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Abstract. In this note we give a glimpse of the fractional Laplacian.
In particular, we bring several definitions of this non-local operator and
series of proofs of its properties. It is structured in a way as to show that
several of those properties are natural extensions of their local counter-
parts, with some key differences.
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1. Introduction

During the last decades the study of non-local equations was boosted by
large range of applications in financial mathematics (as a pricing model for
American options, [27]), optimal design problems, [30], competitive stochas-
tic games, [11, 12], population dynamics, combustion processes, catalysis
process, bio-technologies, chemical engineering, and other areas. This note
is a primer to a classical example of a non-local operator - the fractional
Laplacian. Over the years several advanced and comprehensive notes and
books have been written on the subject, such as [1, 6, 8, 14, 20] among
others. This primer is intended for those students and young researchers
who are already acquainted with the classical Laplace operator and want
to get a brief sense of the fractional Laplacian. The latter being a lot like
classical Laplacian, at the same time is also quite different. As we will see,
the fractional Laplacian can be defined in various ways, and like in case
of the classical Laplacian, it satisfies to a mean value property, maximum
principle, Harnack inequality, Liouville theorem, and so forth. Moreover,
there are Poisson formula and Green function available, and fractional har-
monic functions, like classical harmonic functions, are C∞. Of course, the
non-local nature of the fractional Laplacian dictates certain modifications in
those results. However, once the reader gets a glimpse of the story “behind
the scene”, these modifications seem quite natural. Obviously, there are
also striking differences between these operators. In this note we emphasize
those too.

The Laplacian,

∆u := div(∇u),
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is a classical example of a local operator. It arises naturally, when for exam-
ple, looking at a Brownian motion originated in a bounded domain (with a
smooth boundary): the expected value of a function, when the motion hits
the boundary for the first time, solves a Dirichlet problem for the Laplace
operator. In other words, the unique solution of the problem

{

∆u = 0 in Ω,

u = f on ∂Ω,

where Ω is a bounded domain with a smooth boundary, and f ∈ C(∂Ω), is
given by

u(x) = E (f(Xτ )) .

Here x ∈ Ω is the point where the Brownian motion originated, Xτ is where
it hits the boundary for the first time (τ is the stopping time), and E is
the expected value of the process. If the process tends to move in certain
directions more than in other directions, then we deal with equations with
coefficients. These kind of models arise in electromagnetism, fluid dynamics,
thermodynamics, etc. (see, for example, [24]). Thus, continuous processes
lead to a local problem. Jump processes, on the other hand, lead to non-local
problems, [3, 11, 12, 24]. If in the example above instead of a continuous
process one deals with a jump process, then we end up solving the non-local
Dirichlet problem. More precisely, for a purely jump Lévy process, origi-
nated in a bounded domain, the expected value of the function at the first
exit point solves the non-local Dirichlet problem, i.e., the unique solution of
the problem

{

(−∆)su = 0 in Ω,

u = f in R
n \ Ω,

is given by

u(x) = E (f(Xτ )) .

As before, x ∈ Ω is the point where the jump process originated, f ∈
C(Rn \ Ω) and Xτ ∈ R

n \ Ω is the first exit point. The operator (−∆)s is
the fractional Laplacian and for s ∈ (0, 1) is defined by

(−∆)su(x) : = cn,s P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

= cn,s lim
ε→0+

∫

Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy,

where cn,s is a normalization constant depending only on n and s. Here
P.V. indicates that the integral should be understood in the “principle value
sense” (defined by the last equality). Observe that unlike the problem driven
from a continuous process, the boundary in the model obtained for a jump
process is substituted by the whole complement of the set Ω. The idea
behind this is that when jumping out of Ω the process can end up at any
point in Ωc. That is, the complement of the domain in the non-local setting
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plays the role of the boundary in the local setting. This fact has its reflection
on the modifications of some basic properties, as we will see later.

In the local setting, to check whether a partial differential equation holds
at a particular point, one needs to know only the values of the function in
an arbitrarily small neighborhood of that point, whereas in the non-local
setting it is the opposite: in order to check whether a non-local equation
holds at a point, one needs information about the values of the function
far away from that point. Therefore, when considering long-range integra-
tion, non-local models become more accurate. In other words, unlike local
versions of problems, which can feel changes only on the boundary of the
substance, non-local models become sensitive to changes that occur faraway.
The following simple example shows the effect of non-locality. If 0 ≤ u ≤ 1
is such that u ∈ C∞

0 (B2) and u ≡ 1 in B1, then for any x ∈ R
n \B4 one has

∆u(x) = 0, while

−(−∆)su(x) = cn,s P.V.

∫

Rn

u(y)− u(x)

|x− y|n+2s
dy =

∫

B2

u(y)

|x− y|n+2s
dy

≥
∫

B1

dy

(|x|+ 1)n+2s ≥ C|x|−n−2s,

for a constant C > 0. In fact, |(−∆)su(x)| ≤ C|x|−n−2s (see [1, Appendix
B], for example). As we will see below, the non-local nature of the fractional
Laplacian endows somewhat surprising behavior for solutions of equations
driven by it, a remarkable example of which is the fact that any (smooth)
function is fractional harmonic up to a small error, Theorem 12.1.

This note is organized as follows. After introducing some notations, in
Section 2 we bring several definitions of the fractional Laplacian. Yet another
definition of this operator is given in Section 3, where also its fundamental
solution and several properties are discussed. Some elementary properties
are presented in Section 4. In Section 5, the mean value property is proved.
Section 6 is dedicated to the maximum principle. Section 7 is devoted to
the Harnack inequality. Liouville theorem in the fractional setting is proved
in Section 8, followed by Schauder type estimates in Section 9. Section
10 concerns Green’s function for the ball. In Section 11 it is shown that
fractional harmonic functions are locally C∞. Finally, in Section 12, we see
that all functions are fractional harmonic up to a small error.

Notations

Ω ⊂ R
n is a bounded domain;

Diu := Dxiu := ∂u
∂xi

;

Du := (D1u,D2u, . . . ,Dnu);
Dνu := ∂u

∂ν = Du · ν;
x+ := max{x, 0}.
For a multi-index γ = (γ1, γ2, . . . , γn), we use |γ| := γ1 + γ2 + . . .+ γn.
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For α ∈ (0, 1] and k ∈ N, the Hölder semi-norm is defined as follows:

[u]C0,α(Ω) := sup
x 6=y

|u(x)− u(y)|
|x− y|α ,

[u]Ck,α(Ω) := max
|γ|=k

[Dγu]C0,α(Ω),

where Dγu := ∂γ1
x1

. . . ∂γn
xnu.

The Hölder space Ck,α(Ω) consists of all functions u ∈ Ck(Ω) for which

‖u‖Ck,α(Ω) :=
∑

|γ|≤k

‖Dγu‖C(Ω) +
∑

|γ|=k

[Dγu]C0,α(Ω) < ∞.

Cα := C0,α, if α ∈ (0, 1] and Cα := C1,α−1, if α ∈ (1, 2], and similarly,
Ck+α := Ck,α, if α ∈ (0, 1] and Ck+α := Ck+1,α−1, if α ∈ (k, k + 1].

