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Abstract. We study obstacle problems governed by two distinct types
of diffusion operators, involving interacting free boundaries. We obtain
a rather surprising coupling property, leading to a comprehensive anal-
ysis of the free boundary. More precisely, we show that near regular
points of a coordinate function, the free boundary is analytic, whereas
singular points lie on a smooth manifold. Additionally, we prove that
uncoupled free boundary points are singular, indicating that regular
points lie exclusively on the coupled free boundary. Furthermore, opti-
mal regularity, non-degeneracy, and lower dimensional Hausdorff mea-
sure estimates are obtained. The sharpness of assumptions is illustrated
by explicit examples.
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1. Introduction

In recent years the study of strongly coupled systems was boosted by ap-
plications in industry (catalysis processes), chemical engineering, and pop-
ulation dynamics (see [2, 7, 10, 25, 26, 35] and references therein). These
models operate as systems of equations and free boundaries, in which a non-
linear diffusion process for the unknown (temperature of a given material)
is observed only in regions where the other unknown (pressure) exceeds a
certain threshold φ (an obstacle), and conversely, a similar process is acti-
vated for the second unknown only in regions where the first one surpasses a
given threshold ψ (another obstacle). In financial mathematics, these types
of problems are related to optimal switching, when modeling switching of a
state for cost reduction. Applications also include stochastic switching zero-
sum games, and optimal stopping problems (see [17] and references therein).
The mathematical model can be formulated as an interactive obstacle type
problem

{

min{F (D2u,Du, x), v − φ} = 0

min{G(D2v,Dv, x), u− ψ} = 0,

where F and G are diffusive elliptic operators.
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We concentrate on problems ruled by two different types of diffusion op-
erators – the classical Laplacian and the infinity Laplacian – a prototype of
which is

{

min{f −∆∞u, v − µ} = 0 in B1

min { g − ∆v , u− κ} = 0 in B1,

for constant thresholds µ, κ ∈ R and f, g ∈ L∞(B1). In the non-variational
context, the second order operators mentioned above are defined by

∆w := trace(D2w) and ∆∞w := ⟨D2w ·Dw,Dw⟩.

The Laplacian stands as the primary example of a diffusive second-order
operator, and for the related obstacle problem, regularity of the solution
and the corresponding free boundary is quite well understood [5, 6, 8, 9,
11, 15, 16, 27, 30]. On the other hand, the infinity Laplacian, characterized
by its high elliptic degeneracy, has garnered substantial attention over the
past three decades. It has strong connections with models describing sce-
narios such as random tug-of-war games, and mass transfer problems, and
is linked to the best Lipschitz extension problem and the concept of com-
parison with cones, [3, 22]. The study of obstacle problems governed by the
infinity Laplacian was pioneered in [32].

To keep the presentation of the ideas simple, we consider the following
problem with zero obstacles















∆∞u ≤ f in B1

∆v ≤ g in B1

∆∞u = f in B1 ∩ {v > 0}
∆v = g in B1 ∩ {u > 0}.

(1.1)

Unlike earlier works on obstacle problems with two or more equations (see,
for example, [7, 19, 28, 33]), the system (1.1) involves two quite different
types of second order operators, and equations are satisfied in two a priori
different unknown sets.

We obtain regularity estimates for non-negative solutions and correspond-
ing free boundaries, by providing qualitative properties for the coupled free
boundary

∂{|(u, v)| > 0},

where
|(u, v)| := u1/2 + v1/3. (1.2)

The particular choice of exponents in (1.2) is a result of the intrinsic geome-
try of the problem. Solutions are understood in the viscosity sense, and the
pair (u, v) is said to be non-negative if both u and v are non-negative.

Existence of solutions is derived using Schaefer’s fixed point theorem for
an intrinsic penalized problem, as argued in [2]. Furthermore, we obtain op-
timal growth and non-degeneracy estimates along the free boundary (The-
orems 4.2 and 5.1 respectively), and conclude that the (n− 1)−dimensional
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Hausdorff measure of the free boundary is locally finite (Theorem 6.1).
Moreover, we show that an analog of Caffarelli’s dichotomy holds. More
precisely, we deduce that near regular points free boundary of the coor-
dinate function v is analytic, while singular free boundary points lie on a
smooth manifold (Theorem 6.2). Additionally, we show that all points in
the uncoupled free boundary ∂{v > 0} \ ∂{u > 0} are singular (Theorem
6.3).

