system of n equations:

J (ν)c(ν+1) = λ∗ − b(ν)(17)

where

J
(ν)
ij := q

(ν)
i

T
Ajq

(ν)
i , for i, j = 1, . . . , n(18)

λ∗ := (λ1, . . . , λn)T(19)

b
(ν)
i := q

(ν)
i

T
A0q

(ν)
i , for i = 1, . . . , n(20)

and q
(ν)
i is the ith column of the matrix Q(ν). The vector c(ν+1), therefore, can be

solved from (17). Note that K(ν) is not involved in (17) at all. Also note that in
the setup of (17) we have used the fact that A(c) is linear in c, i.e., A(c(ν+1)) =
A0 +

∑n
j=1 c

(ν+1)
j Aj . Once c(ν+1) is obtained, the skew-symmetric matrix K̃(ν) (and,

hence, the matrix K(ν)) can be determined from the off-diagonal equations of (15).
In fact,

K̃
(ν)
ij =

q
(ν)
i

T
A(c(ν+1))q(ν)

j

λi − λj
,(21)

for 1 ≤ i < j ≤ n. In this way, the equation (14) is completely solved.
In the classical Newton method the new iterate x(ν+1) is “lifted up” naturally

along the y-axis to the the point (x(ν+1), f(x(ν+1))) from which the next tangent line
will begin. We note that (x(ν+1), f(x(ν+1))) is a point on the graph of f . Analogously,
we now need a way to “lift up” the point A(c(ν+1)) ∈ A to a point X(ν+1) ∈ Me(Λ).
The difficulty here is that there is no obvious coordinate axis to follow. One possible
way of this lifting can be motivated as follows: It is clear that solving the PIEP2 is
equivalent to finding an intersection of the two sets Me(Λ) and A. Suppose all the
iterations are taking place near a point of intersection. Then we should have

X(ν+1) ≈ A(c(ν+1)).(22)

But from (14), we also should have

A(c(ν+1)) ≈ e−K(ν)
X(ν)eK(ν)

.(23)

High accuracy calculation of the exponential matrix eK(ν)
in (23) is expensive and is

not needed. So, instead, we define the Cayley transform

R(ν) :=
(

I +
K(ν)

2

) (
I − K(ν)

2

)−1

,(24)

which happens to be the (1, 1) Padé approximation of the matrix eK(ν)
. It is well

known that R(ν) ∈ O(n), and that

R(ν) ≈ eK(ν)
(25)
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if ‖K(ν)‖ is small. Motivated by (22) and (23), we now define

X(ν+1) := R(ν)T X(ν)R(ν) ∈ Me(Λ)(26)

and the next iteration is ready to begin. It is interesting to note that

X(ν+1) ≈ R(ν)T eK(ν)
A(c(ν+1))e−K(ν)

R(ν) ≈ A(c(ν+1))(27)

represents what we mean by a lifting of the matrix A(c(ν+1)) from the affine subspace
A to the surface Me(Λ).

In summary, we realize that (14) is the equation for finding the A-intercept of a
tangent line passing X(ν) and that (26) is the equation for lifting the A-intercept to
a point on Me(Λ). The above process is identical to Method III proposed in [85],
but the geometric meaning should be clearer now. We may thus say that Method III
is precisely equivalent to the Newton method applied to f(x) = 0, for some specified
f(x). In [85] Method III is proved to converge quadratically.

The lift can also be done by using the Wielandt–Hoffman theorem (see Theo-
rem 4.2 and [44]). More specifically, we may take the lift to be the nearest point on
Me(Λ) to A(c(ν+1)). It can be shown that X(ν+1) must be given by

X(ν+1) := Q̂(ν+1)Λ̃(ν+1)Q̂(ν+1)T ,(28)

provided that

A(c(ν+1)) = Q̂(ν+1)Σ(ν+1)Q̂(ν+1)T

is the spectral decomposition of A(c(ν+1)) and that Λ̃(ν+1) is the diagonal matrix
whose elements are a rearrangement of those of Λ in the same ordering as those in
Σ(ν+1). It can be shown that the rate of convergence for this case is still quadratic
[183, Theorem 2.4].

The above tangent-and-lift idea can further be explored to refine other types of
parameterized inverse eigenvalue problems. One such success is in the refinement for
the inverse Toeplitz eigenvalue problem [52]. The idea leads to the introduction of
three coordinate-free lifting schemes that can handle multiple eigenvalue cases in a
way that methods in [85] cannot. See the SIEP1 in section 3. The same idea can also
be applied to the inverse singular value problem [47]. See also the PISVP in section
3. It is worth pursuing to generalize this idea to other types of inverse eigenvalue
problems, especially to the much more complicated case when A(c) is not linear in c.

3. Structured inverse eigenvalue problem.

3.1. Generic form. Perhaps the most focused inverse eigenvalue problems are
the structured problem where a matrix with a specified structure as well as a desig-
nated spectrum is sought after. A generic structured inverse eigenvalue problem may
be stated as follows:

(SIEP) Given scalars {λ1, . . . , λn} ∈ F, find X ∈ N which consists of specially
structured matrices such that σ(X) = {λ1, . . . , λn}.

By demanding X to belong to N , where a structure is defined, the SIEP is
required to meet both the spectral constraint and the structural constraint. The
structural constraint is usually imposed due to the realizability of the underlying
physical system.
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3.2. Variations. Many types of structures have been considered for the SIEP,
among which the following problems are most interesting:

(SIEP1) F = R and N = {All Toeplitz matrices in S(n)} [66, 86, 127, 184].
(SIEP2) F = R and N = {All per-symmetric Jacobi matrices in S(n)} [26, 28,

116].
(SIEP3) F = R and N = {All nonnegative matrices in S(n)} [45].
(SIEP4) F = R and N = {All nonnegative matrices in R(n)}.
(SIEP5) F = C and N = {All row-stochastic matrices in R(n)} [54].
The spectra of structured matrices may also be structured so sometimes additional

spectral information is given. For example, the following problems have been discussed
extensively in the literature.

(SIEP6a) Given scalars {λ1, . . . , λn} and {µ1, . . . , µn−1} ⊂ R that satisfy the
interlacing property λi ≤ µi ≤ λi+1 for i = 1, . . . , n−1, find a Jacobi matrix J so that
σ(J) = {λ1, . . . , λn} and σ(J̃) = {µ1, . . . , µn−1} where J̃ is the leading (n−1)×(n−1)
principal submatrix of J [27, 28, 92, 100, 108, 116, 117].

The SIEP6a enjoys an interesting physical interpretation in vibrations. It may
be regarded as identifying the spring configurations of an undamped system from
its spectrum and the spectrum of the constrained system where the last mass is
restricted to have no motion [92]. When the damper comes into the system, the
question becomes an inverse eigenvalue problem for symmetric quadratic pencil:

(SIEP6b) Given scalars {λ1, . . . , λ2n} and {µ1, . . . , µ2n−2} ∈ C, find tridiagonal
symmetric matrices C and K such that the determinant det(Q(λ)) of the λ-matrix
Q(λ) = λ2I + λC + K has zeros precisely {λ1, . . . , λ2n} and det(Q̃(λ)) has zeros
precisely {µ1, . . . , µ2n−2} where Q̃(λ) is obtained by deleting the last row and the last
column of Q(λ) [161].

