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Abstract

We propose a finite difference method to approximate weak distributional solutions

of elliptic equations in the double-divergence form. Under minimal regularity as-

sumptions on the coefficients, we resort to a regularisation argument. It turns our

problem into a linear equation in the non-divergence form, with smooth coefficients.

Regularity estimates build upon classical methods (e.g., Lax Equivalence Theorem)

to yield convergence of the numerical method. To validate our strategy, we present

three numerical examples in the planar setting. As far as we know, this is the first

finite difference method for these equations, and our approach extends naturally to

broader classes of models with low-regularity data.

Keywords: Double divergence elliptic equations; finite difference methods for weak

solutions; low-regularity ingredients; regularisation strategy; convergence results.
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1 Introduction

We propose a finite-difference numerical scheme for double-divergence elliptic

equations of the form

∂2
xi,xj

(ai,j(x)u(x)) = f in Ω. (1)

Here, Ω ⊂ R
d is open and bounded, ai,j ∈ Cα

loc(Ω), for some α ∈ (0, 1) fixed,

though arbitrary, and f ∈ L∞
loc(Ω). The unknown u ∈ L1

loc(Ω) is a function

solving (1) in the weak distributional sense. We equip (1) with a Dirichlet

boundary condition of the form u = g, where g ∈ C(∂Ω).

Our main contribution is a finite difference method to approximate the

weak distributional solutions to (1) with coefficients ai,j that are merely

Hölder or Lipschitz continuous, but not C1. We argue through a regularisa-

tion strategy, leading to a two-layer convergence analysis. We illustrate our
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findings with numerical examples1 in the planar case. Two examples con-

sider exact solutions of class C2, whereas a third one works with a merely

Lipschitz-continuous exact solution.

Our focus on weak solutions stems from the geometry of the equation. It

is known that the regularity of the coefficients conditions the regularity of the

solutions to (1). Therefore, with merely continuous coefficients ai,j , solutions

to (1) are not expected to be classical. See, for instance, the example intro-

duced in [10]. As a consequence, under the assumption that ai,j ∈ Cα
loc(Ω),

solutions to (1) are not of class C2 in general. Hence, it is critical to develop

a method capable of approximating weak solutions to that problem.

Equations in the double divergence form appear in various disciplines

and applications. In probability theory, they appear as the Kolmogorov-

Fokker-Planck equations. Here, they describe the evolution of a density

whose microscopic dynamics leads to an infinitesimal generator of the form

Lv(x) := ai,j(x) ∂
2
xi,xj

v(x). (2)

See, for instance, the monograph [8]. In differential geometry, double di-

vergence equations arise in the study of Hamiltonian stationary Lagrangian

manifolds. They characterise the first-order optimality condition for min-

imising the volume of a scalar function’s gradient graph; see [11, 4, 2, 3], to

name only a few. Finally, we mention the context of Hessian-dependent func-

tionals and their connection with fully nonlinear mean-field game systems.

We refer the reader to [1, 13, 5].

This class of equations was introduced in [18]. In that paper, the author

examines subsolutions to (1) and establishes a strong maximum principle.

The potential theory associated with double divergence equations is the sub-

ject of [16]. Here, the author proves that the potential theory available for

(1) coincides with the one for the operator in (2). An improved maximum

principle for equations in the double divergence form appears in [19].

It is worth mentioning the approximation result [19, Theorem A]. It

ensures that a subsolution u to (1) can be approximated in the L1-norm by

a monotone family (uι)ι>0 of subsolutions. Moreover, for all Ω′
⋐ Ω, we have

uι ∈ C(Ω′) for every 0 < ι ≪ 1. Also, if ai,j ∈ C2,α(Ω), for some α ∈ (0, 1),

we have uι ∈ C2,α(Ω). Finally, uι can be represented as the convolution of

u with a kernel depending on the Green’s function of the operator in Ω.

1The numerical schemes were implemented in MATLAB™, with the code produced

predominantly by a large language model and requiring only minimal human refinement.
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Equations in double divergence form can be viewed as the formal adjoint

of (2) in the L2-sense. In this context, they play a central role in the study

of Green’s functions. In [15], the authors prove - among other things - that

locally integrable solutions to (1) are indeed in L
d

d−1

loc (Ω). This fact unlocks

the improved integrability of the Green’s function for the operator in (2).