We use S for the Schwartz space of rapidly decreasing C∞ functions in
R
n. More precisely,

S :=

{

u ∈ C∞(Rn); sup
x∈Rn

|xβDαu(x)| < ∞, ∀α, β ∈ N
n
0

}

.

For s ∈ (0, 1), set

L1
s(R

n) :=

{

u ∈ L1
loc(R

n);

∫

Rn

|u(y)|
1 + |y|n+2s

dy < +∞
}

. (1.1)

Also Br(x0) is the ball of radius r centered at x0, and Br := Br(0).

2. Several definitions of the fractional Laplacian

In this section we bring five definitions of the fractional Laplacian (one
more definition is given in the next section). These definitions are all equiv-
alent once u ∈ S, [21]. There are several other definitions of the fractional
Laplacian. We refer the interested reader to, for example, [20, 21, 28].

2.1. As a singular integral. For s ∈ (0, 1) and u ∈ S, the fractional
Laplacian of u is defined as

(−∆)su(x) := cn,s P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy. (2.1)

Here

cn,s :=

∫

Rn

1− cos ζ1
|ζ|n+2s

dζ (2.2)

is a normalization constant depending only on n and s (see the proof of
Proposition 2.1 below). The integral in (2.1) is absolutely convergent when
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0 < s < 1/2. Indeed,
∫

Rn

|u(x)− u(y)|
|x− y|n+2s

dy ≤ C

∫

Br

|x− y|
|x− y|n+2s

dy + ‖u‖L∞(Rn)

∫

Rn\Br

dy

|x− y|n+2s

≤ C

[

∫

Br

dy

|x− y|n+2s−1
+

∫

Rn\Br

dy

|x− y|n+2s

]

= C

[
∫ r

0

dt

|t|2s +

∫ +∞

r

dt

|t|2s+1

]

< ∞,

where the constant C > 0 depends only on ‖u‖L∞(Rn), ‖Du‖L∞(Rn) and n.
As for 1/2 ≤ s < 1, the integral in (2.1) is understood in the “Principle
Value” sense, i.e.,

(−∆)su(x) = cn,s lim
ε→0+

∫

Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy.

For s ∈ (0, 1), the constant cn,s in (2.1) does not play any essential role on
the properties of the fractional Laplacian. Its role is important only in the
limits as s → 0+ and s → 1− (for the asymptotic of this constant, as s → 0+

and s → 1− see [14, Section 4]).
Observe that although in (2.1), the fractional Laplacian was defined for

u ∈ S, however, the integral is well defined for less regular functions. In fact,
the assumption on u at infinity can be weakened by assuming u ∈ L1

s(R
n),

where L1
s(R

n) is defined by (1.1). This can be checked using approximation
with Schwartz functions (for details we refer the reader to [27, Proposition
2.4]). Furthermore, the C∞ regularity requirement on u can be relaxed as
well by asking just u ∈ C2s+ε in a neighborhood of x ∈ R

n, for ε > 0 small.
Indeed, for s ∈ (0, 12) and 2s+ ε ≤ 1 and r > 0 small we have

∫

Br(x)

u(x)− u(y)

|x− y|n+2s
dz ≤ [u]C2s+ε(Br(x))

∫

Br(x)

|x− y|2s+ε

|x− y|n+2s
dy < ∞,

hence the fractional Laplacian is well defined at x by (2.1). For s ∈ [12 , 1)

still u ∈ C2s+ε = C1,2s+ε−1 would suffice.

2.2. Removing singularity. Note that, in general, the right hand side of
(2.1) is not well defined, as the integral may have singularity near x. Also,
one would like to get rid of the P.V. in the definition. As the kernel in (2.1)
is symmetric, a simple change of variable, z := y − x, yields

(−∆)su(x) = cn,s P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

= cn,s P.V.

∫

Rn

u(x)− u(x+ z)

|z|n+2s
dz

= cn,s P.V.

∫

Rn

u(x)− u(x− z)

|z|n+2s
dz.

(2.3)

This leads to the following definition of the fractional Laplacian.
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Definition 2.1. For s ∈ (0, 1) and u ∈ S, the fractional Laplacian of u is
defined by

(−∆)su(x) :=
cn,s
2

∫

Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy, (2.4)

where cn,s is the constant defined by (2.2).

Indeed, from (2.3) one gets

(−∆)su(x) =
cn,s
2

P.V.

∫

Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy.

This representation of the fractional Laplacian removes the singularity at
the origin, as the second order Taylor expansion gives

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
≤

‖D2u‖L∞(Rn)

|y|n+2s−2
,

which is integrable near zero. Thus, we can remove P.V. in the previous
equality and get (2.4).

Remark 2.1. As a consequence, (−∆)su is in fact well defined by (2.4) for
any u ∈ C2(Rn) ∩ L∞(Rn). In that sense any constant, although not being
in S (unless identically zero), is fractional harmonic.

2.3. As a distribution. In L1
s(R

n) fractional Laplacian can be defined as
a distribution by

〈(−∆)su, ϕ〉 :=
∫

Rn

u(x)(−∆)sϕ(x) dx, ∀ϕ ∈ C∞
0 (Rn). (2.5)

In other words, for the definition of the fractional Laplacian to make sense,
it is enough to assume that u is locally integrable and has a suitable growth
control at infinity.

2.4. As a generator of a Lévy process. Fractional Laplacian can be
defined also as a generator of 2s-stable Lévy process, [2]. More precisely, if
Xt is the isotopic 2s-stable Lévy process starting at 0, then for a smooth
function u

(−∆)su(x) = lim
t→0+

1

t
E [u(x)− u(x+Xt)] .

2.5. As a Fourier transform. The fractional Laplacian is a pseudo-differential
operator, as suggests the following proposition. It is here that the choice of
the constant cn,s becomes evident.

Proposition 2.1. If s ∈ (0, 1) and u ∈ S, then

(−∆)su(x) = F−1
(

(2π|ξ|)2s û(ξ)
)

, ∀ξ ∈ R
n, (2.6)

where F = û is the Fourier transform, i.e.

Fu(ξ) := û(ξ) :=

∫

Rn

u(x)e−2πiξ·x dx.
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Proof. This follows by applying Fourier transform in (2.4) and using Fubini
theorem. Indeed, as observed above, (2.4) removes singularity at the origin,
and hence, the integrant is in L1. Using Fubini theorem, we then exchange
the integral in y with the Fourier transform in x. Thus, if ξ is the frequency
variable, from (2.4) one has

F ((−∆)su(x)) (ξ) =
cn,s
2

∫

Rn

F (2u(x)− u(x+ y)− u(x− y))

|y|n+2s
dy

=
cn,s
2

∫

Rn

û(ξ)
2− e2πiξ·y − e−2πiξ·y

|y|n+2s
dy

= cn,s û(ξ)

∫

Rn

1− cos(2πξ · y)
|y|n+2s

dy.