Generalizations and variations of SIEP6a include the following problems. Algo-
rithms developed for the SIEP6a can easily be adopted to solve these problems.

(SIEP7) Given scalars {λ1, . . . , λn} and {µ1, . . . , µn−1} ⊂ R satisfying λi ≤ µi ≤
λi+1 for i = 1, . . . , n − 1, and a positive number β, find a periodic Jacobi matrix J of
the form

J =



a1 b1 bn

b1 a2 b2 0
0 b2 a3 0
...

. . .
an−1 bn−1

bn bn−1 an


so that σ(J) = {λ1, . . . , λn} and σ(J̃) = {µ1, . . . , µn−1} where J̃ is the leading (n −
1) × (n − 1) principal submatrix of J , and Πn

i=1bi = β [26, 27, 76].
(SIEP8) Given scalars {λ1, . . . , λn} and {µ1, . . . , µn} ⊂ R satisfying λi ≤ µi ≤

λi+1 for i = 1, . . . , n and λn+1 = ∞, construct Jacobi matrices J and J so that
σ(J) = {λ1, . . . , λn} and σ(J) = {µ1, . . . , µn} where J and J differ only in the (n, n)
position [28].

(SIEP9) Given a Jacobi matrix Jn ∈ R(n) and distinct scalars {λ1, . . . , λ2n} ⊂ R,
construct a Jacobi matrix J2n ∈ R(2n) so that σ(J2n) = {λ1, . . . , λ2n} and that the
leading n × n principal submatrix of J2n is exactly Jn [117].

Obviously, banded matrices are another important structure that frequently arise
from applications. A symmetric banded matrix with bandwidth 2r + 1 contains∑n

k=n−r k entries. Thus one type of inverse eigenvalue problem for banded matri-
ces is as follows:
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(SIEP10) Given scalars {λ
(k)
1 , . . . , λ

(k)
k }, k = n−r, . . . , n satisfying the interlacing

property λ
(k)
i ≤ λ

(k−1)
i ≤ λ

(k)
i+1 for i = 1, . . . , k − 1 and k = n − r + 1, . . . , n, construct

a symmetric banded matrix A with bandwidth 2r + 1 such that each leading k × k

principal submatrix of A has spectrum precisely {λ
(k)
1 , . . . , λ

(k)
k } [19, 25, 27, 136, 160].

Many different types of structural constraints can be imposed upon an inverse
eigenvalue problem. For instance, the structure could be a unitary Hessenberg matrix
[3], a block Jacobi matrix [204], or others [55, 83, 96, 160, 182]. Readers are referred
to the literature for the cause of why these special structures are of interest.

Similar to the PIEP, there is also the parameterized inverse singular value prob-
lem:

(PISVP) Given a family of matrices A(c) ∈ Rm×n, with c = [c1, . . . , cn] ∈ Rn,
m ≥ n and a set of nonnegative real values {σ1, . . . , σn}, find a parameter c such that
the singular values of A(c) are precisely {σ1, . . . , σn}.

Note that the significant difference between the PIEP and the PISVP is that
the matrices involved in the PISVP can be rectangular. Since eigenvalues of the
symmetric matrix [

0 A(c)
A(c)T 0

] are plus and minus of singular values of the matrix
A(c), the PISVP can be solved by conversion to a special parameterized SIEP. In fact,
each of the inverse problems discussed in this paper for eigenvalues have a counterpart
problem for singular values. Just like many of the inverse eigenvalue problems, the
existence question for the inverse singular value problem remains open. Indeed, to our
knowledge, this interesting research topic has never been thoroughly explored before.
The first work seems to be in the paper [47] where two numerical methods for the
case when A(c) is linear in c are proposed.

Some of the entries in a SIEP could also be specified beforehand. Sometimes a
certain submatrix is specified [65, 171]. Sometimes the characteristic polynomial is
prescribed [172] Here is an example that plays an important role under the notion of
majorization [6, 135].

(SHIEP) Given two sets of real values {a1, . . . , an} and {λ1, . . . , λn}, construct a
Hermitian matrix H with diagonal {a1, . . . , an} such that σ(H) = {λ1, . . . , λn}.

3.3. Solvability issues. The SIEP1 is the well-known inverse Toeplitz eigen-
value problem. This seemingly easy problem has intrigued researchers for years
[66, 86]. We first note that eigenstructure of Toeplitz (and, in fact, centro-symmetric)
matrices is quite special [39, 114]. In particular, there are exactly bn/2c skew-
symmetric eigenvectors and dn/2e symmetric eigenvectors where we say a vector v is
symmetric if Jv = v, and skew-symmetric if Jv = −v, and J is the “backward iden-
tity” [118]. The corresponding eigenvalues are said, respectively, to have odd and even
parity. Only very recently Landau [127] reported that the solvability issue was finally
completely settled. More specifically, let T (c1, . . . , cn) denote the symmetric Toeplitz
matrix whose first row is (c1, . . . , cn). Consider the mapping φ : Rn−2 −→ Rn−2

defined by

φ(t3, . . . , tn) = (y2, . . . , yn−1)(29)

with

yi = − λi

λ1
, i = 2, . . . , n − 1,(30)

where λ1 ≤ · · · ≤ λn are the eigenvalues of the Toeplitz matrix T (0, 1, t3, . . . , tn). Note
that

∑n
i=1 λi = 0. Hence λ1 < 0, else all eigenvalues vanish, and λn = −

∑n−1
i=1 λi. It
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follows that the range of φ resides in the simplex

∆ := {(y2, . . . , yn−1)| − 1 ≤ y2 ≤ · · · ≤ yn−1, y2 + · · · + yn−2 + 2yn−1 ≤ 1}.(31)

A matrix T (c1, . . . , cn) is said to be regular provided that every principal submatrix
T (c1, . . . , ck), 1 ≤ k ≤ n, has the property that its eigenvalues are distinct and
alternate parity with the largest one having even parity. Landau argues that the set

F := {M = T (0, 1, t3, . . . , tn)|t3, . . . , tn ∈ R, and M is regular}

is not empty and proves the following theorem.
THEOREM 3.1. The restriction of φ (see definition (29)) to values (t3, . . . , tn) ∈

Rn−2 such that T (0, 1, t3, . . . , tn) ∈ F , a special subclass of Toeplitz matrices, is a
surjective map onto ∆.

Any given arbitrary y1 ≤ y2 ≤ · · · ≤ yn corresponds after shifting and scaling
to a unique point on ∆. It follows from Theorem 3.1 that the SIEP1 is always
solvable. The argument, using the topological degree theory, unfortunately was not
constructive. The search for an efficient way of constructing a Toeplitz matrix is still
not completely satisfactory.