Ultimately, it leads to an improved variant of the Harnack inequality for

source terms in Lp0(Ω), where d/2 < p0 < d is a universal exponent.

The regularity theory for the weak solutions to (1) is involved. Launched

in [21], it has been revived recently, as several authors have worked in detail

on a number of problems. We mention [6, 7, 10, 9] for results on the Hölder

continuity of the solutions and their integrability. For improved regularity

and differentiability along nodal sets, we refer the reader to [17, 12]. The

well-posedness of (1) is the subject of [14]. In that paper, the authors suppose

f ≡ 0 and prove the existence of a unique weak solution u ∈ C(Ω) for the

double divergence equation.

We propose a finite difference numerical scheme to approximate the weak

solutions to (1). The first step in our analysis is to consider a domain Ω̃ such

that Ω ⋐ Ω̃. Then, we extend the data of the problem to Ω̃ and mollify it

by convolving with a standard, symmetric mollifying kernel. Denote the re-

sulting coefficients with aεi,j , where 0 < ε ≪ 1 is the mollification parameter.

This leads us to consider

{
∂2
xi,xj

(
aεi,j(x)u

ε(x)
)
= f ε in Ω

uε = gε on ∂Ω.
(3)

For 0 < ε ≪ 1 fixed, aεi,j ∈ C∞(Ω). Expanding the second-order derivatives

in (3) yields

{
Tr

(
Aε(x)D2uε(x)

)
+ bε(x) ·Duε + cεuε = f ε in Ω

uε = g on ∂Ω,
(4)

where Aε, bε, and cε depend on the original coefficients and their derivatives

up to the second order. Let Ω̃h be a discretisation of Ω̃ on a uniform grid of

size 0 < h ≪ 1. We consider the numerical scheme

{
Tr

(
Aε(x)D2

hu
ε
h

)
+ bε(x) ·Dhu

ε
h + cε(x)uεh = f ε in Ω̃h ∩ Ω

uεh(x) = g(x) in Ω̃ \ Ω,
(5)

where uh is a grid function, and Dhu
ε
h and D2

hu
ε
h denote the discrete gradient
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and Hessian of uh, respectively. Note that the coefficients in (5) are not

discretised. Instead, we evaluate them at the grid points, once the mollified

coefficients allow us to write Aε(x), bε(x), and cε(x) explicitly.

We work under general conditions on the coefficients ai,j . Namely, uni-

form ellipticity, Hölder continuity, and concavity. The latter is used merely

to ensure that

cε(x) :=

d∑

i,j=1

∂2
xi,xj

aεi,j(x) ≤ 0,

which is critical in obtaining stability for the method. The first-order deriva-

tives of uεh are discretised using an upwind scheme. In turn, the second-order

derivatives are treated with centred finite differences. Our main theorem

reads as follows.

Theorem 1 (Convergence of the numerical method). Suppose Assumptions

A1, A2, and A3, to be detailed further, are in force. For every 0 < ε, h ≪ 1,

let uεh be a solution to (5) and uε be the unique classical solution to (4).

Then uεh → uε locally uniformly, as h → 0. In addition, as ε → 0, we have

uε → u, through a subsequence if necessary, where u is a weak distributional

solution of (1).

The proof of Theorem 1 follows from the consistency of the method in

(5), combined with regularity estimates for (1). The former is a consequence

of the Lax Equivalence, once we verify that (5) is consistent with (4) and

stable in the ℓ∞-norm. This argument leads to the first convergence result

in the theorem.

To prove that the discrete solutions converge to a weak distributional

solution of (1), we use regularity estimates. Indeed, under the Hölder conti-

nuity of ai,j , [21, Theorem 2] ensures that (uε)0<ε≪1 is uniformly bounded

in Cα
loc(Ω). We then prove an analytical stability result for (1) and conclude

that the subsequential limit of (uε)0<ε≪1 solves that equation.

Under the additional condition f ≡ 0, there exists a unique weak solution

u ∈ C(Ω) to (1); see [14]. Hence, we obtain the following corollary.

Corollary 1. Suppose Assumptions A1, A2, and A3, to be detailed further,

are in force. Suppose further that f ≡ 0. For every 0 < ε, h ≪ 1, let uεh be

a solution to (5). Then uεh → u locally uniformly in Ω, as ε, h → 0, where

u ∈ C(Ω) is the unique weak solution of (1).