Therefore, to see (2.6), it remains to check

cn,s

∫

Rn

1− cos(2πξ · y)
|y|n+2s

dy = (2π|ξ|)2s . (2.7)

Set

I(ξ) :=

∫

Rn

1− cos(2πξ · y)
|y|n+2s

dy.

where we used the change of variable z := |ξ|y (still labeling the new variable
with y). If R is some rotation that takes e1 = (1, 0, 0, . . . , 0) to ξ/|ξ|, i.e.,
Re1 = ξ/|ξ|, then

I(ξ) = |ξ|2s
∫

Rn

1− cos (2πRe1 · y)
|y|n+2s

dy

= |ξ|2s
∫

Rn

1− cos
(

2πRT y · e1
)

|y|n+2s
dy (z := RT y)

= |ξ|2s
∫

Rn

1− cos (2πz1)

|z|n+2s
dz (ζ := 2πz)

= (2π|ξ|)2s
∫

Rn

1− cos ζ1
|ζ|n+2s

dζ,

which confirms (2.7), since cn,s is defined by (2.2). Here z1 and ζ1 are the
first coordinate of the vector z and ζ respectively.

To be correct, one needs to make sure that the constant cn,s is a finite
number. This is indeed the case, as inside the ball B1, using the Taylor
expansion of the cosine function, one estimates

∫

B1

|1− cos ζ1|
|ζ|n+2s

dζ ≤
∫

B1

|ζ1|2
|ζ|n+2s

dζ ≤
∫

B1

1

|ζ|n+2s−2
dζ < ∞,

and outside of B1 we have
∫

Rn\B1

|1− cos ζ1|
|ζ|n+2s

dζ ≤
∫

Rn\B1

2

|ζ|n+2s
dζ < ∞.

�
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Remark 2.2. The constant cn,s defined by (2.2), can be written in terms of
the Gamma function in the following way

cn,s =
s4sΓ

(

n+2s
s

)

π
n
2 Γ(1− s)

,

where

Γ(r) :=

∫ ∞

0
tr−1e−t dt, r > 0.

We refer the reader to [29, Lemma 5.1], [20, Propositions 5.6 and 5.1] or [8,
Lemma 2.3], where the calculations are carried out.

This last definition of the fractional Laplacian can be used to prove the
following integration by parts formula and construct a non-trivial example
of a fractional harmonic function. Namely, if u, v ∈ S, then

∫

Rn

(−∆)su(x)v(x) dx =

∫

Rn

u(x)(−∆)sv(x) dx. (2.8)

When s = 1, (2.8) is just integration by parts. For s ∈ (0, 1) it follows from
(2.6), [20, Lemma 5.4].

As commented above, Remark 2.1, constant functions are fractional s-
harmonic. Below we bring another example of an s-harmonic function.

Theorem 2.1. The function u(x) := xs+ is s-harmonic in the upper half
space. More precisely,

(−∆)su(x) =

{

0, x > 0,

−C|x|−s, x < 0,

where C > 0 is a constant depending only on s.

Proof. There are several proofs of this fact, [8, Section A.1 and Theorem
2.4.1]. It can be shown by direct calculations making use of the definition of
the fractional Laplacian via Fourier transform, (2.6). For the probabilistic
intuition behind this, we refer the reader to [8, Section 2.4]. �

3. An extension argument and beyond

Another definition of the fractional Laplacian can be given using the cele-
brated Caffarelli-Silvestre extension problem, [10] (for the argument in prob-
abilistic terms see [23]). The construction of the extension hints a good
candidate for the fundamental solution of the fractional Laplacian. More
precisely, for a function u : Rn → R, consider its extension to the upper half
space, i.e., v : Rn× [0,+∞) → R such that it satisfies the following equation

∆xv +
1− 2s

y
vy + vyy = 0, (3.1)

v(x, 0) = u(x), (3.2)
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where vy = ∂v
∂y . Note that (3.1) can be written as

div
(

y1−2s∇v
)

= 0, (3.3)

which is the Euler-Lagrange equation of the functional
∫

y>0
y1−2s|∇v|2 dx dy.

To understand the intuition behind (3.1), suppose for a moment, that τ :=
1 − 2s is a non-negative integer and v(x, y) : Rn × R

1+τ → R is radially
symmetric in y, i.e., v(x, y) = v(x, y′) for |y| = |y′| = r. Observe that the
Laplacian of v in terms of the variables x and r looks like the left hand side
of (3.1),

∆v = ∆xv +
τ

r
vr + vrr.

Thus, the function v can be seen as the harmonic extension of u from R
n

to R
n+1+τ . The latter, of course, has no meaning when τ is not an integer,

but as it turns out, solutions of (3.1) still carry many properties of har-
monic functions when τ is not an integer. The fundamental solution of the
Laplacian in n+ 1 + τ dimension is, [16, p. 22], for n− 1 + τ > 1,

φ(x, y) :=
bn,s

|(x, y)|n−1+τ
=

bn,s

(|x|2 + |y|2)
n−1+τ

2

,

where the constant bn,s is defined by

bn,s :=
Γ
(

n
2 − s

)

4sπ
n
2 Γ(s)

.

The function

φ(x, 0) := φ(x) :=



















bn,s
|x|n−2s

, if n ≥ 2,

− 1

π
log |x|, if n = 1,

(3.4)

where x ∈ R
n \ {0} plays the role of the fundamental solution for the frac-

tional Laplacian, i.e., it solves (in the distributional sense, (2.5)) the equation
(−∆)sφ = δ0, where δ0 is the Dirac delta evaluated at zero, [6, Theorem
2.3]. Observe also that as v solves the problem (3.1)-(3.2), it can be written
(see [16, p. 37]) explicitly in terms of the Poisson kernel for the half-space:

v(x, y) =

∫

Rn

P (x− ξ, y)u(ξ) dξ, (3.5)

where

P (x, y) := Bn,s
y2s

(|x|2 + |y|2)
n+2s

2

. (3.6)



10 R. TEYMURAZYAN

The kernel P is indeed the Poisson kernel, since it solves (3.1) for y > 0 and
noting that P (x, y) = y−nP (x/y, 1), converges, as y → 0, to a multiple of
the Dirac delta. The constant Bn,s is chosen such that

∫

Rn

P (x− ξ, y) dξ = 1. (3.7)

Finally, we bring another definition of the fractional Laplacian in terms
of the extension function v.

Proposition 3.1. (−∆)su = −cn,s lim
y→0+

y1−2svy.

Proof. Recalling (3.5), (3.7), (3.2), (3.6) and (2.1), we compute

lim
y→0+

y1−2svy = lim
y→0+

v(x, y)− v(x, 0)

y2s

= lim
y→0+

1

y2s

∫

Rn

P (x− ξ, y) (u(ξ)− u(x)) dξ

= lim
y→0+

∫

Rn

u(ξ)− u(x)

(|x− ξ|2 + |y|2)
n+2s

2

dξ

= P.V.

∫

Rn

u(ξ)− u(x)

|x− ξ|n+2s
dξ

= −c−1
n,s(−∆)su(x).

�

Furthermore, a reflection argument makes sure that (3.3) makes sense in
a ball of radius r centered at {y = 0} in dimension n+ 1.

Lemma 3.1. If v : Rn × [0,+∞) → R solves (3.1) such that for |x| ≤ r,

lim
y→0

y1−2svy(x, y) = 0, (3.8)

then

ṽ(x, y) :=

{

v(x, y), y ≥ 0,

v(x,−y), y < 0
(3.9)

is a weak solution of

div
(

|y|1−2s∇ṽ
)

= 0

in the (n+ 1) dimensional ball of radius r.