The main ingredient in the analysis is uncovering that, in fact, the free
boundary of the coordinate solution u coincides with that of an intrinsic
combination of both coordinate solutions (Theorem 4.1). This is a rather
surprising result, as the study of the obstacle problem driven by the ∞-
Laplacian is still in its infancy, the only known regularity result obtained in
[32] (see also [21] for the blow-up limits). However, the estimate for viscosity
solutions of ∆∞ ≤ f obtained in [23], enables equicontinuity for solutions
of a built-in obstacle type problem that paves the way to the regularity
theory. Furthermore, our results provide a new approach when studying
the regularity of the free boundary in the obstacle problem driven by highly
degenerate operators like infinity Laplacian. In fact, if one can couple the
problem with the one that solves (1.1) for a suitable right-hand-side, then
the free boundary of the obstacle problem ruled by the degenerate operator
coincides with that of the coupled system, inheriting all the properties.

The paper is organized as follows: in Section 2 we prove existence of
viscosity solutions (Theorem 2.2). Section 3 is devoted to the study of
a built-in obstacle problem (Theorem 3.1), which is then used in Section
4 revealing a strong interplay between coordinate free boundaries and the
intrinsic free boundary (Theorem 4.1). Still in Section 4, we prove regularity
of solutions at points centered on the intrinsic free boundary (Theorem 4.2).
We derive a weak comparison principle in Section 5 (Lemma 5.1), which
then yields non-degeneracy of solutions (Theorem 5.1). Section 6 is devoted
to the regularity of the free boundary (Theorems 6.1-6.3). In Section 7
through explicit examples, we illustrate the sharpness of assumptions in our
main results.

2. Existence of solutions

In this section, we prove existence of solutions for (1.1) using Schaefer’s
fixed point theorem for an intrinsic penalized problem, as argued in [2],
provided

f, g ∈ L∞(B1). (2.1)
Solutions are understood in the viscosity sense. More precisely, for an open
set O and an elliptic operator H, we say w ∈ C(O) satisfies

H(D2w) ≤ h (≥ h) in O,
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in the viscosity sense, if for any ϕ ∈ C2(O) that touches w from below
(above) at x0 ∈ O, one has H(D2ϕ(x0)) ≤ h(x0) (≥ h(x0)). In the viscosity
sense, the equation H(D2w) = h means that the above inequalities hold
simultaneously.

To state the following Lemma, we recall Schaefer’s fixed point theorem
(see, for example, [36]).

Theorem 2.1 (Schaefer). If X is a Banach space, T : X → X is contin-
uous and compact, and the set

E = {z ∈ X; ∃ θ ∈ [0, 1] such that z = θT (z)}

is bounded, then T has a fixed point.

Let β ∈ C∞(R) be a non-decreasing function such that β ∈ [0, 1] and
β(s) = 1 for s ≥ 1 and β(s) = 0 for s ≤ 0.

For each ε > 0, set
βε(s) = β(s/ε).

Lemma 2.1. If φ,ψ ∈ C0,1(∂B1) and (2.1) holds, then there is a pair
(uε, vε) that is a viscosity solution of















∆∞uε = f βε(vε) in B1

∆vε = g βε(uε) in B1

uε = φ on ∂B1

vε = ψ on ∂B1.

(2.2)

Proof. We follow the ideas of [2, Proposition 2.1] (see also [29] and [31] for
perturbation approach for the infinity Laplacian and Laplacian respectively).
Let u, v ∈ C0,1(B1), and define T : C0,1(B1) × C0,1(B1) → C0,1(B1) ×
C0,1(B1) by T (u, v) := (v, u), where u, v are solutions of

{

∆∞u = f βε(v) in B1,
u = φ on ∂B1

(2.3)

and
{

∆v = g βε(u) in B1

v = ψ on ∂B1.
(2.4)

respectively (it is clear that such u and v depend on ε, but for the sim-
plicity of notations, we drop the subscript ε in the proof). Note that T is
well defined, as the classical Perron method guarantees the existence and
uniqueness of u and v. Observe that if T has a fixed point, then we are done.
To apply Schaefer’s theorem, we make sure its conditions are satisfied.

Step 1. First we check that T is continuous. Indeed, let
(uk, vk) → (u, v) in C0,1(B1)× C0,1(B1).

We aim to show that
T (uk, vk) = T (u, v).
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By the definition of T , we have
T (uk, vk) = (vk, uk) ,

where uk and vk are the unique solutions of the corresponding problems
(2.3) and (2.4) respectively with vk and uk on the right hand side. Global
Lipschitz estimates for (2.3) and (2.4) (see [34, Theorem 1.4]) then imply
existence of a universal constant C > 0 such that

∥uk∥C0,1(B1)
≤ C (∥f∥∞ + ∥φ∥∞) ,

and
∥vk∥C0,1(B1)

≤ C (∥g∥∞ + ∥ψ∥∞) ,

since ∥βε∥∞ = ∥β∥∞ ≤ 1. Thus, (uk, vk) is uniformly bounded. By the
Arzelá-Ascoli theorem, up to a subsequence, it converges to some (ũ, ṽ).
The stability of viscosity solutions under uniform limits then implies, as
k → ∞,

T (uk, vk) = (vk, uk) → (ṽ, ũ) = T (u, v).