The remainder of this paper is organised as follows. Section 2 presents

our main assumptions and gathers preliminary material used in the paper.
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Section 3 details our numerical method and the proof of Theorem 1. A final

section presents two numerical examples in the planar case.

2 Preliminaries

In what follows, we outline our main assumptions and recall basic results and

notions used throughout the paper. We start with a geometric condition on

the domain Ω.

A 1 (Regular domain). We suppose Ω ⊂ R
d is open, bounded, and connected.

We also require Ω to satisfy a uniform exterior sphere condition.

We continue with assumptions on the diffusion matrix A := (ai,j)
d
i,j=1.

A 2 (Diffusion matrix). We suppose the diffusion matrix A = (ai,j)
d
i,j=1 :

Ω → R
d2 is such that ai,j ∈ Cα(Ω) for every i, j = 1, . . . , d, for some fixed

α ∈ (0, 1). Also, there exist constants 0 < λ ≤ Λ such that

λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2,

for every ξ ∈ R
d and every x ∈ Ω. Finally, we suppose ai,j is concave, for

i, j = 1, . . . , d.

Finally, we detail the conditions imposed on the source term f and the

Dirichlet boundary data g.

A 3 (Data of the problem). We suppose f ∈ L∞
loc(Ω) and g ∈ C(∂Ω).

Under Assumption A2-A3, one defines a solution to (1) in the weak

distributional sense.

Definition 1 (Weak distributional solution). Suppose ai,j ∈ L∞(Ω) for ev-

ery i, j = 1, . . . , d. Suppose f ∈ L1
loc(Ω). We say u ∈ L1

loc(Ω) is a weak

solution to (1) in the distributional sense if

∫

Ω
ai,j(x)u(x)∂

2
xi,xj

ϕ(x)dx =

∫

Ω
f(x)ϕ(x)dx,

for every ϕ ∈ C∞
c (Ω).

We continue by recalling a regularity result in Hölder spaces for the

solutions to (1).
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Proposition 1 (Hölder regularity estimates). Let u ∈ L1
loc(Ω) be a weak

distributional solution to (1). Suppose Assumptions A2 and A3 are in force.

Then u ∈ Cα
loc(Ω). In addition, for every Ω′

⋐ Ω, there exists C > 0 such

that

‖u‖Cα(Ω′) ≤ C, (6)

with C = C
(
d, λ,Λ,

∥∥aij
∥∥
Cα(Ω)

, ‖u‖L∞(B1)

)
.

For the proof of Proposition 1, we refer the reader to [21, Theorem 2].

The Hölder estimates in Proposition 1 yield compactness for a family of

regularised solutions. Once compactness is available, we recall a result on

the well-posedness of (1); see [14, Theorem 2].

Proposition 2 (Existence and uniqueness of solutions). Suppose Assump-

tions A1, A2, and A3 hold true. Suppose further f ≡ 0. Then there exists

a unique u ∈ C(Ω) solving (1) in the weak distributional sense. Moreover, u

agrees with g on ∂Ω.

For the proof of Proposition 2, we refer the reader to [14]. If f ≡ 0,

Propositions 1 and 2 ensure that the unique weak solution to (1), agreeing

with g on ∂Ω, admits a uniform modulus of continuity. We proceed with

notions in the realm of numerical methods.

Let L denote a second-order linear operator of the form

Lu(x) := Tr
(
A(x)D2u(x)

)
+ b(x) ·Du(x) + c(x)u(x), (7)

where the coefficients A := (ai,j)
d
i,j=1, b, and c are smooth in Ω. For 0 <

h ≪ 1 fixed, though arbitrary, let Ωh denote a discrete approximation of Ω

by a regular grid of size 0 < h ≪ 1. We define a discrete approximation of

L, denoted by Lh as

Lhuh(x) := Tr
(
A(x)D2

huh(x)
)
+ b(x) ·Dhuh(x) + c(x)uh(x), (8)

where x,∈ Ωh, and uh : Ωh → R is a grid function. In (8), we define the

approximated Hessian matrix

D2
huh(x) =

(
∂2
xi,xj

uh(x)
)d

i,j=1
(9)

by choosing

∂2
xi,xi

uh(x) :=
uh(x+ hei) + uh(x− hei)− 2uh(x)

h2
,
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and

∂2
xi,xj

uh(x) :=
2uh(x) + uh(x+ eih− ejh) + uh(x− eih+ ejh)

2h2

−
uh(x+ eih) + uh(x− eih) + uh(x+ ejh) + uh(x− ejh)

2h2
.