There is a wealth of applications involving nonnegative or positive matrices. Many
references concerning properties of nonnegative or positive matrices are available. See,
for example, [16, 118, 140]. In the understanding of nonnegative matrices, perhaps one
of the most significant results is the Perron–Frobenius theory. For reference, we only
state the first part of the Perron–Frobenius theorem for irreducible matrices [16, 118].

THEOREM 3.2. Suppose the matrix A ∈ Rn×n is nonnegative and irreducible.
Then

1. The spectral radius ρ(A) of A is a positive eigenvalue, called the Perron value,
of A;

2. There is positive vector, call the Perron vector, such that Ax = ρ(A)x;
3. ρ(A) has algebraic multiplicity 1.

Since the Perron–Frobenius theorem concerns the spectrum of nonnegative ma-
trices, there has been great interest in studying the inverse problems, i.e., the SIEP3,
the SIEP4, and the SIEP5 [13, 16, 29, 75, 82, 84, 134, 140, 150, 175]. Thus far, most
of the discussion in the literature for the SIEP3 or the SIEP4 have been centered
around the establishment of a sufficient or necessary condition to qualify whether a
given set of values is the spectrum of a nonnegative matrix [16, 75, 140]. For example,
let sk denote the kth moment

sk =
n∑

i=1

λk
i .

The following necessary condition is due to Loewy and London [134].
THEOREM 3.3. If λ1, . . . , λn are eigenvalues of an n×n nonnegative matrix, then

sm
k ≤ nm−1skm

for all k, m = 1, 2, . . ..
A nonnegative matrix M such that Mm is positive for some nonnegative integer

m is called a primitive matrix. A fundamental result due to Boyle and Handelman
concerns the inverse eigenvalue problem for primitive matrices [29].

THEOREM 3.4. Let S be a subring of R containing the unity 1. If {λ1, . . . , λn}
forms the nonzero spectrum of a primitive matrix (whose size could be larger than n)
over S, then the following conditions necessarily hold:
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1. One of λ1, . . . , λn is the Perron value, i.e., there exists i such that λ̃ := λi >
|λj | for j 6= i,

2. Coefficients of
∏n

i=1(t − λi) are in S.
3. If S = Z the ring of all integers, then∑

k|m
µ

(m

k

)
sk ≥ 0

for all m = 1, 2, . . ., where µ is the Möbius function for natural numbers
defined by

µ(d) =

 1 if d = 1,
0 if d is not square free,

(−1)t if d is a product of t distinct primes.

4. If S 6= Z, then for all k, m = 1, 2, . . .,

sk ≥ 0
sk > 0 ⇒ skm > 0.

Conversely, if {λ1, . . . , λn} satisfies the above conditions and if one of its subsets
containing λ̃ is the nonzero spectrum of a primitive matrix over S, then {λ1, . . . , λn}
itself is the nonzero spectrum of a primitive matrix over S.

Very few of these theoretical results are ready for implementation to actually
compute this matrix. The most constructive result we have seen is the sufficient
condition studied by Soules [175]. But the condition there is still limited because
the construction depends on the specification of the Perron vector—in particular, the
components of the Perron eigenvector need to satisfy certain inequalities in order for
the construction to work.

The SIEP5 is closely related to the SIEP4 by the following theorem [140].
THEOREM 3.5. If A is a nonnegative matrix with positive maximal eigenvalue r

and a positive maximal eigenvector x, then D−1r−1AD is a stochastic matrix where
D := diag{x1, . . . , xn}.

Thus once a SIEP4 is solved and if the eigenvector corresponding to the positive
maximal eigenvalue is positive, then we will have solved the SIEP5 by a diagonal
similarity transformation.

On the other hand, it is worthy to mention an existence theorem by Karpelevič
[121, 140]. Karpelevič completely characterized the set Θn of points in the complex
plane that are eigenvalues of stochastic n × n matrices. In particular, the region
Θn is symmetric about the real axis. It is contained within the unit circle and its
intersections with the unit circle are points z = e2πia/b where a and b run over all
integers satisfying 0 ≤ a < b ≤ n. The boundary of Θn consists of these intersection
points and of curvilinear arcs connecting them in circular order. These arcs are
characterized by specific parametric equations whose formulas are too complicated to
describe here but can be found in [121, 140]. For example, a complex number λ is an
eigenvalue for a 4 × 4 stochastic matrix if and only if it belongs to a region Θ4 shown
in Figure 4. Complicated though it may seem, it should be noted that the Karpelevič
theorem characterizes only one complex value at a time and does not provide further
insights into when two or more points in Θn are eigenvalues of the same stochastic
matrix. Minc [140] distinctively called the problem SIEP5, where the entire spectrum
is given, the inverse spectrum problem for row-stochastic matrices.
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FIG. 4. Θ4 by the Karpelevič theorem.

A survey of the basic theory and numerical methods for SIEP6a can be found in
the article by Boley and Golub [27]. In particular, we have the following result.

THEOREM 3.6. Suppose all the µi, i = 1, . . . , n − 1, are distinct. Then
1. The SIEP6a is guaranteed to have a solution.
2. The SIEP6a can be solved in finitely many steps.

The following theorem, due to Duarte [70], generalizes the SIEP6a to a much
larger class of matrices.

THEOREM 3.7. Suppose the given real numbers {λ1, . . . , λn} and {µ1, . . . , µn−1}
satisfy the interlacing property λi ≤ µi ≤ λi+1 for i = 1, . . . , n − 1. Let k be a
fixed integer between 1 and n and let Γ be a specified collection of unordered pairs
of nodes (is, it) for 1 ≤ is, it ≤ n. Then there exists a Hermitian matrix A such
that σ(A) = {λ1, . . . , λn}, σ(Ak) = {µ1, . . . , µn−1} where Ak is the (n − 1) × (n − 1)
submatrix of A by deleting the kth row and column, and aij = 0 whenever i 6= j and
(i, j) is not an edge of Γ.

Ram and Elhay [161] give an account of solutions to the SIEP6b.
THEOREM 3.8. If the given eigenvalues are all distinct, then the SIEP6b is always

solvable over the complex field and there are at most 2n(2n − 3)!/(n − 2)! different
solutions.

In contrast to Theorem 3.6, Ram and Elhay also show that apart from finding the
roots of certain polynomials, the problem can be solved in a finite number of steps. For
physical realizability, however, the matrices C and K in the SIEP6b should further
be required to be real valued, to have positive diagonal elements and negative off-
diagonal elements, and to be weakly diagonally dominant. So far as we know, there is
no general result in this regard. For the special case of a simply connected mass-spring
system, the damping matrix C is of rank one, i.e., C = ccT for some column vector c.
Veselić [185, 186] shows in this case that one set of eigenvalues, closed under complex
conjugation, suffice to determine a unique solution.