Step 2. We then make sure that T is compact. Indeed, if
(uk, vk) ∈ C0,1(B1)× C0,1(B1)

is a bounded sequence, then as above,
(vk, uk) = T (uk, vk) ∈ C0,1(B1)× C0,1(B1)

is bounded, and hence, has a convergent subsequence. Thus, T is compact.
Step 3. To use Theorem 2.1, it remains to see that the set of eigenvectors

of T is bounded, i.e., the set E with X = C0,1(B1) × C0,1(B1) is bounded.
Note that (0, 0) ∈ E if and only if θ = 0. Hence, we can assume that θ ̸= 0.
If (u, v) ∈ E , then there exists θ ∈ (0, 1] such that

(u, v) = θT (u, v) = θ(v, u),

i.e.,
u = θv and v = θu.

Therefore,
{

∆∞ v = θ3f βε(v) in B1,
v = θφ on ∂B1

and
{

∆u = θ2g β(u) in B1,
u = θψ on ∂B1.

Hence, as before,
∥u∥C0,1(B1)

≤ C(∥g∥∞ + ∥ψ∥∞)

and
∥v∥C0,1(B1)

≤ C(∥f∥∞ + ∥ψ∥∞),

where C > 0 is a universal constant. Thus, E is bounded, and Theorem 2.1
guarantees existence of a fixed point, which completes the proof. □

As a consequence, we obtain existence of solutions for (1.1).
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Theorem 2.2. Assume that (2.1) holds, then (1.1) has a viscosity solution
(u, v). Moreover, both coordinates u and v are Lipschitz continuous.
Proof. Let (uε, vε) be a viscosity solution of (2.2), which we know exists
thanks to Lemma 2.2. Moreover, as we observe in the proof of Lemma
2.2, there exists a universal constant C > 0, independent of ε, such that
∥uε∥C0,1(B1)

< C and ∥vε∥C0,1(B1)
< C. By the Arzelá-Ascoli theorem, up

to a subsequence,
uε → u and vε → v

uniformly in B1 for some u, v ∈ C0,1(B1). It remains to check that (u, v) is a
solution of (1.1). We need to make sure the equations hold. If z ∈ {v > 0},
then for ε > 0 small enough one has

vε(x) >
v(z)

4
≥ ε2 for each x ∈ Br(z),

where r > 0 is small. Therefore, ∆∞u = f in Br(z). The other equation is
checked similarly. □

3. A built-in obstacle problem

We emphasize that problem (1.1) contains an obstacle type problem gov-
erned by the infinity Laplacian:

{

∆∞u ≤ f in B1

u ≥ 0 in B1.
(3.1)

Note that (3.1) extends the class of free boundary problems treated in [32],
where it was shown that the solution of

min{∆∞u− f, u } = 0,

is C1,1/3 at the free boundary. However, unlike the equation above, in (3.1)
there is no viscosity sub-solution information in the region {u > 0}. Nev-
ertheless, we are able to derive a growth estimate that paves the way to
our main results. Before proceeding, we bring the following result from [23,
Lemma 2.2 (a)], which enables equicontinuity property.
Lemma 3.1. Viscosity solution of ∆∞u ≤ f in B1, where f ∈ L∞(B1), are
locally Lipschitz continuous. Moreover, there exists C > 0, depending only
on ∥f∥∞ and n, such that

sup
x,y∈B1/2

|u(x)− u(y)|

|x− y|
≤ C (1 + ∥u∥∞) .

Theorem 3.1. If u is a viscosity solution of (3.1), and f ∈ L∞(B1), then
there exists C > 0, depending only on ∥u∥∞, ∥f∥∞ and n, such that for each
y ∈ ∂{u > 0} ∩B1/2, one has

u(x) ≤ C|x− y|
4

3 , (3.2)
for any |x− y| ≤ 1/4. Furthermore, ∂{u > 0} ⊂ {|Du| = 0}.
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Proof. Without loss of generality, we may assume y = 0. If (3.2) fails, then
for each k ∈ N, there exist uk, a viscosity solution of (3.1) and rk ∈ (0, 1/4],
such that uk(0) = 0 and

sup
Brk

uk ≥ k r
4

3

k .

Set

wk(x) :=
uk(rkx)

sup
Brk

uk
in B1.