As concerns Dhuh, we propose an upwind scheme. Define

D+
j uh(x) :=

uh(x+ hej)− uh(x)

h
and D−

j uh(x) :=
uh(x)− uh(x+ hej)

h
.

The discrete gradient Dhuh(x) := (D1
huh(x), . . . , D

d
huh(x)) is then defined

by

Di
huh(x) :=





D+
i uh(x) if bi(x) < 0

D−
i uh(x) if bi(x) > 0

0 if bi(x) = 0,

(10)

for i = 1, . . . , d. We study the Dirichlet problem

{
Lv = f in Ω

v = g on ∂Ω,
(11)

under Assumption A3. The associated numerical scheme is

{
Lhvh = f in Ω

vh = g on ∂Ω,
(12)

where Lh is the discrete approximation in (8). To properly relate (11) and

(12), we rely on two main ingredients. Namely, the consistency of Lh with

respect to L, and its stability.

Definition 2 (Consistency and stability). We say that Lh is consistent with

L if, for every u ∈ C4(Ω) solving Lu = f , we have

lim
h→0

sup
x∈Ωh

|Lu(x)− Lhu(x)| = 0.

Moreover, Lh is p-stable if

‖uh‖ℓp(Ω) ≤ C
(
‖f‖L∞(Ω) + ‖g‖L∞(∂Ω)

)
,

whenever uh : Ωh → R satisfies (12). The constant C > 0 depends only on

the problem data and p > 1, but not on 0 < h ≪ 1.
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The proof of Theorem 1 relies on the stability and consistency of a nu-

merical method Lh. It approximates a linear second-order PDE in non-

divergence form. Here we use the Lax equivalence theorem, according to

which consistency and stability are equivalent to convergence. For com-

pleteness, we recall this fact in the form of a proposition.

Proposition 3 (Lax equivalence). Let Lh be a numerical method, consistent

with (11). Let (uh)h>0 denote the family of grid functions satisfying (12) and

let u be the solution to (11). Then uh → u in ℓp, as h → 0 if, and only if,

Lh is stable.

For the proof of Proposition 3, we refer the reader to the classical mono-

graph by Richtmyer and Morton [20]. The next section introduces our

method and details the proof of Theorem 1.

3 A finite difference method

We propose a numerical method for the Dirichlet problem

{
∂2
xi,xj

(ai,j(x)u(x)) = f in Ω

u = g on ∂Ω.
(13)

We start by extending the domain Ω. Set

Ω1/π :=

{
x ∈ R

d | dist(x,Ω) <
1

π

}
.

Extend ai,j and f to Ω1/π, and denote these extensions with ãi,j and f̃ ,

respectively. For 0 < ε < (2π)−1, define aεi,j , f
ε : Ω1/π−ε → R

d as

aεi,j(x) := (ãi,j ∗ ηε) (x) and f ε(x) :=
(
f̃ ∗ ηε

)
(x). (14)

Now, extend g ∈ C(∂Ω) to Ω1/π \ Ω and denote the extension with g̃. Con-

sider the regularised Dirichlet problem

{
∂xi,xj

(
aεi,j(x)u

ε(x)
)
= f ε in Ω

uε = g on ∂Ω.
(15)

The regularity of the coefficients allows us to write the PDE in (15) as

aεi,j∂
2
xi,xj

u+ ∂xi
aεi,j∂xj

u+ ∂xj
aεi,j∂xi

u+ ∂2
xi,xj

aεi,ju = f ε. (16)
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Now, for i, j = 1, . . . , d, set

Aj,ε(x) :=
[
∂xj

aε1,j ∂xj
aε2,j · · · ∂xj

aεd,j
]

and

Ai,ε(x) :=
[
∂xi

aεi,1 ∂xi
aεi,2 · · · ∂xi

aεi,d
]
.