The existence question for the SHIEP can be completely settled by the Schur–
Horn theorem [118].
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THEOREM 3.9 (Schur–Horn theorem).
1. Let H be a Hermitian matrix. Let λ = [λi] ∈ Rn and a = [ai] ∈ Rn denote

the vectors of eigenvalues and diagonal entries of H, respectively. If the entries are
arranged in increasing order aj1 ≤ · · · ≤ ajn , λm1 ≤ · · · ≤ λmn , then

k∑
i=1

aji ≥
k∑

i=1

λmi ,(32)

for all k = 1, 2, . . . , n with equality for k = n.
2. Given any a, λ ∈ Rn satisfying (32), there exists a Hermitian matrix H with

eigenvalues λ and diagonal entries a.
The notion of (32) is also known as a majorizing λ, which has arisen as the precise

relationship between two sets of numbers in many areas of disciplines, including matrix
theory and statistics. The theorem asserts that {a1, . . . , an} majorizes {λ1, . . . , λn}
if and only if there exists a Hermitian matrix H with eigenvalues {λ1, . . . , λn} and
diagonal entries {a1, . . . , an}.

3.4. Numerical methods. The SIEP1 can be written as a PIEP2, i.e., we can
write T (t1, . . . , tn) =

∑n
i=1 tiTi where Ti = T (0, . . . , 0, 1, 0, . . . , 0) is the fixed Toeplitz

matrix of which the first row is identically zero except 1 at the ith entry. Thus any
of the locally convergent methods such as the Newton method described in [85] can
be applied. Other types of iterative methods can be found in [52, 128, 129], and most
recently [184]. The idea in the latter approach involves simultaneous approximation
of the matrix as well as its eigenvectors.

As an alternative approach the author has proposed a continuous realization pro-
cedure to solve the SIEP1 based on the projected gradient idea. In the projected
gradient approach the goal is to minimize the distance between QT ΛQ and its pro-
jection onto the subspace N of all symmetric Toeplitz matrices while allowing the
variable matrix Q to change among O(n). It can be shown that the projected gra-
dient of the objective function can be formulated explicitly. This gives rise to the
construction of a descent flow that can be followed numerically. The explicit form
also facilitates the computation of the second-order optimality conditions. A full ac-
count of discussion on this differential equation approach and its generalization can
be found in [42, 44, 48]. Among the several alternatives, we suggest in particular this
autonomous initial value problem

dX

dt
= [X, k(X)]

X(0) = Λ
(33)

where [A, B] := AB−BA denotes the Lie bracket and k(X) = [kij(X)] is the Toeplitz
annihilator matrix defined by

kij(X) :=

 xi+1,j − xi,j−1 if 1 ≤ i < j ≤ n,
0 if 1 ≤ i = j ≤ n,
xi,j−1 − xi+1,j if 1 ≤ j < i ≤ n.

(34)

It has been observed that the solution orbit of (33) always converges to a geometrically
isolated equilibrium point. Thus it seems to suggest a global method for the SIEP1.
A surprising discovery, after fully analyzing the stability of equilibrium points for the
case n = 3 recently, reveals that the dynamical system does possess periodic solutions



INVERSE EIGENVALUE PROBLEMS 21

that have never been detected numerically before [50]. What has happened is that
these periodic orbits are orbitally unstable [56] and thus, due to round-off errors, no
integral curves can ever be attracted to them. It is further observed that the isospec-
tral properties have never been lost despite this instability. So the ODE approach does
offer a reasonable global method. A more rigorous mathematical analysis is missing
to suggest a constructive proof of existence for the SIEP1. On the other hand, the
study in [52] sheds light on how the parity of eigenvalues affects the solvability. The
periodic solution mentioned earlier turns out to have the wrong parity assignment.
It appears plausible, according to Theorem 3.1 and our experience, that a suitable
parity assignment and the ODE may give rise to a globally convergent method. See
also the discussion in [184].

Using a similar idea of gradient flow to systematically reduce the distance between
the isospectral surface and the cone of nonnegative matrices, we can formulate a nice
numerical method for solving the SIEP4 [45, 54]. We are not aware of any other
techniques for the SIEP4, so we describe the basic idea of the continuation approach
below.

Since the emphasis in a SIEP4 is on the positivity of the entries, not on the
symmetry of the matrix, it is likely that the given eigenvalues λ1, . . . , λn are complex
valued, though closed under conjugation. Let Λ now denote a real-valued matrix,
possibly tridiagonal, whose spectrum is {λ1, . . . , λn}. Note that matrices in the set

M(Λ) := {PΛP−1|P ∈ R(n) is nonsingular}(35)

obviously are isospectral to Λ. Let

π(Rn
+) := {B ◦ B|B ∈ R(n)}(36)

denote the cone of all nonnegative matrices where ◦ means the Hadamard product
of matrices. The goal is to find the intersection of M(Λ) and π(Rn

+). Such an
intersection, if it exists, results in a nonnegative matrix isospectral to Λ. We formulate
the inverse spectrum problem as finding the shortest distance between M(Λ) and
π(Rn

+):

minimize F (P, R) :=
1
2
‖PΛP−1 − R ◦ R‖2.(37)

Note that the variable P in (37) resides in the open set of nonsingular matrices whereas
R is simply a general matrix in Rn×n. Since the optimization is over an unbounded
open domain, it is possible that the minimum does not exist. The gradient ∇F of the
objective function F is given by

∇F (P, R) =
(
(∆(P, R)M(P )T − M(P )T ∆(P, R))P−T ,−2∆(P, R) ◦ R

)
,(38)

where

M(P ) := PJP−1

∆(P, R) := M(P ) − R ◦ R.

Therefore, the flow (P (t), R(t)) defined by the differential equations

dP

dt
:= [M(P )T ,∆(P, R)]P−T(39)

dR

dt
:= 2∆(P, R) ◦ R,(40)
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where [·, ·] again denotes the Lie bracket of two matrices, signifies in fact the steepest
descent flow for the objective function F . It is worth noting that the two matrices P
and R are used, respectively, as coordinates to describe the isospectral matrices and
nonnegative matrices. We may have used more dimensions of variables than necessary
to describe the underlying matrices, but that does no harm. The involvement of P−1 in
the differential system (39) and (40), however, is worrisome. To remedy this problem,
we observe that the coefficients of the vector field in (39) and (40) are analytic in t.
By the well known Cauchy–Kovalevskaya theorem [162] it follows that P (t) is analytic
in t as well. We may thus further describe the motion of P (t) in terms of its analytic
singular value decomposition [32]:

P (t) = X(t)S(t)Y (t)T(41)

where X(t) and Y (t) are orthogonal and S(t) is diagonal. The governing equations
for X(t), S(t), and Y (t) can be obtained from the following [139, 190]. Differentiating
both sides of (41), we obtain the following equation after some suitable multiplica-
tions:

XT dP

dt
Y = XT dX

dt
S +

dS

dt
+ S

dY T

dt
Y.(42)

Define

Q(t) := XT dP

dt
Y,(43)

Z(t) := XT dX

dt
,(44)

W (t) :=
dY T

dt
Y.(45)

Note that Q(t) is known from (39) where the inverse of P (t) is calculated from

P−1 = Y S−1XT .(46)

The diagonal entries of S = diag{s1, . . . , sn} provide us with information about the
proximity of P (t) to singularity. On the other hand, comparing the diagonal entries
on both sides of (42), we obtain the differential equation for S(t):

dS

dt
= diag(Q),(47)

since both Z(t) and W (t) are skew symmetric. Comparing the off-diagonal entries on
both sides of (42), we obtain the linear system

qjk = zjksk + sjwjk,(48)
−qkj = zjksj + skwjk.(49)