Note that

∆∞wk ≤







r
4

3

k

sup
Brk

uk







3

∥f∥∞ ≤ ∥f∥∞ in B1. (3.3)

Additionally, wk(0) = 0, wk ≥ 0 in B1, and

sup
B1

wk = 1. (3.4)

Applying Lemma 3.1 for (3.3), we conclude that {wk}k∈N is equicontinuous.
Hence, since wk is bounded, and up to a subsequence, it converges uniformly
in B1/2 to a function w∞. Letting k → ∞ in (3.3), we deduce that w∞ is
infinity super-harmonic in B1. Therefore, by the strong maximum principle,
[4], it must vanish everywhere, which contradicts (3.4). Thus, (3.2) holds,
which then implies

Diu(0) = lim
h→0

u(hei)− u(y)

h
= lim

h→0

u(hei)

h
≤ lim

h→0
h1/3 = 0.

□

4. Coupling properties and regularity

In this section, we prove that there is a strong interplay between coordi-
nate free boundaries ∂{u > 0}, ∂{v > 0}, and the intrinsic free boundary
∂{|(u, v)| > 0}, where |(u, v)| is defined by (1.2). The idea is that the first
coordinate function in the pair of solutions can be looked at as one acting
freely, as observed in the previous section. The result plays a pivotal role
in establishing optimal interior regularity and growth estimates at the free
boundary points.

Observe that if in (1.1) one has f < 0 at some point, then ∆∞u < 0 in a
small neighborhood of that point. This forces u to be either strictly positive
or identically zero in that neighborhood and the second equation in (1.1)
turns to an independent one. Thus, there is no coupling. Similarly, if g < 0
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at a point, there is no interaction between equations. Therefore, to ensure
that we are dealing with coupled equations, hereafter we assume that

inf
B1

min{f(x), g(x)} ≥ c0, (4.1)

for some c0 > 0. Assumption (4.1) is vital for our analysis (see Example 1).
Below is the main result of this section.

Theorem 4.1. Assume (u, v) ≥ 0 is a viscosity solution of (1.1) and (2.1),
(4.1) hold, then

∂{u > 0} ⊂ ∂{v > 0} ⊂ {u > 0}. (4.2)
Furthermore,

{v > 0} ⊂ {u > 0} and ∂{|(u, v)| > 0} = ∂{u > 0}. (4.3)

Proof. We divide the proof into three steps:
Step 1. First, we observe that

int{u = 0} = int{v = 0}. (4.4)
In fact, since f > 0 in B1, if int{u = 0} ̸= ∅, then for any small ball
B ⊂ int{u = 0}, we have B ∩ {v > 0} = ∅, since otherwise one would
have ∆∞u = f at points where u ≡ 0, which is not possible, as f > 0.
Hence, int{u = 0} ⊂ int{v = 0}. Analogously, as g > 0 in B1, we obtain
int{v = 0} ⊂ int{v = 0}.

Step 2. Next, we show that (4.2) holds. Indeed, thanks to Theorem 3.1,
∂{u > 0} ⊂ {|Du| = 0}. Therefore, for any ϕ ∈ C2 touching u from above
at y ∈ ∂{u > 0}, we have

Dϕ(y) = Du(y) = 0.

Thus, ∆∞ϕ(y) = 0 and so,
∆∞u(y) ≤ 0

in the viscosity sense. As f > 0, then
∆∞u(y) < f(y).

On the other hand, in (1.1) for points in B1 ∩ {v > 0} we have
∆∞u = f.

Therefore,
∂{u > 0} ∩ {v > 0} = ∅.

Then from (4.4) we deduce
∂{u > 0} ∩ int{v = 0} = ∂{u > 0} ∩ int{u = 0} = ∅,

hence, ∂{u > 0} ⊂ ∂{v > 0}. Similarly,
∂{v > 0} ∩ int{u = 0} = ∂{v > 0} ∩ int{v = 0} = ∅,

and so, ∂{v > 0} ⊂ {u > 0}, and (4.2) is proven.
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Step 3. In the final step we prove (4.3). Let x ∈ {v > 0}. From (4.4)
we know that x ∈ {u > 0}. The latter with (4.2) implies that x ∈ {u > 0}.
This proves the first part of (4.3). To check the second part, note that if
x ∈ ∂{|(u, v)| > 0}, then u(x) = v(x) = 0, which, combined with (4.4) and
(4.2) leads to

x ∈ ∂{u > 0} ∩ ∂{v > 0} = ∂{u > 0},

i.e., ∂{|(u, v)| > 0} ⊂ ∂{u > 0}. On the other hand, if x ∈ ∂{u > 0}, then
recalling once more (4.2), we have x ∈ ∂{v > 0}, and so |(u(x), v(x))| = 0.
Observe that x /∈ int{|(u, v)| = 0}, since otherwise it would imply that x ∈
int{u = 0}. Thus, x ∈ ∂{|(u, v)| > 0}, i.e., ∂{u > 0} ⊂ ∂{|(u, v)| > 0}. □