Proof. We need to verify that
∫

Bn+1
r

|y|1−2s∇ṽ · ∇ϕdx dy = 0,
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for any test function ϕ ∈ C∞
0 (Bn+1

r ), whereBn+1
r :=

{

(x, y); |x|2 + |y|2 < r2
}

.

Separating a strip of width ε > 0 around y = 0 in Bn+1
r , we write

∫

Bn+1
r

|y|1−2s∇ṽ · ∇ϕdx dy =

∫

Bn+1
r \|y|<ε

+

∫

Bn+1
r ∩|y|<ε

=

∫

Bn+1
r \|y|<ε

div
(

|y|1−2sϕ∇ṽ
)

dx dy +

∫

Bn+1
r ∩|y|<ε

|y|1−2s∇ṽ · ∇ϕdx dy

=

∫

Bn+1
r ∩|y|=ε

ϕ|y|1−2sṽy(x, ε) dx+

∫

Bn+1
r ∩|y|<ε

|y|1−2s∇ṽ · ∇ϕdx dy.

The first integral in the right hand side of the above equality goes to zero, as
ε → 0. So does the second integral, as |y|1−2s|∇v|2 is locally integrable. �

Remark 3.1. In fact (see Theorem 11.1 below) (3.8) implies that v is C∞

near x, and the limit in (3.8) is uniform. However, in general, we under-
stand it in the weak sense.

Proposition 3.1 and (3.3) show the importance of the extension argument.
As it turns out, the study of a non-local operator (the fractional Laplacian)
can be reduced to the study of a local operator in a higher dimensional space
(as, for example, in [9, 30]). This comes with the price of the weighted term
|y|1−2s in the equation, but that weight belongs to the second Muchenhoupt
class A2, meaning

∫

B
|y|1−2s

∫

B
|y|2s−1 < ∞,

where B is any ball in R
n+1. Note also that this weight does not depend on

the tangential variable, allowing to consider translations in x. These lead to
Sobolev embeddings, Poincaré inequality, estimates of the Green function,
etc., [6, 17, 18, 25].

The extension argument reveals that a stochastic process with jumps in
R
n can be seen as the “trace” of a classical stochastic process in R

n× [0,∞)
(a random walk with jumps in R

n can be interpreted as a classical random
walk in R

n+1). In other words, every time the classical stochastic process in
R
n × [0,∞) hits Rn × {0}, it induces a jump process in R

n.

4. Elementary properties

It is obvious that the fractional Laplacian is a linear operator, i.e.,

(−∆)s(u+ v) = (−∆)su+ (−∆)sv

and
(−∆)s(cu) = c(−∆)su, c ∈ R.

It is noteworthy, that like the classical Laplacian, the fractional Laplacian
is translation and rotation invariant, [20, Lemma 2.7]. We bring here other
elementary properties, such as homogeneity, asymptotics of the fractional
Laplacian and the semi-group property. In fact, (2.1), one easily checks that

(−∆)su(λu) = λ2s(−∆)su.
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The latter means that the fractional Laplacian is a homogeneous operator
of order 2s.

Lemma 4.1. If u ∈ S, then
lim
s→0+

(−∆)su = u and lim
s→1−

(−∆)su = −∆u.

Proof. This follows from (2.6). Indeed, the case of s = 0 is obvious. Also,

−∆u(x) = −∆
(

F−1(û)
)

(x) = −∆

(
∫

Rn

û(ξ)e2πiξ·x dξ

)

=

∫

Rn

(2π|ξ|)2 û(ξ)e2πiξ·x dξ = F−1
(

(2π|ξ|)2û(ξ)
)

.

�

Remark 4.1. Lemma 4.1 can also be deduced using Definition 2.1 and the
assymptotics of constant cn,s,

lim
s→0+

cn,s
s(1− s)

=
4n

ωn−1
and lim

s→1−

cn,s
s(1− s)

=
2

ωn−1
,

where ωn−1 is the (n− 1)-dimensional measure of the unit sphere. We refer
the reader to [14, Section 4], where the calculations are carried out (see also
[28, Theorems 3 and 4] for the proof using definition (2.1)).

The fractional Laplacian also enjoys the semi-group property, as states
the following proposition.

Proposition 4.1. If u ∈ S, s, t ∈ (0, 1) and s+ t ≤ 1, then

(−∆)s+tu = (−∆)s(−∆)tu = (−∆)t(−∆)su.

Proof. This directly follows from (2.6). Indeed,

F
(

(−∆)s+tu
)

= (2π|ξ|)2(s+t)û = (2π|ξ|)2s(2π|ξ|2t)û
= F

(

(−∆)s(−∆)tu
)

= F
(

(−∆)t(−∆)su
)

.

It now suffices to apply the inverse Fourier transform. �

5. The s-mean value property

Classical harmonic functions enjoy the mean value property: a value of a
harmonic function at a point is equal to its average over spheres (or balls)
centered at that point. The converse to the mean value property also is true:
if at a given point x a function is equal to its average over spheres centered
at x, then it must be harmonic in a neighborhood of x. Similar principle
is true for s-harmonic functions. The non-local nature of the fractional
Laplacian, however, requires refinement of the argument. Once again we
see that the spheres are replaced by the “non-local boundary”. Namely, the
value of an s-harmonic function at a point, is equal to its “average” defined
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by a convolution of the function with the s-mean kernel. More precisely, for
r > 0 set

Ar(y) :=







an,s
r2s

(|y|2 − r2)s |y|n , y ∈ R
n \Br,

0, y ∈ Br,

where the constant an,s is chosen such that
∫

Rn\Br

Ar(y) dy = 1. (5.1)

In fact, [20, Section 15] we have

an,s :=
sin(πs)Γ

(

n
2

)

π
n
2
+1

.

The following mean value property holds, [6, Theorem 2.2], [20, Proposition
15.7].

Theorem 5.1. Let u ∈ L1
s(R

n) be C2s+ε in a neighborhood of x ∈ R
n. If

for any small r > 0 one has

u(x) =

∫

Rn\Br

Ar(y)u(x− y) dy, (5.2)

then u is s-harmonic at x.

Proof. From (5.1) and (5.2) we get

0 = u(x)−
∫

Rn\Br

Ar(y)u(x− y) dy = an,sr
2s

∫

Rn\Br

u(x)− u(x− y)

(|y|2 − r2)s |y|n dy,

therefore,
∫

Rn\Br

u(x)− u(x− y)

(|y|2 − r2)s |y|n dy = 0.