The former choice builds upon (16) to rewrite (15) as

{
Tr

(
Aε(x)D2uε(x)

)
+ bε(x) ·Duε + cεuε = f ε in Ω

uε = g on ∂Ω,
(17)

where

bε(x) :=
d∑

i=1

Ai,ε(x) +
d∑

j=1

Aj,ε

and

cε(x) :=

d∑

i,j=1

∂2
xi,xj

aεi,j(x).

Notice the PDE in (17) is linear, driven by a uniformly elliptic positive

definite matrix. Furthermore, the concavity condition in Assumption A2

implies c(x) ≤ 0 in Ω. Finally, for fixed 0 < ε ≪ (2π)−1, the coefficients in

(17) are smooth and bounded, with bounds depending (possibly) on ε. We

proceed with a discretisation of (17).

Fix a parameter 0 < h0 ≪ 1. For h ∈ (0, h0), consider a regular grid

Ωh
1/π, of mesh size h, approximating the open set Ω1/π. We discretise (17)

through {
Lε
hu

ε
h(x) = f ε in Ωh

1/π ∩ Ω

uεh(x) = g̃(x) in Ωh
1/π \ Ω,

(18)

with

Lε
hu

ε
h(x) := Tr

(
AεD2

hu
ε
h

)
+ bε ·Dhu

ε
h + cεuεh,

and the discrete gradient and the discrete Hessian are computed as in (10)

and (9), respectively. We continue with a proposition on the consistency and

stability of the method in (18).

Proposition 4 (Consistency). Let uε ∈ C4(Ω)∩C(Ω) be a solution to (17).

Suppose Assumptions A2 and A3 are in force. Then the method (18) is

consistent with (17).

Proof. The regularity of the coefficients ensures that the (unique) solution
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to (17) is bounded in C4(Ω), with estimates depending on the L∞-norm of

(ai,j)
d
i,j=1, the domain Ω, and 0 < ε < (2π)−1. Therefore, (10) and (9) imply

∣∣D2
hu

ε(x)−D2uε(x)
∣∣ ≤ Ch2 and |Dhu

ε(x)−Duε(x)| ≤ Ch,

where C > 0 depends only on the L∞-norm of (ai,j)
d
i,j=1, the domain Ω,

and 0 < ε < (2π)−1. Hence, there exist universal constants C1, C2 > 0,

depending on C and ε, such that

sup
x∈Ωh

|Lε
hu

ε(x)− Lεuε(x)| ≤ C1h
2 + C2h −→ 0,

as h → 0. The proof is complete.

We proceed with the stability of the method in (18).

Proposition 5 (Stability in the ℓ∞-sense). For 0 < h ≪ 1 and 0 < ε <

(2π)−1, let uεh : Ωh → R be a solution to (18). Suppose Assumptions A2

and A3 are in force. Then there exists C > 0, depending on the data of the

problem, but not on h, such that

‖uh‖ℓ∞(Ω) ≤ C
(
‖f‖L∞(Ω) + ‖g‖L∞(∂Ω)

)
.

Proof. Once again, we notice that Assumption A2 ensures the matrix repre-

senting Lε
h is monotone. Set v : Ω → R

d as

v(x) := ±


‖g‖L∞(∂Ω) +

‖f‖L∞(Ω)

| inf
x∈Ω

c(x)|


 ,

and apply the discrete maximum principle to obtain

‖uh‖ℓ∞ ≤ C
(
‖g‖L∞(∂Ω) + ‖f‖L∞(Ω)

)
,

where C > 0 depends on the data of the problem, but does not depend on

0 < h ≪ 1.

Once (18) is consistent with (17) and stable in the ℓ∞-norm, we are in a

position to apply Proposition 3.

Proposition 6 (Convergence of numerical solutions). Fix ε ∈ (0, 2π−1). Let

(uεh)h>0 be a family of solutions to (18). Let uε ∈ C2(Ω)∩C(Ω) be the unique

solution to (17). Then uεh → uε, locally uniformly, as h → 0.
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Proof. The proposition follows from the Lax Equivalence Theorem (Propo-

sition 3), together with Propositions 4 and 5.

We continue with a proposition on the asymptotic behaviour of the family

(uε)ε∈(0,(2π)−1), as ε → 0.