Remark 4.1. In general, the inclusion in (4.2) is strict (see Example 4
below), i.e., there are points in ∂{v > 0} that are not in ∂{u > 0} (see
Figure 1 below). Additionally, the equality in (4.2) yields the following
decomposition

∂{v > 0} = (∂{v > 0} \ ∂{u > 0}) ∩ ∂{|(u, v)| > 0}.

Theorem 4.1 implies optimal growth control for solutions along the cou-
pled free boundary points, as states the next result.

Theorem 4.2. Assume (u, v) ≥ 0 is a viscosity solution of (1.1), and (2.1),
(4.1) hold, then (u, v) is locally of class C0,1(B1) × C1,1(B1). Moreover,
there exist positive constants C and r0, depending only on n, ∥f∥∞, ∥g∥∞,
∥u∥∞ and ∥v∥∞, such that for y ∈ ∂{|(u, v)| > 0} ∩B1/2, one holds

sup
Br(y)

|(u, v)| ≤ Cr
2

3 , (4.5)

for each 0 < r ≤ r0.

Proof. Unlike similar results in [1, 2, 13], our proof does not employ a flat-
tening argument and instead makes use of Lemma 3.1 and Theorem 3.1.
Observe that from (4.4), (4.2) and (4.3), we derive

B1 ∩ {u > 0} = B1 \ ({u = 0})

= B1 \ (∂{u > 0} ∪ int{v = 0})

⊇ B1 \ (∂{v > 0} ∪ int{v = 0})

= B1 ∩ {v > 0}.

Hence, v solves the following classical obstacle problem






v ≥ 0 in B1

∆v ≤ g in B1

∆v = g in B1 ∩ {v > 0}.
(4.6)

Therefore (see, for example, [6]), v ∈ C1,1
loc (B1), which combined with Lemma

3.1, yields that (u, v) is locally C0,1 × C1,1. In particular, for y ∈ ∂{v >
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0} ∩B1/2, one has
sup
Br(y)

v ≤ Cr2.

The latter with Theorem 3.1 and Theorem 4.1, gives (3.2). □

5. Non-degeneracy and consequences

In this section, we prove a comparison principle and derive non-degeneracy,
positive density, and porosity results for solutions of (1.1). To proceed, we
fix an order when comparing the pairs. Namely, we say (a, b) < (c, d), if
a < c and b < d. Inequalities (a, b) > (c, d), (a, b) ≤ (c, d) and (a, b) ≥ (c, d)
are understood analogously.

Lemma 5.1. Let (ui, vi) be a non-negative viscosity solution of


















∆∞u ≤ fi in B1

∆v ≤ gi in B1

∆∞u = fi in B1 ∩ {v > 0}

∆v = gi in B1 ∩ {u > 0},

(5.1)

with (fi, gi) ∈ C(B1)× C(B1), i = 1, 2 and (f1, g1) < (f2, g2) in B1. If
(u1, v1) ≥ (u2, v2) on ∂B1, then (u1, v1) ≥ (u2, v2) in B1.

Proof. Indeed, if
O := O(u) := {x ∈ B1; u2(x) > u1(x)} ̸= ∅,

then, since (u1, v1) ≥ 0, one has O ⊂ {u2 > 0} ∩ B1, which, recalling (5.1),
leads to







∆∞u1 ≤ f1 in O

∆∞u2 = f2 in O

u1 = u2 on ∂O.

Comparison principle, [23, Lemma 1], then gives
u2 ≤ u1 in O,

which contradicts to the definition of O. Thus, O(u) = ∅. Similarly, also
O(v) = ∅. □

To prove the non-degeneracy of solutions, we assume that
f, g ∈ C(B1) ∩ L

∞(B1). (5.2)

Theorem 5.1. Assume (u, v) ≥ 0 is a viscosity solution of (1.1), and (4.1),
(5.2) hold. There exists a constant c > 0, depending only on c0, such that
for y ∈ {|(u, v)| > 0}, one holds

sup
Br(y)

|(u, v)| ≥ c r
2

3 ,

for each r ∈ (0, 1/2].
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Proof. By continuity, it is enough to show the estimate for y ∈ {|(u, v)| > 0}∩
B 1

2

. Theorem 4.1 guarantees that u(y) > 0 and v(y) > 0. With no loss of
generality, we may assume y = 0. Set

u(x) := Cf
81

64
|x|4/3 and v(x) := Cg

1

2
|x|2,

for constants

Cf :=





inf
B1

f

2





1/3

and Cg :=
1

2
inf
B1

g.