If s2
k 6= s2

j , we can solve this system and obtain

zjk =
skqjk + sjqkj

s2
k − s2

j

,(50)

wjk =
sjqjk + skqkj

s2
j − s2

k

(51)
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for all j > k. Even in the situation where s2
k = s2

j , the existence of an ASVD
guarantees that the equations must be consistent and so zjk and wjk can still be
obtained. Detailed discussion of this case can be found in [190]. Once Z(t) and W (t)
are known, the differential equations for X(t) and Y (t) are given, respectively, by

dX

dt
= XZ,(52)

dY

dt
= Y WT .(53)

By now we have developed a complete coordinate system (X(t), S(t), Y (t), R(t)) for
matrices in M(Λ) × π(Rn

+). The differential equations (47), (52), (53), and (40)
with the relationship (41) describe how these coordinates should be varied in t to
produce the steepest descent flow for the objective function F . This flow is ready
to be integrated numerically by many initial value problem solvers. We think those
special-purpose integrators developed in [40, 68, 123, 166] are of particular value to
this continuous approach. See also [88, 89] for general discussion in this regard. We
shall review some special tools in section 3.4.1. By using these available solvers, we
have thus developed a numerical method for solving the inverse eigenvalue problems
for nonnegative matrices.

While the Schur–Horn theorem is regarded as classical by now, most of the known
proofs have been nonconstructive or difficult to implement. It has been an interesting
and challenging inverse eigenvalue problem to develop a numerical way of constructing
such a Hermitian matrix. See, for example, [112, 141]. Recently an algorithm using
the continuation idea has been proposed with some success [51]. The solution to the
differential equation

dX

dt
= [X, [diag(X) − diag{a1, . . . , an}, X]](54)

from any initial point X0 ∈ Me(Λ) defines an isospectral flow on Me(Λ) whose limit
point is a solution of the SHIEP. The argument for convergence of this method also
provides a constructive proof of the theorem. A more recent iterative method can be
found in [201].

3.4.1. Special tools for continuation. We have observed in the above some
advantages of using continuous realization methods to tackle difficult inverse eigen-
value problems. A key issue in the continuation method is that the solution flow
stays on a certain invariant manifold. When integrating these differential systems by
numerical methods, the loss of that invariance becomes significant because the proper-
ties that we intend to acquire from that manifold might have been lost. It is therefore
important to study numerical methods for the integration of these dynamical system
that maintain the corresponding invariance. As far as the inverse eigenvalue problems
are concerned, the invariance needed to be preserved is either the isospectral property
or the orthogonality.

In addition to the very vigorous ongoing research in the area of differential al-
gebraic equations, there has been considerable interest in recent years in structure-
preserving methods for systems like the ones we have discussed. To mention a few
examples, there are numerical Hamiltonian methods by Sanz-Serna [166, 167], auto-
matic and projected unitary schemes by Dieci, Russel, and Van Vleck [68], gradient
algorithms by Helmke and Moore [111], modified Gauss–Legendre Runge–Kutta meth-
ods for isospectral flows by Calvo, Iserles, and Zanna [37, 38], systolic algorithms and
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adaptive neural networks by Dehaene [64], and methods of iterated commutators of
ordinary differential equations on Lie groups by Zanna [197]. Most of these results are
fairly new. It is not surprising that the current status of these methods is still quite
primitive since most discussion is still limited to fixed-step analysis. Any advances of
these methods will certainly benefit the computation of the dynamical system that
we have proposed and, in return, benefit the applications that we have mentioned.

In our opinion, a more widely applicable and immediately available approach for
the parameter dynamics is to apply a standard integrator and regularly replace the
approximate solution by an appropriate “projection.” For example, suppose Q is an
approximate solution satisfying

QT Q = I + O(hr)

where r represents the order of the numerical method. Let Q = Q̃R be the unique
QR decomposition of Q with diag(R) > 0. Then

Q̃ = Q + O(hr)(55)

and Q̃ ∈ O(p, q) [88, 68]. The condition diag(R) > 0 is important to ensure the
transition of Q(t) is smooth in t [163]. Higham even points out that the optimal
replacement is given by the orthonormal polar factor [113]. Furthermore, this factor
can be computed by quadratically convergent iteration schemes without significantly
degrading the finite time global error bound for the original integrator. We have
used this nonlinear projection idea alone with traditional variable-order variable-step
methods in many of our latest studies. (The ODE suite [165] is particularly suit-
able and convenient because of the matrix manipulations involved in the dynamical
systems, but any ODE integrator will do.) Numerical experiments indicate that the
implementation is almost free of trouble and that the error bound is consistent with
that estimated in theory [113].

There is plenty of room for improving the implementation. One common feature in
the continuous realization methods is that the desired solution usually appears as the
asymptotically stable equilibrium point of the system. Thus it is desirable to develop
a fast method that can trace the qualitative behavior efficiently without losing the
asymptotically stable equilibrium. This idea of entropy is particularly feasible for the
gradient flows because the objective function naturally serves as a Lyapunov function.
In other words, the conventional concept of stability for a numerical ODE method
might be relaxed somewhat because we are only interested in the limit point, not the
evolution process itself.

Finally, we want to point out that deriving higher-order iterative schemes, not in
the context of discretization of a differential equation, but in the context of a Newton
method, is possible. We have already outlined an idea in the context of the PIEP2.
We have also experimented this idea successfully with other types of inverse eigenvalue
problems. See, for example, [41, 47, 52]. We certainly can apply similar ideas to other
problems.

4. Least squares approximation with spectral constraint.

4.1. Generic form. It is known that an inverse eigenvalue problem, especially
for the real-valued case, may not necessarily have an exact solution. It is also known
that the spectral information, in practice, is often obtained by estimation and hence
need not be rigorously complied with. That is, there are situations where an approx-
imate solution best in the sense of least squares would be satisfactory. In this section
we review how the least squares solution can be obtained.
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All the problems discussed hitherto have a natural generalization to the least
squares formulation. However, recall that any inverse eigenvalue problem has two
constraints. Thus depending upon which constraint is to be enforced explicitly, we
should clarify two ways of defining a least squares approximation.

One natural way is to measure and minimize the discrepancy among the eigen-
values, i.e.:

(LSIEPa) Given a set of scalars {λ∗
1, . . . , λ

∗
m} ⊂ F (m ≤ n), find a matrix X ∈ N

and a set σ = {σ1, . . . , σm} of indices with 1 ≤ σ1 < · · · < σm ≤ n such that the
function

F (X, σ) :=
1
2

m∑
i=1

(λσi(X) − λ∗
i )

2,(56)

where λi(X), i = 1, . . . , n, are eigenvalues of the matrix X, is minimized.
Note that the set of prescribed eigenvalues has cardinality m which might be

less than n. Consequently, associated with the LSIEPa for each fixed X is always a
combinatorics problem

min
1≤σ1<···<σm≤n

m∑
i=1

(λσi
(X) − λ∗

i )
2(57)

that looks for the closest match between a subset of spectrum of X and the prescribed
eigenvalues.