On the other hand, (2.3), one has

(−∆)su(x) = lim
r→0

∫

Rn\Br

u(x)− u(x− y)

|y|n+2s
dy,

hence, it is enough to show that

lim
r→0

∫

Rn\Br

u(x)− u(x− y)

|y|n+2s
dy = lim

r→0

∫

Rn\Br

u(x)− u(x− y)

(|y|2 − r2)s |y|n dy. (5.3)

To see this, take R >
√
2r and split the integral,

∫

Rn\Br

u(x)− u(x− y)

(|y|2 − r2)s |y|n dy =

∫

Rn\BR

+

∫

BR\Br

:= Ir + Jr. (5.4)

For Ir we have

lim
r→0

Ir =

∫

Rn\BR

u(x)− u(x− y)

|y|n+2s
dy. (5.5)
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This is because when y ∈ R
n \BR, one has

|y|2
|y|2 − r2

< 2,

therefore, as u ∈ L1
s(R

n),
∫

Rn\BR

|u(x)− u(x− y)|
(|y|2 − r2)s |y|n dy ≤ 2s

∫

Rn\BR

|u(x)− u(x− y)|
|y|n+2s

dy < ∞,

and we can use the dominated convergence theorem to pass to the limit,
as r → 0 and obtain (5.5). To pass to the limit in Jr, we notice that for
y ∈ BR \Br and s < 1/2 one has

|u(x)− u(x− y)| ≤ c|y|2s+ε,

since u ∈ C2s+ε in a neighborhood of x, where c > 0 is a universal constant.
For s ≥ 1/2 the C2s+ε = C1,2s+ε−1 regularity of u in the same neighborhood
provides

|u(x)− u(x− y)− y ·Du(x)| =
∣

∣

∣

∣

∫ 1

0
y (Du(x− ty)−Du(x)) dt

∣

∣

∣

∣

≤ |y|
∫ 1

0
|Du(x− ty)−Du(x)| dt

≤ c|y|2s+ε.

(5.6)

Observe that
∫

BR\Br

y ·Du(x)

(|y|2 − r2)s |y|n dy =

∫

BR\Br

y ·Du(x)

|y|n+2s
dy = 0,

since we are integrating even functions over a symmetrical domain. There-
fore, setting

Hr := Jr −
∫

BR\Br

u(x)− u(x− y)

|y|n+2s
dy

=

∫

BR\Br

(u(x)− u(x− y)− y ·Du(x))

[

1

(|y|2 − r2)s |y|n − 1

|y|n+2s

]

dy.

Using (5.6), passing to polar coordinates and changing variables by ρ = rt,
we estimate

|Hr| ≤ c

∫

BR\Br

|y|2s+ε

[

1

(|y|2 − r2)s |y|n − 1

|y|n+2s

]

dy

≤ c

∫ R

r
ρε−1

[

ρ2s

(ρ2 − r2)s
− 1

]

dρ

≤ crε
∫ R

r

1
tε−1

[

ts

(t− 1)s
− 1

]

dt.
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It remains to check that
∫ R

r

1
tε−1

[

ts

(t− 1)s
− 1

]

dt < ∞, (5.7)

since combining it with the previous inequality we obtain

lim
r→0

Hr = 0,

or equivalently,

lim
r→0

Jr = lim
r→0

∫

BR\Br

u(x)− u(x− y)

|y|n+2s
dy,

which together with (5.4) and (5.5) gives (5.3). To check (5.7), we split the
integral and notice that

∫

√
2

1
tε−1

[

ts

(t− 1)s
− 1

]

dt ≤ c

∫

√
2

1

[

1

(t− 1)s
− 1

ts

]

dt < ∞

and

lim
r→0

∫ R
r

√
2
tε−1

[

ts

(t− 1)s
− 1

]

dt ≤
∫ ∞

√
2
tε−1

[

(

1− 1

t

)−s

− 1

]

dt

≤ c

∫ ∞

√
2
tε−2 dt < ∞.

�

As a consequence of Theorem 5.1, one obtains a representation formula
via Poisson kernel for the solution of the non-local Dirichlet problem on balls
(just like in the local framework). For its proof we refer the reader to [6,
Theorem 2.10] (see also [25, p. 17], [22, p. 122 and 112] and [20, Theorem
15.2]). The fractional Poisson kernel is defined by

Pr(x, y) := Cn,s

(

r2 − |x|2
|y|2 − r2

)s
1

|y − x|n , (5.8)

where r > 0 and

Cn,s :=
sin(πs)Γ(n2 )

π
n
2
+1

.

The choice of the constant Cn,s guarantees that

∫

Rn\Br

Pr(x, y) dy = 1.

Theorem 5.2. For g ∈ L1
s(R

n) ∩ C(Rn) the unique solution of
{

(−∆)su = 0 in Br,

u = g in R
n \Br

is given by

u(x) =

∫

Rn\Br

g(y)Pr(x, y) dy, x ∈ Br.



16 R. TEYMURAZYAN

6. The maximum principle

As it is well known, classical harmonic function in a bounded domain
Ω ⊂ R

n takes its extremal values on the boundary ∂Ω. In other words,
a non-negative harmonic function in Ω cannot vanish inside Ω (unless its
identically zero). The literal analog of this for the fractional Laplacian fails:
there exists a bounded fractional harmonic function u that vanishes inside
Ω. One can construct such a function by defining u outside Ω in a way that
makes it feel the effect of far away data, [8, Theorem 2.3.1]. However, as
remarked earlier, if we think of Rn \Ω as the “non-local boundary”, several
properties that the classical Laplacian enjoys remain true for the fractional
Laplacian, including the maximum principle.

Theorem 6.1. If (−∆)su ≥ 0 in Ω and u ≥ 0 in R
n \ Ω, then u ≥ 0 in Ω.

Moreover, u > 0, unless u ≡ 0.

Proof. We divide the proof into two steps.
Step 1. First we show that u ≥ 0 in Ω. If not, then there exists a point
in Ω, where u is strictly negative. Let x0 ∈ Ω be a point where u takes its
minimum. We have u(x0) < 0. Note that in fact x0 is a global minimum,
since u ≥ 0 outside of Ω, and hence

2u(x0)− u(x0 + y)− u(x0 − y) ≤ 0, ∀y ∈ R
n. (6.1)

On the other hand, for R > 0 large enough, if y ∈ R
n \BR, then both x0+y

and x0 − y stay outside of Ω, and hence,

u(x0 + y) ≥ 0, and u(x0 − y) ≥ 0. (6.2)

Consequently, using (2.4), (6.1) and (6.2), we obtain

0 ≤
∫

Rn

2u(x0)− u(x0 + y)− u(x0 − y)

|y|n+2s
dy

≤
∫

Rn\BR

2u(x0)− u(x0 + y)− u(x0 − y)

|y|n+2s
dy

≤
∫

Rn\BR

2u(x0)

|y|n+2s
dy < 0,

a contradiction.
Step 2. We now show that the inequality is strict in Ω, unless u ≡ 0. If
that is not the case, then there is z ∈ Ω such that u(z) = 0. Step 1 provides
u(z + y) ≥ 0 and u(z − y) ≥ 0 for any y ∈ R

n. Since (−∆)su(z) ≥ 0, (2.4)
implies

0 ≤
∫

Rn

2u(z)− u(z + y)− u(z − y)

|y|n+2s
dy

= −
∫

Rn

u(z + y) + u(z − y)

|y|n+2s
dy ≤ 0,

which is possible only when u ≡ 0. �
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As a direct consequence, we get the comparison principle for the fractional
Laplacian and uniqueness of the solution of the Dirichlet problem.

Corollary 6.1. If (−∆)su ≥ 0, (−∆)sv ≥ 0 in Ω and u ≥ v outside of Ω,
then u ≥ v in the whole R

n.