Note that (u, v) is a nonnegative viscosity solution of (1.1), with source
terms which are strictly less than (f, g). Now if

(u, v) < (u, v) in ∂Br,

then Lemma 5.1 provides
(u, v) ≤ (ũ, ṽ) in Br.

In particular, 0 < u(0) ≤ ũ(0), which contradicts to ũ(0) = ṽ(0) = 0. Thus,
(5) does not hold, therefore, there exists a point x ∈ ∂Br such that

(u(x), v(x)) ≥ (u(x), v(x)).

We then estimate
sup
Br

|(u, v)| ≥ sup
∂Br

|(u, v)| ≥ c r2/3.

□

As a consequence, we get the following positive density result.

Corollary 5.1. Assume (u, v) ≥ 0 is a viscosity solution of (1.1), and (4.1),
(5.2) hold. There exists c > 0, such that for x0 ∈ ∂{|(u, v)| > 0} ∩ B 1

2

, one
has

|Br(x0) ∩ {|(u, v)| > 0}| ≥ crn,

for each r ∈
(

0, 12
)

.

Proof. Theorem 5.1 guarantees existence of a point y ∈ {|(u, v) > 0} such
that

|(u(y), v(y)| = sup
Br(y)

|(u, v)| ≥ cr
2

3 . (5.3)

The idea now is to make sure that we can choose 0 < τ < 1 such that
Bτr(y) ⊂ {|(u, v)| > 0}.

Set d(x) := |x− y|. Using Theorem 4.2 and (5.3), we obtain

cr
2

3 ≤ |(u(y), v(y))| ≤ C(d(x) + |(u(x), v(x))|
3

2 )
2

3 ,

that is,

|(u(x), v(x))| ≥

(

( c

C

) 3

2

r − d(x)

)
2

3

.
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Thus, if τ <
(

c
C

) 3

2 , then |(u(x), v(x))| > 0, i.e., x ∈ {|(u, v)| > 0}. Therefore,
|Br(x0) ∩ {|(u, v)| > 0}| ≥ |Br(x0) ∩Bτr(y)| ≥ crn,

which is the desired result. □

Corollary 5.2. If (u, v) ≥ 0 is a viscosity solution of (1.1), and (4.1), (5.2)
hold, then there exists a universal constant c > 0 such that

 

Br(x0)
|(u, v)| dx ≥ cr

2

3 ,

for all x0 ∈ ∂{|(u, v)| > 0} ∩B 1

2

and ρ ∈
(

0, 12
)

.

Proof. As in the proof of Corollary 5.1,
Bτr(y) ⊂ {|(u, v)| > 0},

and (5.3) holds, therefore
 

Br(x0)
|(u, v)| dx ≥

 

Br(x0)∩Bτr(y)
|(u, v)| dx ≥ cr

2

3 ,

□

To state the next consequence, we define porous sets.

Definition 5.1. A set E ⊂ R
n is called porous with porosity constant δ > 0,

if there is ρ > 0 such that for each x ∈ E and r ∈ (0, ρ) there is y ∈ R
n such

that Bδr(y) ⊂ Br(x) \ E.

The Hausdorff dimension of a porous set does not exceed n−Cδn, where
C > 0 is a constant depending only on n (see, for example, [24]). Hence,
the Lebesgue measure of a porous set is zero.

Corollary 5.3. If (u, v) ≥ 0 is a viscosity solution of (1.1), and (4.1), (5.2)
hold, then the coupled free boundary is porous, and therefore, has Lebesgue
measure zero.

Proof. Let x ∈ E := ∂{|(u, v)| > 0} ∩ Br(x0), for x0 ∈ B1 such that
B2r(x0) ⊂ B1 For each r̃ ∈ (0, r), we have Br̃(x) ⊂ B2r(x0) ⊂ B1. From
Theorem 5.1, there exists y ∈ ∂Br(x) such that

|(u(y), v(y))| ≥ cr
2

3 ,

for a constant c > 0. Hence, y ∈ B2r(x0) ∩ {(u, v) > 0}. Set d(y) :=

dist(y,B2r(x0) ∩ {(u, v) = 0}), then Theorem 4.2 provides

|(u(y), v(y))| ≤ C [d(y)]
2

3 ,

for a constant C > 0. Therefore, setting

δ := min

{

1

2
,
[

cC−1
]
3

2

}

< 1,
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we have
d(y) ≥ δr.