Another way to formulate the least squares approximation is to measure and
minimize the discrepancy between the matrices, i.e.:

(LSIEPb) Given a set M whose elements satisfy a certain spectral constraint and
a set N that defines a structural constraint, find X ∈ M that minimizes the function

F (X) :=
1
2
‖X − P (X)‖2(58)

where P (X) is the projection of X onto N .
The spectral constraint could be, for example, the isospectral surface

W(Λ) := {X ∈ R(n)|X = QT ΛQ, Q ∈ O(n)} ⊂ S(n)

where the complete spectrum Λ := diag{λ1, . . . , λn} is given, or the set

W(Γ, V ) := {X ∈ R(n) or S(n)|XV = V Γ}

where only a portion of eigenvalues Γ := diag{λ1, . . . , λk} and eigenvectors V :=
[v1, . . . , vk] are given. We shall discuss the latter case in section 5, but we mention
it here to remind readers of its least squares formulation. Note that if F (X) = 0 at
a least squares solution, then we have also solved the inverse eigenvalue problem of
finding X ∈ N that satisfies M. So a general SIEP can be solved through the setup
of an LSIEPb. We have already seen a similar setting in the discussion of SIEP4.

For engineering applications, it is mostly the case that the realizability of the
physical system is more critical an issue than the accuracy of the eigenvalues. That
is, the structural constraint N has to be enforced in order that the construction of a
physical system be realizable, whereas a discrepancy in the eigenvalues is sometimes
tolerable often because these eigenvalues are an estimate anyway.
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4.2. Variations. In the LSIEPa, it should be noted that the number of available
parameters for adjusting the matrix X, i.e., the degree of freedom in N , could be
different from the dimension n. We mention one special case of LSIEPa where the
number ` of free parameters might also differ from the number m of the partially
prescribed eigenvalues:

(LSIEPa1) N = {A(d) = A0 +
∑`

i=1 diAi|A0, A1, . . . , A` ∈ S(n) given.}, F = R.
Under the context of LSIEPb, the problem LSIEPa1 has a new face. For a given

Λ∗
m := diag{λ∗

1, . . . , λ
∗
m}, consider the subset

Γ :=
{
Qdiag(Λ∗

m,Λc)QT | Q ∈ O(n),Λc ∈ DR(n − m)
}

(59)

and the affine subspace

A := {A(d)|d ∈ R`}(60)

with A(d) defined in LSIEPa1. Since Γ contains all symmetric matrices in Rn×n with
λ∗

1, . . . , λ
∗
m as part of the spectrum, finding the shortest distance between A and Γ

would be another meaningful least squares approximation. We formulate the problem
as follows:

(LSIEPb1) Find d ∈ R`, Q ∈ O(n), and Λc ∈ DR(n − m) such that the function

G(d, Q,Λ) :=
1
2
‖A(d) − Qdiag (Λ∗

m,Λc) QT ‖2
F ,(61)

is minimized.
The setting of LSIEPb can have other applications, including
(LSIEPb2) M = W(Λ). N = {A} [44].
(LSIEPb3) M = W(Λ) and N = {All Toeplitz matrices in S(n)}.
(LSIEPb4) M = W(Γ, V ), N = {A} and N = R(n) or S(n).
In view of the fact that the spectral and structural constraints are often inconsis-

tent with each other and the fact that the spectral information often is incomplete or
inexact, we think that the least squares formulation of inverse eigenvalue problems is
a very important area that deserves further study.

4.3. Solvability issues. At the first glance, the LSIEPa1 and the LSIEPb1 ap-
pear to be very different. In particular, it appears that no permutation of eigenvalues
is involved in the LSIEPb1, whereas the complementary spectrum Λc in the LSIEPb1
is not mentioned in the LSIEPa1. However, a process of implicit sorting is indeed
happening inside the LSIEPb1 and Λc is somehow settled in the LSIEPa1. In fact, it
can be shown that the LSIEPa1 and LSIEPb1 are equivalent in the following sense
[41].

THEOREM 4.1. Suppose (d∗, σ∗) and (d+, Q+,Λ+) are the global minimizers of
the LSIEPa1 and the LSIEPb1, respectively. Let σ∗ denote the complement of σ∗ over
the set {1, . . . , n}. Then

1. The permutation σ∗ solves (57) with d = d∗.
2. d∗ = d+.
3. The columns of Q+ are orthonormal eigenvectors of A(d∗) arranged in such

a way that QT
+A(d∗)Q+ = diag (Λσ∗(d∗),Λσ∗(d∗)) .

4. Λ+ = Λσ∗(d∗).
5. F (d∗, σ∗) = G(d+, Q+,Λ+).

While the formulation of LSIEPa1 is a natural generalization of the conventional
inverse eigenvalue problems, the formulation of LSIEPb1 enjoys a simple geometric
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intuition. We shall see below how this geometric interpretation motivates a numerical
method.

The seemingly insignificant LSIEPb2 is closely related to the work by Brockett
[31] who relates a number of finite automata to a smooth flow defined by the so-called
double bracket equation. The answer to its solvability issue can also be interpreted as
the important Wielandt–Hoffman theorem [31, 48, 118]. We describe a generic case
where all eigenvalues involved are distinct below [44].

THEOREM 4.2. Assume the given eigenvalues are arranged in the order λ1 >
λ2 > · · · > λn. Let the eigenvalues of the given symmetric matrix A be µ1 > µ2 >
· · · > µn. Then Q ∈ O(n) is a local minimizer of the function ‖QT ΛQ − A‖F if and
only if the columns q1, . . . , qn of the matrix QT are the normalized eigenvectors of A
corresponding respectively to µ1, . . . , µn. The solution to the LSIEPb2 is unique and
is given by

X = λ1q1q
T
1 + · · · + λnqnqT

n .(62)

The sorting properties of eigenvalues acquired in Theorem 4.2 (see also Theo-
rem 4.1) has incited several other important research efforts, including the link be-
tween Toda lattice and gradient flow [22] and hence the sorting of eigenvalues ob-
served in the QR algorithm, the link with the total least squares problem [21], and
applications in linear programming and, in particular, to the interior point methods
[21, 14, 73, 74]. A glimpse of the progress in this fascinating area can be found in [23].

4.4. Numerical methods. Numerical methods for LSIEPa1 and LSIEPb1 are
discussed in [41]. The so-called lift and project method is particularly worth men-
tioning. We sketch the idea below.

The idea is to alternate between Γ and A, that is, for each given d(k) ∈ R`, we
iterate the following two steps:

1. (Lift) Find the point Z(k) ∈ Γ such that dist(A(d(k)), Z(k)) = dist(A(d(k)),Γ).
We call Z(k) a lift of A(d(k)) onto Γ.

2. (Projection) Find the point d(k+1) ∈ R` such that dist(A(d(k+1)), Z(k)) =
dist(Z(k),A). The point A(d(k+1)) ∈ A is called a projection of Z(k) onto A.