Corollary 6.2. If f ∈ C(Ω) and ϕ ∈ C(Rn \ Ω), then there is a unique
u ∈ Ls

1(R
n) ∩ C2s+ε

loc such that (−∆)su = f in Ω and u = ϕ in R
n \ Ω.

We refer the interested reader to [26, Proposition 4.1] for a maximum
principle for a general class of non-local operators.

7. The Harnack inequality

The Harnack principle for the classical Laplacian states that if a function
u is harmonic and non-negative in Br(x0), then in a smaller ball its values
are all comparable, i.e., there exists a constant C > 0 independent of u, x0
and r > 0 such that

sup
B r

2
(x0)

u ≤ C inf
B r

2
(x0)

u.

Since the maximum principle for the fractional Laplacian needed a refine-
ment, it is not surprising that the Harnack inequality also needs a refine-
ment, as the classical Harnack inequality fails in the non-local framework,
[1, page 9], [3, Lemma 2.1]. It can be seen by constructing a counterexample
using approximation of w(x) := |x|2 by fractional harmonic functions (for
the proof of this remarkable property see Theorem 12.1 below). Namely,
for ε ∈ (0, 18) let vε be fractional harmonic approximation of w in B1, i.e.,
(−∆)svε = 0 in B1 and

‖w − vε‖C2(B1) < ε.

Then in B1 \B1/4 one has

vε(x) ≥ w(x)− ‖w − vε‖L∞(B1) ≥
1

16
− ε > ε,

but
vε(0) ≤ w(0) + ‖w − vε‖L∞(B1) < ε.

Thus, vε(0) < vε(x) in B1 \B1/4. Hence,

inf
B1

vε = inf
B1/4

vε.

Set now
uε(x) := vε(x)− vε(y), x ∈ B1,

where y ∈ B1/4 is a point, where vε reaches its infimum. By definition uε is
s-harmonic and non-negative in B1. Moreover, uε > 0 in B1 \B1/4 and still

inf
B1/2

uε = uε(y) = 0.

Therefore, the classical Harnack inequality fails in the non-local setting.
However, a suitably refined Harnack inequality holds.
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Theorem 7.1. If u ∈ L∞(Rn) ∩ C2(Br(x0)) is s-harmonic in Br(x0) and
u ≥ 0 in R

n, then there exists a constant C > 0 independent of u, x0 and
r > 0 such that

sup
B r

2
(x0)

u ≤ C inf
B r

2
(x0)

u.

Proof. This can be proved as in the classical case, using Theorem 5.2, [3,
Lemma 2.1]. Another proof can be found in [8, Proposition 2.3.4]. The
proof we bring here is much more compact and makes use of the extension
argument, [10, Theorem 5.1].

Let v : Rn × [0,+∞) be the solution of the extension problem (3.1)-(3.2).
Since u ≥ 0 in R

n, recalling (3.5), also v ≥ 0. If ṽ is the reflection of v(x, y)
through the hyperplane {y = 0}, (3.9), then as u is fractional harmonic in
Br(x0), Lemma 3.1 yields

div
(

|y|1−2s∇ṽ
)

= 0

in the (n+1) dimensional ball of radius r centered at (x0, 0). We can apply
the Harnack inequality for ṽ, [18, Lemma 2.3.5], which gives the Harnack
inequality for u. �

8. Liouville theorem

For the classical Laplacian the Liouville theorem states that entire har-
monic functions that are bounded from below (or above) are constants. The
same conclusion is true for entire fractional harmonic functions, [5]. In fact,
entire s-harmonic functions are affine, and constant when 0 < s ≤ 1/2, [13,
Theorem 1.3], [19, Theorem 1.1]. Here we bring a proof of a Liouville type
theorem under weaker condition, obtained in [13, Theorem 1.2].

Theorem 8.1. If u ∈ L1
s(R

n) is s-harmonic and

lim inf
|x|→∞

u(x)

|x|γ ≥ 0 (8.1)

for some γ ∈ [0, 1], γ < 2s, then u is a constant in R
n.

Proof. This follows from the fact that for |x| < r,

u(x) =

∫

|y|>r
Pr(x, y)u(y) dy, (8.2)

where Pr is the fractional Poisson kernel for the ball Br, defined by (5.8),
Theorem 5.2. Notice that it is enough to show that for all unit vectors ν
one has

Dνu ≥ 0. (8.3)

Indeed, since ν is arbitrary, then Du = 0, hence u is a constant in R
n. To

see (8.3), using (8.2) we calculate

Diu(x) = −
∫

|y|>r
Pr(x, y)

[

2sxi
r2 − |x|2 +

n(xi − yi)

|y − x|2
]

u(y) dy,
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therefore,

Dνu(x) = −
∫

|y|>r
Pr(x, y)

[

2sx · ν
r2 − |x|2 +

n(x− y) · ν
|y − x|2

]

u(y) dy. (8.4)

On the other hand, for any ε > 0 fixed and |y| sufficiently large, (8.1) implies

u(y) ≥ −ε|y|γ . (8.5)

For each fixed x, one can choose r > 0 large enough to guarantee

∣

∣

∣

∣

2sx · ν
r2 − |x|2

∣

∣

∣

∣

≤ 1

r
, (8.6)

and for |y| > r also

∣

∣

∣

∣

n(x− y) · ν
|y − x|2

∣

∣

∣

∣

≤ n

|y − x| ≤
2n

r
. (8.7)

Rewriting (8.4) as

Dνu(x) =−
∫

|y|>r
Pr(x, y)

[

2sx · ν
r2 − |x|2 +

n(x− y) · ν
|y − x|2

]

[u(y) + ε|y|γ ] dy

+

∫

|y|>r
Pr(x, y)

[

2sx · ν
r2 − |x|2 +

n(x− y) · ν
|y − x|2

]

ε|y|γ dy := I + J,

and using (8.5), (8.6), (8.7) and (8.2), we have

I ≥ −2n+ 1

r

∫

|y|>r
Pr(x, y) [u(y) + ε|y|γ ] dy

= −2n+ 1

r
u(x)− 2n+ 1

r
ε

∫

|y|>r
Pr(x, y)|y|γ dy.

(8.8)

Clearly the first term in the right hand side of (8.8) goes to zero, as r → ∞.
We now aim to estimate the second term. Using definition of the Poisson
kernel, (5.8), triangle inequality and changing variables (first |y| := τ then
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τ := rt), for a constant C > 0 we obtain

2n+ 1

r
ε

∫

|y|>r
Pr(x, y)|y|γ dy

=
Cε

r

(

r2 − |x|2
)s
∫

|y|>r

|y|γ
(|y|2 − r2)s |y − x|n dy

≤ Cε

r

(

r2 − |x|2
)s
∫

|y|>r

|y|γ
(|y|2 − r2)s (|y| − |x|)n dy

=
Cε

r

(

r2 − |x|2
)s
∫ ∞

r

τγ+n−1

(τ2 − r2)s (τ − |x|)n dτ

=
Cε

r2s−γ+1

(

r2 − |x|2
)s
∫ ∞

1

tγ+n−1

(t2 − 1)s (t− |x|
r )n

dt

≤ Cε

r1−γ

∫ ∞

1

tγ+n−1

(t2 − 1)s (t− |x|
r )n

dt ≤ Cε.