Hence, Bδr(y) ⊂ Bd(y)(y) ⊂ {(u, v) > 0}. In particular,

Bδr(y) ∩Br(x) ⊂ {(u, v) > 0}.

On the other hand, if z ∈ [x, y] is such that |z − y| = δr/2, then
B(δ/2)r(z) ⊂ Bδr(y) ∩Br(x).

Thus,
B(δ/2)r(z) ⊂ Bδr(y) ∩Br(x) ⊂ Br(x) \ ∂{u > 0} ⊂ Br(x) \ E,

i.e., E is porous with porosity constant δ/2. □

6. Free boundary regularity

From the previous section, we already know that Lebesgue measure of
the coupled free boundary ∂{|(u, v)| > 0} is zero, Corollary 5.3. In this
section we conclude that its (n− 1) dimensional Hausdorff measure is finite,
deducing that up to a negligible set of null perimeter, the free boundary is
a union of at most countable number of C1 hyper-surfaces. Additionally,
we show that Caffarelli’s dichotomy holds in the sense that any point in
∂{|(u, v)| ≥ 0} is either a regular free boundary point for the coordinate
function v, and around that point ∂{v > 0} is analytic, or the point is
singular, and the set of singular points lies on a C1-manifold. Furthermore,
by using blow-up analysis, we conclude that all the points in the uncoupled
free boundary ∂{v > 0} \ ∂{u > 0} are singular.

Theorem 6.1. Assume (u, v) ≥ 0 is a viscosity solution of (1.1), (4.1) holds
and f ∈ L∞(B1), g ∈ C0,1

loc (B1) ∩ L∞(B1), then the (n − 1)-dimensional
Hausdorff measure of the free boundary ∂{|(u, v)| > 0} is locally finite.

Proof. Indeed, (4.6) reveals that v is the solution of the classical obstacle
problem, therefore the (n − 1)-dimensional Hausdorff measure of the free
boundary ∂{v > 0} is locally finite, [6, Corollary 4], [20, Theorem 3.3].
Observe now that from Theorem 4.1 we have ∂{|(u, v)| > 0} ⊂ ∂{v > 0}. □

Remark 6.1. As observed in [12, Theorem 4.2], we can replace Lipschitz
continuity assumption on g by assuming the following integrability condition

ˆ

Br

|∇g| dx ≤ C0r
n−1, ∀ r ∈ (0, 3/4),

for some universal constant C0 > 0.

Remark 6.2. Since ∂{|(u, v)| > 0} has locally finite (n − 1)-dimensional
Hausdorff measure, the set {|(u, v)| > 0} has locally finite perimeter in B1,
[14].
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Remark 6.3. Up to a negligible set of null perimeter, the free boundary
∂{|(u, v)| > 0} is a union of, at most, a countable family of C1 hyper-
surfaces, [18].

Next, we classify free boundary points and deduce free boundary regular-
ity for one of the coordinate functions. For simplicity of the argument, we
will assume

f ≡ g ≡ 1,

i.e., (u, v) is a viscosity solution of














∆∞u ≤ 1 in B1

∆v ≤ 1 in B1

∆∞u = 1 in B1 ∩ {v > 0}
∆v = 1 in B1 ∩ {u > 0}.

(6.1)

To classify the free boundary points, we recall the following definition.

Definition 6.1. A free boundary point x0 ∈ ∂{v > 0} is called
• regular, if up to a sub-sequence, as r → 0+, one has

v(x0 + rx)

r2
→

1

2
[(e · x)+]

2,

for some unit vector e ∈ S
n−1;

• singular, if up to a sub-sequence, as r → 0+, one has
v(x0 + rx)

r2
→

1

2
⟨Ax, x⟩,

for some non-negative definite matrix A ∈ R
n×n with tr(A) = 1.

Since v ≥ 0 solves the classical obstacle problem (4.6), the result below
follows as a direct consequence of the celebrated Caffarelli’s dichotomy, see
[5], [6, Theorem 8], [15, Theorem 7.3].

Theorem 6.2. Assume (u, v) ≥ 0 is a viscosity solution of (6.1), and
x0 ∈ ∂{v > 0}, then either x0 is a regular point, and in its small neighborhood
the free boundary ∂{v > 0} is an analytic hyper-surface consisting only of
regular points, or x0 is a singular point, and all singular points lie in a
k-dimensional C1 manifold, where k is the dimension of the kernel of the
matrix A.

Furthermore, we show that all points on the uncoupled free boundary are
singular (recall Remark 4.1).

Theorem 6.3. Assume (u, v) ≥ 0 is a viscosity solution of (6.1), then
singular points exhaust the set ∂{v > 0} \ ∂{u > 0}.