A schematic diagram of the iteration is illustrated in Figure 5. We use the shaded
region in Figure 5 to symbolize that the topology of Γ could be much more complicated
than one of its substructures Mk that will be defined later. The method only needs
to work with the much simpler set Mk.

The projection of Z(k) ∈ Rn×n onto A is easy to do. The vector d(k+1) is the
solution of the linear system

∑̀
i=1

〈Ai, Aj〉d(k+1)
i = 〈Z(k) − A0, Aj〉, , j = 1, . . . , `,(63)

where 〈A, B〉 := trace(AT B) is the Frobenius inner product for matrix A and B. Note
that the coefficient matrix in (63) is independent of k. So the left-hand side of (63)
needs to be factorized only once.

The lift step is more involved because elements in Γ involve n − m undetermined
eigenvalues Λc. Motivated by Theorem 4.1, however, the step can proceed as fol-
lows: Suppose A(d(k)) = Q(d(k))diag(Λσ(k)(d(k)),Λ

σ(k)(d(k))) Q(d(k))T is the spectral
decomposition of A(d(k)) where σ(k) = σ(k)(d(k)) is the permutation that solves the
combinatorics problem (57) with d = d(k) and Q(d(k)) is the corresponding orthogonal
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FIG. 5. Geometric sketch of lift and projection.

matrix of eigenvectors. Then the shortest distance between A(d(k)) and Γ is attained,
by the Wielandt–Hoffman theorem [31, 48], at the point

Z(k) := Q(d(k))diag
(
Λ∗

m,Λ
σ(k)(d

(k))
)

Q(d(k))T .(64)

In other words, in order to find the shortest distance from A(d(k)) to Γ, it suffices
to find the shortest distance from A(d(k)) to a substructure Mk of Γ, where the
substructure

Mk :=
{

Qdiag
(
Λ∗

M ,Λ
σ(k)(d

(k))
)

QT |Q ∈ O(n)
}

(65)

has a much simpler topology than Γ because the diagonal elements are fixed (see
Figure 5). The cost for this lift is to solve (57) per step. Clearly, when the iterates
are reaching convergence the permutations σ(k) should become stabilized.

THEOREM 4.3. The lift and project method is a descent method in the sense that

‖A(d(k+1)) − Z(k+1)‖2
F ≤ ‖A(d(k+1)) − Z(k)‖2

F ≤ ‖A(d(k)) − Z(k)‖2
F .(66)

Thus the method generates a sequence of matrix pairs {(Z(k), A(d(k)))} that converges
to a local stationary point for the problem of minimizing (61).

5. Partially described inverse eigenvalue problem.

5.1. Generic form. In the reconstruction of a system, instead of knowing the
complete spectrum, there are also situations where only a portion of eigenvalues and
eigenvectors are available. This is especially the case when due to the complexity or
size of the physical system, no reasonable analytical tools are available to evaluate
the entire spectral information. Through the vibration test, where the excitation and
the response of the structure at many points are measured experimentally, there are
identification techniques that can extract a part of the eigenpairs of the structure from
the measurements [15, 71]. A generic partially described inverse eigenvalue problem
is as follows:

(PDIEP) Given vectors {v(1), . . . , v(k)} ⊂ Fn and scalars {λ1, . . . , λk} ⊂ F where
1 ≤ k < n, find a matrix X ∈ N such that Xv(i) = λiv

(i) for i = 1, . . . , k.
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5.2. Variations. More specifically we could consider problems such as:
(PDIEP1) F = R. N = {All Toeplitz matrices in S(n)} [46].
(PDIEP2) F = R. N = {All Jacobi matrices in S(n)} [203].
(PDIEP3) F = R, N = {All per-symmetric Jacobi matrices in S(n)} [203].
As an example of another type of PDIEP, consider the dynamical system

M
d2

dt2
v + C

d

dt
v + Kv = 0,(67)

where M, C, K are symmetric and M is positive definite, that arises in a wide range of
applications. Upon separation of variables, the system naturally leads to the quadratic
λ-matrix problem:

P (λ)x = 0(68)

with

P (λ) = Mλ2 + Cλ + K.(69)

Suppose now a state feedback forcing function of the form

u(t) = b(fT d

dt
v(t) + gT v(t)),(70)

where b, f, g ∈ Rn are constant vectors, is applied to the system. The resulting closed
loop system leads to the λ-matrix problem with pencil

Q(λ) = Mλ2 + (C − bfT )λ + (K − bgT ).(71)

The goal of this feedback control u(t) is to relocate those bad eigenvalues in (69) that
are either unstable or lead to large vibration phenomena in the system (67) while
maintaining those good eigenvalues. This notion gives rise to the following partial
pole assignment problem.

(PDIEP4) Given matrices M, C, K, its associated eigenvalues {λ1, . . . , λ2n} of the
pencil (69), a fixed vector b ∈ Rn, and m complex numbers {µ1, . . . , µm}, m ≤ n,
find f, g ∈ Cn such that the spectrum of the closed loop pencil (71) has spectrum
{µ1, . . . , µm, λm+1, . . . , λ2n}.

Other variations of problems include:
(PDIEP5) Given two distinct scalars λ, µ ∈ R and two nonzero vectors x, y ∈ Rn,

find two Jacobi matrices J and J so that Jx = λx and Jy = µy, where J and J differ
only in the (n, n) position [203].

(PDIEP6) Given distinct scalars {λ1, . . . , λn} ⊂ R and a nonzero vector x ∈ Rn,
find a Jacobi matrix J such that λ(J) = {λ1, . . . , λn} and that either Jx = λ1x or
Jx = λnx [203].

(PDIEP7) Construct an n × n symmetric band matrix of bandwidth p from the
knowledge of all the eigenvalues and the first p components of all the normalized
eigenvectors [95].

5.3. Solvability issues. Regarding the PDIEP1, it is known that eigenvectors
of a Toeplitz matrix have a special structure [4, 39, 66], i.e., eigenvectors of any
symmetric and centro-symmetric matrix must be either symmetric or skew-symmetric.
It is first proved by Cybenko that the dimension of Toeplitz matrices with a single
prescribed eigenvector in Rn should be at least [n+1

2 ] [60]. Thus the fact that the



30 MOODY T. CHU

TABLE 1

n = odd (even) symmetric skew-symmetric
symmetric 2/0 (3/1) 2/0 (2/0)

skew-symmetric 2/0 (2/0) 4/0 (3/1)

dimension of Toeplitz matrices with two prescribed eigenvectors is independent of n
appears a little bit surprising. More precisely, let

S(v) := {c ∈ Rn|T (c)v = λv for some λ ∈ R}

denote the affine subspace of all symmetric Toeplitz matrices with v as one of its
eigenvectors. Then the PDIEP1 with k = 2 can be answered as follows [46].

THEOREM 5.1. Let the entry π(u, v)/η in Table 1 represent the pair of num-
bers where π(u, v) := dim(S(u)

⋂
S(v)) is the dimension of the affine subspace of all

symmetric Toeplitz matrices with u, v as two of its eigenvectors and η is the dimen-
sion of the affine subspace of solutions to the PDIEP1 with k = 2. Then depending
upon whether n is odd (or even) and the symmetry of the eigenvectors, for almost all
eigenvectors u and v and for any eigenvalues λ1 and λ2, the Table 1 is true.