The last inequality is a consequence of the fact that the previous integral is
convergent (since γ is assumed to be less than 2s), and γ ≤ 1. Also,

|J | ≤ 2n+ 1

r
ε

∫

|y|>r
Pr(x, y)|y|γ dy ≤ Cε.

Hence, for r large enough,

Dνu(x) ≥ −Cε.

Letting ε → 0 in the last inequality, we deduce (8.3). �

Remark 8.1. Theorem 8.1 has interesting consequences. If (−∆)su = P in
R
n in the distributional sense, (2.5), where s ∈ (0, 1) and P is a polynomial,

then u is affine and P = 0, [19, Theorem 1.2]. Furthermore, if p ≥ 1 and
u ∈ Lp(Rn) is fractional harmonic in the sense of distributions, then u ≡ 0,
[19, Corollary 1.3].

9. Regularity estimates

The following regularity estimates are from [27].

Lemma 9.1. If u ∈ Cα(Rn) for α ∈ (2s, 1], then (−∆)su ∈ Cα−2s(Rn).
Moreover,

[(−∆)su]Cα−2s ≤ C[u]Cα ,

where C > 0 is a constant depending only on α, s and n.

Proof. We use (2.3) to compute

|(−∆)su(x)− (−∆)su(y)| = cn,s

∣

∣

∣

∣

∫

Rn

u(x)− u(x+ z)− u(y) + u(y + z)

|z|n+2s
dz

∣

∣

∣

∣

≤ I1 + I2,
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where I1 is the integral over a ball of radius r, and I2 is the integral over
R
n\Br. Since |u(x)−u(x+z)| ≤ [u]Cα |z|α and |u(y)−u(y+z)| ≤ [u]Cα |z|α,

we estimate

I1 ≤ cn,s

∣

∣

∣

∣

∫

Br

2[u]Cα |z|α
|z|n+2s

dz

∣

∣

∣

∣

≤ C[u]Cαrα−2s.

To estimate I2, we make use of |u(x+ z)−u(y+ z)| ≤ [u]Cα |x− y|α to write

I2 ≤ cn,s

∣

∣

∣

∣

∣

∫

Rn\Br

2[u]Cα |x− y|α
|z|n+2s

dz

∣

∣

∣

∣

∣

≤ C[u]Cαr−2s|x− y|α.

Thus, taking r = |x− y|, we obtain

|(−∆)su(x)− (−∆)su(y)| ≤ C[u]Cα |x− y|α−2s.

�

Corollary 9.1. If u ∈ C1,α(Rn) for α ∈ (2s, 1], then (−∆)su ∈ C1,α−2s(Rn).
Moreover,

[(−∆)su]C1,α−2s ≤ C[u]C1,α ,

where C > 0 is a constant depending only on α, s and n.

Proof. This follows from Lemma 9.1 combined with the fact that the frac-
tional Laplacian commutes with differentiation. �

Lemma 9.2. If u ∈ C1,α(Rn) for α ∈ (0, 2s), then (−∆)su ∈ Cα−2s+1(Rn).
Moreover,

[u]Cα−2s+1 ≤ C[u]C1,α ,

where C > 0 is a positive constant depending only on α, s and n.

Proof. If s < 1/2, we argue as in the proof of Lemma 9.1 to get

|(−∆)su(x)− (−∆)su(y)| ≤ I1 + I2,

with the same I1 and I2 as in the proof of Lemma 9.1. As u ∈ C1,α(Rn), we
can estimate

|u(x)− u(x+ z)− u(y) + u(y + z)| ≤ |(Du(x)−Du(y)) · z|+ [u]C1,α |z|1+α

=
(

|x− y|α|z|+ |z|1+α
)

[u]C1,α ,

therefore

I1 ≤ C
(

|x− y|αr1−2s + r1+α−2s
)

[u]C1,α ,

and as before, taking r = |x− y| gives the desired result.
For the case of s ≥ 1/2, using Proposition 4.1, we can decompose

(−∆)su = (−∆)s−1/2(−∆)1/2u

and observe that

(−∆)1/2u =
n
∑

i=1

RiDi,

where Ri is the i-th Riesz transform (see, for example, [20, Section 6]). �
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An iteration of the last two lemmas leads to the following result.

Lemma 9.3. If u ∈ Ck,α and k + α− 2s is not an integer, then (−∆)su ∈
Cβ,γ, where β is the integer part of k + α− 2s and γ = k + α− 2s− β.

Remark 9.1. Schauder type estimates hold for the fractional Laplacian. In
fact, if (−∆)su ∈ Cα(B1)∩C(B1), then u ∈ Cα+2s(B1/2), [7, Theorem 1.2].
Actually, a more general estimate holds,

‖u‖Cα+2s(B1/2)
≤ C

[

‖(−∆)su‖Cα(B1) + ‖u‖L∞(B1) +

∫

Rn\B1

u(y)

|y|n+2s
dy

]

,

for any α ≥ 0 such that α+2s is not an integer, as long as the terms in the
right hand side are well defined.

10. Green’s function for the ball

As in the case of the classical Laplacian, the notions of fundamental so-
lution and Poisson kernel allow one to define the Green function. For x,
z ∈ Br and x 6= z, the Green function is defined in the following way,

G(x, z) := φ(x− z)−
∫

Rn\Br

φ(z − y)Pr(y, x) dy,

where φ is the fundamental solution defined by (3.4), and Pr is the Poisson
kernel defined by (5.8). It can be displayed in a more explicit way, [6,
Theorem 3.1],

G(x, z) = κn,s|z − x|2s−n

∫ R(x,z)

0

ts−1

(t+ 1)
n
2

dt, (10.1)

where

R(x, y) :=
(r2 − |x|2)(r2 − |z|2)

r2|x− z|2 , if n ≥ 2,

and

G(x, z) =
1

π
log

(

r2 − xz +
√

(r2 − x2)(r2 − z2)

r|z − x|

)

, if n = 1, (10.2)

with

κn,s :=
Γ
(

n
2

)

4sπ
n
2 Γ2(s)

.

The proof can be found in the celebrated work of Riesz, [25] (see also [4, 20]
and [6, Theorem 3.2]).

Theorem 10.1. If f ∈ C2s+ε(Br) ∩ C(Br), then the unique solution of
{

(−∆)su = f in Br,

u = 0 in R
n \Br
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is given explicitly in terms of the Green function by

u(x) =

∫

Rn\Br

G(x, y)f(y) dy, x ∈ Br.

As a consequence of Theorems 5.2 and 10.1 we obtain an explicit rep-
resentation of the solution of the Dirichlet problem in the ball of radius
r > 0.

Theorem 10.2. If f ∈ C2s+ε(Br) ∩ C(Br) and g ∈ L1
s(R

n) ∩ C(Rn), then
the unique solution of the problem

{

(−∆)su = f in Br,

u = g in R
n \Br

is given by

u(x) =

∫

Rn\Br

g(y)Pr(x, y) dy +

∫

Rn\Br

G(x, y)f(y) dy, x ∈ Br,

where Pr and G are defined by (5.8) and (10.1)-(10.2) respectively.