Proposition 7 (Convergence of regularised solutions). Let (uε)ε∈(0,(2π)−1)

be a family of solutions to (17). Let u ∈ C(Ω) be the unique weak solution

to (1). Then uε → u, locally uniformly in Ω, as ε → 0.

Proof. For every ε ∈ (0, (2π)−1), uε satisfies

∂2
xi,xj

(
aεi,j(x)u

ε(x)
)
= f in Ω

in the classical sense. In particular, there exists α ∈ (0, 1) such that uε ∈

Cα
loc(Ω), with estimates uniform in ε; see Proposition 1. Therefore, there

exists u ∈ C(Ω) such that uε → u locally uniformly in Ω, as ε → 0, through

a subsequence if necessary. We claim that u solves (1) and agrees with g on

the boundary ∂Ω.

Indeed, let ϕ ∈ C∞
c (Ω) and denote with K ⋐ Ω its support. We have

∣∣∣∣
∫

Ω
(ai,ju)ϕxi,xj

− fϕdx

∣∣∣∣ ≤ C1 ‖u
ε − u‖L∞(K) + C2

∥∥aεi,j − ai,j
∥∥
L1(K)

+ C3 ‖f
ε − f‖L∞(K) .

(19)

Here, C1 depends on
∥∥ϕxi,xj

∥∥
L∞(K)

and ‖ai,j‖L∞(K), C2 depends on ‖uε‖L∞(K)

and ‖ϕ‖L∞(K), and C3 depends on ‖ϕ‖L∞(K). By taking the limit ε → 0 in

(19), one obtains ∫

Ω
(ai,ju)ϕxi,xj

dx =

∫

Ω
fϕdx.

Because ϕ ∈ C∞
c (Ω) was chosen arbitrarily, the result follows.

Now, we are in a position to prove Theorem 1 and derive Corollary 1.

Proof of Theorem 1. The statement of the theorem follows by combining

Propositions 6 and 7.

Proof of Corollary 1. If f ≡ 0, Proposition 2 ensures the existence of a

unique solution u ∈ C(Ω) to (1) agreeing with g on ∂Ω. Theorem 1 concludes

the proof.
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4 Numerical examples

In this section, we present three numerical examples to illustrate our method.

We start with coefficients that are at most Lipschitz continuous and prescribe

(1) in the unit square [−1, 1]2. Then we extend the coefficients to [−2, 2]2

and mollify them through a discrete convolution. Once the regularised co-

efficients are available, we turn our attention to the exact solution. When

the exact solution is of class C2, we use it to compute the source term and

implement the method in (17). This occurs in Examples 1 and 2. If the

exact solution is merely Lipschitz continuous, we approximate its derivatives

numerically to generate the problem data. This is the case in Example 3.

The algorithm used in the case of C2-regular exact solutions is detailed

in Algorithm 1. The algorithm used in the case of the Lipschitz continuous

exact solution is described in Algorithm 2.

We consider the same diffusion matrix A for the three examples. Namely,

A(x) :=


2− |x| 0

0 2− |y|


 .

Our choice of a diagonal matrix is merely due to simplification purposes.

Notice a1,1 and a2,2 are Lipschitz continuous, and the ellipticity constants of

A are also easily computed. Implementation of the numerical schemes was

carried out in MATLAB™. Notably, the source code was produced by a large

language model, requiring only minimal human intervention.

Example 1 (Trigonometric functions, C2-regular exact solution). Our first

example considers an exact solution of the form

u(x, y) := sin(πx) sin(πy),

defined in [−1, 1]2 ⊂ R
2, and agreeing with g ≡ 0 on the boundary of the

square. We discretised the square using N = 500 and considered ε = 0.01.