Proof. We argue by contradiction and assume that there is a regular point
x0 ∈ ∂{v > 0} that is in ∂{v > 0} \ ∂{u > 0}. Without loss of generality,
we may assume that x0 = 0. Theorem 4.1 then provides

0 ∈ ∂{v > 0} ∩ {u > 0}. (6.2)
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For each r > 0, we define

vr(x) :=
v(rx)− v(0)

r2

and observe that
vr(0) = 0 and sup

B1

vr ≤ C

where the constant C > 0 depends only on ∥u∥∞ and ∥v∥∞. Ascoli-Arzelà
theorem then implies that the family {vr}r is compact in the C0,1 × C1,1

topology. Therefore, applying Theorem 6.2, we arrive at
vr → v∞, as r → 0+,

where
v∞(x) =

1

2
[(e · x)+]

2, (6.3)

for some e ∈ S
n−1. From (6.2) we have u > 0 in a small ball Bτ centered at

the origin. Hence, ∆v = 1 in Bτ and so
∆vr = 1 in Bτ/r.

The latter implies
∆v∞ = 1 in R

n,

which contradicts (6.3). □

u > 0

∂{u > 0}

v > 0 v > 0

∂{v > 0} \ ∂{u > 0}

Figure 1. An illustration of uncoupled free boundary points
shaped up in a singular fashion. All regular free boundary
points are in the coupled free boundary.

7. Examples and beyond

In the final section, we bring explicit examples emphasizing the sharpness
of assumptions in our main results. The first example shows that assumption
(4.1) is vital for our analysis.

Example 1. For a given α > 0 and ϵ > 0 (small), take a constant Cα > 0,
such that the pair (u, vϵ), for

u(x) :=
81

64
(x1)

4/3
+ and vϵ(x) := (x1 − ϵ)2+α

+ ,



16 D. J. ARAÚJO AND R. TEYMURAZYAN

solves (1.1) with f = 1 and gϵ = Cα (x1 − ϵ)α+. Observe that

inf
B1

gϵ = 0,

i.e. (4.1) fails, and also

∂{u > 0} = {x1 = 0} and ∂{vϵ > 0} = {x1 = ϵ},

therefore, ∂{|(u, vϵ)| > 0} = ∅. Hence, the lack of condition (4.1) leads to
the failure of (4.2) and (4.3).

The next example highlights the importance of assumption (u, v) ≥ 0.

Example 2. Unlike classical obstacle problems (see, for example, [6, 12,
28]), solutions of (1.1) may fail to be non-negative even when the boundary
data is non-negative, as shows the following example. Indeed, the pair of
functions

u(x) :=
81

64
|x|4/3 and vϵ(x) :=

1

2
|x|2 − ϵ2, x ∈ B1,

solves (for ϵ > 0 small) (1.1) with f ≡ g ≡ 1. Although both u and v are
positive on ∂B1, the function v is strictly negative in Bϵ

√
2. Observe that

∂{u > 0} = {0}, ∂{v > 0} = ∂Bϵ
√
2 and ∂{|(u, v)| > 0} = ∅,

and once again (4.2) and (4.3) fail.

Our third example points out that estimate (4.5) is optimal.

Example 3. In the previous example, by moving the paraboloid vϵ up and
passing to the limit, as ϵ→ 0, we obtain

u(x) :=
81

64
|x|4/3 and v(x) :=

1

2
|x|2, x ∈ B1,

which is a non-negative solution of (1.1) with f ≡ g ≡ 1, hence Theorem
4.1 holds for (u, v). In fact,

∂{|(u, v)| > 0} = ∂{u > 0} = ∂{v > 0} = {0}.

The next example reveals that inclusion (4.2) is strict, Remark 4.1.

Example 4. The pair of functions (u, v), where

u(x, y) :=
4

3
4

3

(x2 + y2)2/3 and v(x, y) :=
1

2
y2, x, y ∈ R,

solves
∆∞u = 1 in R

2 \ {0} ⊇
(

R
2 \ {y = 0}

)

= {v > 0},

∆v = 1 in R
2 ⊃ R

2 \ {0} = {u > 0},

while ∂{v > 0} \ ∂{u > 0} = {y = 0} \ {0} ̸= ∅.
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Figure 2. An illustration of a non-empty uncoupled free
boundary ∂{v > 0} \ ∂{u > 0} (see Example 4). The red
line above is ∂{v > 0} and the blue point is ∂{u > 0}. By
Theorem 6.3, all points on ∂{v > 0} \ ∂{u > 0} are singular.
In this example, there are no regular points.
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