11. Fractional harmonic functions are C∞

As it is well known, classical harmonic functions are C∞. Fractional har-
monic functions enjoy the same regularity. This may seem like an obvious
observation, as in several definitions above the fractional Laplacian was de-
fined for C∞ functions, but in fact there is no loss of generality. Namely, even
if one starts with the “weakest” regularity assumptions, fractional harmonic
functions turn out to be C∞, [7, Theorem 2.10], [28, Corollary 1].

Theorem 11.1. If u ∈ L∞(Rn) ∩ C(Rn \ Br) is such that (−∆)su = 0 in
Br, r > 0, then for any multi-index α ∈ N

n
0

‖Dαu‖L∞(Br/2) ≤ Cr−|α|‖u‖L∞(Rn\Br),

where C > 0 is a constant depending only on n, s and α.

Proof. This follows from the smoothness of the Poisson kernel (5.8). Observe
that without loss of generality we may assume r = 1. Indeed, if

‖Dαu‖L∞(B1/2) ≤ C‖u‖L∞(Rn\B1), (11.1)

then by rescaling y := rx, v(y) := u(x), x ∈ B1, one has Dαu(x) =

r|α||Dαv(y)|, which yields,

r|α||Dαv(y)| = |Dαu(x)| ≤ C‖u‖L∞(Rn\B1) = C‖v‖L∞(Rn\Br),

and the result follows. To prove (11.1), note that from (5.8) and Theorem
5.2, we have

u(x) =

∫

Rn\B1

u(y)P1(x, y) dy = Cn,s

∫

Rn\B1

u(y)

(

1− |x|2
|y|2 − 1

)s
dy

|y − x|n .
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Hence

Diu(x) =2s

∫

Rn\B1

u(y)

(|y|2 − 1)s
xi(1− |x|2)s−1

|x− y|n dy

−
∫

Rn\B1

u(y)

(|y|2 − 1)s
n(1− |x|2)s(xi − yi)

|x− y|n+2
dy,

therefore,

|Du(x)| ≤ C

∫

Rn\B1

|u(y)|
(|y|2 − 1)s

[ |x|(1− |x|2)s−1

|x− y|n +
(1− |x|2)s
|x− y|n+1

]

dy, (11.2)

where C > 0 is a constant depending on s and n. On the other hand, if
|x| ≤ 1

2 , then
3

4
≤ 1− |x|2 ≤ 1 and |x− y| ≥ |y|

2
,

which combined with (11.2) and passing to polar coordinates, yields

|Du(x)| ≤ C‖u‖L∞(Rn\B1)

∫

Rn\B1

[

1

(|y| − 1)s|y|n +
1

(|y| − 1)s|y|n+1

]

dy

≤ C‖u‖L∞(Rn\B1)

∫ ∞

1

[

1

(ρ− 1)sρ
+

1

(ρ− 1)sρ2

]

dρ

≤ C‖u‖L∞(Rn\B1).

Thus,
|Du(x)| ≤ C‖u‖L∞(Rn\B1), ∀x ∈ B1/2.

Reiterating the computation, we get (11.1) for any multi-index α. �

12. Density of fractional harmonic functions

As we have seen above, fractional harmonic functions share lots of prop-
erties with classical harmonic functions. Obviously, there are also several
significant differences that come from the non-local nature of the fractional
Laplacian. In particular, as we will see below, any given smooth function
can be locally approximated by fractional harmonic functions. This striking
property, obtained in [15], shows how faraway oscillations of a fractional
harmonic function affect on its local behavior. In other words, fractional
harmonic functions are dense in the set of locally smooth functions. There
is no local counterpart of this property. Indeed, classical harmonic functions
cannot have a strict local maximum, hence, functions with strict local maxi-
mum cannot be approximated by harmonic functions. It is noteworthy, that
although this is purely non-local phenomenon, but a similar result does not
hold for any non-local operator.

Theorem 12.1. If f ∈ Ck(B1), for k ∈ N, then for any ε > 0, there exists
R > 0 and u ∈ Hs(Rn)∩Cs(Rn) such that u is fractional s-harmonic in B1,
vanishes outside of BR

‖f − u‖Ck(B1)
< ε.
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Proof. We sketch the proof in the one-dimensional case, as in [8, Section 2.5].
For the general proof we refer the reader to [15, Theorem 1.1]. Notice that
it is enough to prove the result for monomials. Indeed, by Stone-Weierstrass
Theorem, for any ε > 0 and a given f ∈ C([0, 1]), there exists a polynomial
P such that

‖f − P‖Ck(B1)
< ε.

Combined with the linearity of the fractional Laplacian, this implies that
it is enough to prove the theorem for monomials, i.e., it is enough to show
that P (x) = xm, m ≥ 1 can be approximated by an s-harmonic function
um. In turn, to prove the latter, it is enough to show that for any m ∈ N,
there exist R > r > 0, x ∈ R and u such that

{

(−∆)su = 0 in (x− r, x+ r),

u = 0 in R \ (x−R, x+R),
(12.1)

and
Diu(x) = 0, i ∈ {0, 1, . . . ,m− 1}, Dmu(x) = 1. (12.2)

Indeed, it implies that, up to a translation, u(x) = xm +O(xm+1) near the
origin, hence, its blow-up

uλ(x) :=
u(λx)

λm
= xm + λO(xm+1),

being an s-harmonic function, for λ small is arbitrarily close to xm, which,
as stated earlier, provides the desired result. Thus, it remains to makes sure
there exists a function u satisfying (12.1) and (12.2). To that aim, let L be
the set of all pairs (u, x) satisfying (12.1). Define the vector space

V := {(u(x), Du(x), . . . , Dmu(x)) , for (u, x) ∈ L} .
Directly can be verified that V is a linear spaces. Moreover,

V = R
m+1. (12.3)

Assume for a moment, that (12.3) is verified. As (0, . . . 0, 1) ∈ R
m+1 = V ,

the pair (u, x) satisfies (12.1) and (12.2). Thus, we are left to prove (12.3).
We argue by contradiction and assume that (12.3) fails. Since V is a linear
space, it has to be a proper subspace of Rm+1 and so it lies in a hyperplane.
Consequently, there exists c = (c0, c1, . . . , cm) ∈ R

m+1 \ {0} such that

V ⊆
{

µ ∈ R
m+1; c · µ = 0

}

.

This means that the vector c is orthogonal to any vector in V , i.e.,
∑

i≤m

Diu(x) = 0. (12.4)

If u(x) = xs+, then Diu(x) = s(s − 1) . . . (s − i + 1)xs−i, and multiplying
with xm−s, x 6= 0, from (12.4) we get

∑

i≤m

cis(s− 1) . . . (s− i+ 1)xm−i = 0,
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i.e., ci = 0 for each i, or equivalently c = 0, which is a contradiction. This
completes the proof. Strictly speaking the function xs+, being s-harmonic,
Theorem 2.1, does not satisfy (12.1), because it does not have a compact
support. So to deduce the contradiction, one should assume that u is a
fractional harmonic function with compact support, which behaves like xs

near the origin, and apply (12.4) for x > 0 small. �
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