Thus, for example, if n is odd and if at least one of the given eigenvectors is
symmetric, or if n is even and one eigenvector is symmetric and the other is skew-
symmetric, then the Toeplitz matrix is uniquely determined. That is, two eigenvectors
and two eigenvalues can uniquely determine a Toeplitz matrix in these cases.

The solution to the PDIEP4 is given in the following theorem [62, 161].
THEOREM 5.2. Let the eigenvector matrix and eigenvalue matrix of (69) be parti-

tioned into X = [X1, X2] and Λ = diag(Λ1,Λ2), respectively, where X1 ∈ Cn×m, X2 ∈
Cn×(2n−m), Λ1 ∈ DC(m), and Λ2 ∈ DC(2n − m). Define β = [β1, . . . , βm]T ∈ Cm by

βj :=
1

bT xj

µj − λj

λj

m∏
i=1,i 6=j

µi − λj

λi − λj
.(72)

Then the pair of vectors

f := MX1Λ1β(73)
g := −KX1β(74)

solve the PDIEP4.

6. Multivariate inverse eigenvalue problem. A multivariate eigenvalue prob-
lem is to find real scalars λ1, . . . , λm and a real vector x ∈ Rn such that equations

Ax = Λx(75)
||xi|| = 1, i = 1, . . . , m(76)

are satisfied, in which A ∈ S(n) is a given positive definite matrix partitioned into
blocks

A =


A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

...
Am1 Am2 . . . Amm

 ,
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Λ is the diagonal matrix

Λ = diag{λ1I
[n1], . . . , λmI [nm]}

with I [ni] the identity matrix of size ni, and x ∈ Rn is partitioned into blocks

x = [xT
1 , . . . , xT

m]T

with xi ∈ Rni . Trivially, the single variate case when m = 1 is simply a classical
symmetric eigenvalue problem. The general problem arises from multivariate canoni-
cal analysis in statistics [49, 110, 119]. In the context of factor analysis, for example,
the original n random variables are divided into m “factors” each of which consists
of ni variables, blocks in A represent covariance matrices between these factors, and
xi determines how these ni variables should be combined into one simple factor. The
equations (75) and (76) represent necessary conditions where coefficients are to be
determined so that the resulting linear combinations of sets of random variables are
maximally correlated.

If m = 2, the problem can still be handled by using the SVD decomposition.
But for m > 2, only a heuristic iterative method has been proposed by Horst [119],
but the convergence theory has been proved only recently [49]. It is further proved
that the number of solutions is

∏m
i=1(2ni). Quite surprisingly, it appears that this

problem has never been studied in the numerical linear algebra community. Neither
the algebraic theory nor numerical methods are in place by any standard.

The multivariate eigenvalue problem is interesting in its own right and is intricate
with many possible new research directions. On the other hand, following the spirit
of all other inverse eigenvalue problems discussed above, we can formulate various
kinds of multivariate inverse eigenvalue problems, i.e., given the partition pattern
and spectral information we want to determine whether a sample matrix A can be
constructed. This study would be useful for constructing statistical models. Con-
ceivably, these problems would be far more challenging to handle than the already
difficult single-variate inverse eigenvalue problems. We are not aware of any work in
this area.

7. Conclusion. A physical process is often described by a mathematical model
of which the parameters represent important physical quantities. An important step
in the construction of a mathematical model for engineering applications is to verify
the model by comparing the predicted behavior of the model with experimental results
and then to update the model to more accurately represent the physical process. An
inverse eigenvalue problem amounts to one such modeling process in which quantities
are represented in terms of matrices, whereas the comparison is based upon the spec-
tral information and the update is governed by the underlying structure constraint.

We have briefly discussed in this paper a variety of inverse eigenvalue prob-
lems. These problems are identified and classified according to their mathematical
attributes. Some of the problems have immediate engineering application while oth-
ers are perhaps more mathematical abstraction. Regardless, these inverse eigenvalue
problems raise some fundamental questions including issues of solvability, numerical
reconstruction, sensitivity of the reconstruction to noisy data, and so on. We have
reviewed some of the known results, but more importantly we have pointed out many
more unsettled open problems. Table 2 offers a quick glimpse at the current status
of problems surveyed in this paper. The results that have been discussed specifically
in this presentation are identified by theorem and/or section numbers; otherwise, we
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TABLE 2

Variation Solvability Computability Relation to Others
PIEP1 [170, 180] ?
PIEP2 ? Section 2.5, [47, 85] MIEP2, SIEP1
PIEP3 Thm. 2.4 [189]
AIEP1 [142, 143, 147, 148] [144]
AIEP2 [103, 106, 142, 143, 147, 148] [18, 24, 27, 69, 85, 107, 130,

146, 187]
AIEP3 Thm. 2.1 [43, 194]
AIEP4 ? [69]
AIEP5 ? [33]
MIEP1 [181, 149] [104, 168] PIEP1
MIEP2 [105, 106, 168]

√
PIEP2

MIEP3 Thm. 2.2 ?
MIEP4 ? [69]
MIEP5 ? ?
SIEP1 Thm. 3.1 Section 3.4, [52, 128, 129, 184] PIEP2
SIEP2 [28] [26, 116]
SIEP3 ? [45]
SIEP4 Thm. 3.3 & 3.4 Section 3.4 SIEP5
SIEP5 ? Section 3.4 & Thm. 3.5, [54] SIEP4
SIEP6a Thm. 3.6 [27, 28, 92, 100, 108, 116, 117]
SIEP6b Thm. 3.8 [161]
SIEP7

√
[26, 27, 76]

SIEP8
√

[28]
SIEP9 [27] [117]
SIEP10

√
[19, 25, 27, 136, 160]

PISVP ? [47] PIEP2
SHIEP Thm. 3.9 [51, 201]
LSIEPa1

√
Section 4.4 & Thm. 4.1 LSIEPb1

LSIEPb1
√

Section 4.4 LSIEPa1
LSIEPb2 Thm. 4.2

√

LSIEPb3
√

Section 3.4 SIEP1
LSIEPb4 ? ?
PDIEP1 Thm. 5.1 [62, 161]
PDIEP2 [203] [203]
PDIEP3 [203] [203]
PDIEP4 Thm. 5.2

√

PDIEP5 [203] [203]
PDIEP6 [203] [203]
PDIEP7

√
[95]

MVIEP ? ? ?

try to list some references for further study. Be cautioned that by no means is the
list complete. We have attached an extensive bibliography of pertinent literature in
this area for further reference. The question mark “?” in the table indicates that we
are not aware of any result in that regard. On other hand, a listing of references does
not necessarily imply that the problem is completely solved. Quite to the contrary,
often the listing represents only some partial results. The check mark “

√
” indicates

that some results are available but either the author fails to locate the source or these
results can be derived from other established facts.

It is hoped that this presentation will serve to stimulate further research in this
direction.
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