The maximum error between the numerical solutions and the exact one, in

absolute value, is 13 × 10−6. See Figure 1 for a representation of the exact

solution and the heatmap of the error.
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Algorithm 1 Discretisation of the PDE Tr(AεD2uε)+bε ·Duε+ cεuε = f ε

with mollified coefficients - exact solution of class C2

i. Define the extended domain [−2, 2]2 for convolution and construct raw
coefficients araw

11 , araw
22 .

ii. Construct the mollifier ρε and compute smooth coefficients by convo-
lution

aεii = ρε ∗ araw
ii , i = 1, 2.

iii. Choose an exact solution u(x, y) and compute its derivatives
u, ∂xu, ∂xxu, . . ..

iv. Evaluate the lower-order coefficients

iv.i. bε = Daε

iv.ii. cε = ∂2
xi,xj

aε

v. Assemble the source term f ε := Tr(AεD2u) + bε ·Du+ cεu.

vi. Assemble the sparse matrix Lh:

vi.i. Use central differences for second-order terms.

vi.ii. Use upwind differences for gradient terms, based on the sign of
each component of bε.

vi.iii. Add diagonal contribution from cε.

vii. Solve Lε
hu

ε = f ε at interior nodes, with homogeneous Dirichlet bound-
ary conditions.

viii. Compute the absolute error |uε − u| and visualize both the numerical
and exact solutions.
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Algorithm 2 Discretisation of the regularised double-divergence PDE with
numerically approximated derivatives

i. Define the extended domain [−2, 2]2 for convolution and construct raw
coefficients araw

11 , araw
22 .

ii. Construct the mollifier ρε and compute smooth coefficients by convo-
lution

aεii = ρε ∗ araw
ii , i = 1, 2.

iii. Choose an exact solution u(x, y) = (1−|x|)2(1−|y|)2 and compute its
partial derivatives numerically:

iii.i. ∂xu, ∂yu using central differences via gradient.

iii.ii. ∂xxu, ∂yyu computed as second derivatives of the first ones.

iv. Evaluate the lower-order coefficients:

iv.i. bε = Daε computed by applying gradient to the mollified coef-
ficients.

iv.ii. cε = divDaε = ∂xxa
ε
11 + ∂yya

ε
22.

v. Assemble the source term

f ε := aε11 ∂xxu+ aε22 ∂yyu+ bε ·Du+ cεu.

vi. Assemble the sparse matrix Lε
h:

vi.i. Use central differences for the second-order terms.

vi.ii. Use upwind differences for the first-order terms, based on the sign
of each component of bε.

vi.iii. Add diagonal contribution from cε.

vii. Solve the linear system Lε
hu

ε = f ε at interior nodes, imposing homo-
geneous Dirichlet boundary conditions.

viii. Compute the absolute error |uε − u| and visualize both the numerical
and exact solutions.
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Fig. 1: In Figure 1a, the heatmap of the error (in absolute value) indicates
higher discrepancies in the vicinity of the region where the exact solution
attains its extrema. A closer examination suggests the error increases in a
symmetric pattern within the domain. In any case, the absolute error is
negligible in the entire square. Figure 1b depicts the exact solution.

Example 2 (Polynomial, C2-regular exact solution). The exact solution in

our second example is a paraboloid of the form

u(x, y) :=
[
(1− x4)(1− y4)

]4
,

also defined in [−1, 1]2 ⊂ R
2, and agreeing with g ≡ 0 on the boundary of the

square. In this case, we discretised the square using N = 1000 and considered

once again ε = 0.01. The maximum error between the numerical solutions

and the exact one, in absolute value, is 3×10−2. See Figure 2 for a graphical

representation of the exact solution and the heatmap of the error.

Example 3 (Lipschitz continuous exact solution). In the Lipschitz continu-

ous setting, we choose an exact solution given by a paraboloid with Lipschitz

dependence on x and y. Concretely, we work with

u(x, y) := (1− |x|)2(1− |y|)2

in [−1, 1]2 ⊂ R
2. Notice this function agrees with g ≡ 0 on the boundary of

the square. Here, we discretised the square using N = 300 and fixed ε = 0.01.

The maximum absolute error is 6 × 10−6. Figure 3 puts forward the exact

solution and the heatmap of the error.
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(a) Absolute error (b) Exact solution

Fig. 2: In Figure 2a, one sees the heatmap of the error (absolute value).
Although negligible in terms of magnitude, it increases in the vicinity of the
region where the function changes concavity. In Figure 2b, one has the graph
of the exact solution.
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(a) Absolute error (b) Exact solution

Fig. 3: Figure 3a presents the heatmap of the error in absolute value. With
negligible magnitude, the error has a peak in the vicinity of the origin, and
spreads along rays parallel to the canonical basis. It suggests the loss of
classical derivatives affects the method. Figure 3b depicts the exact solution.
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