Advanced Search...
Login
The Centre
Presentation
Administration and Staff
Advisory Committee
Projects
Contacts
Research Groups
Algebra and Combinatorics
Analysis
Geometry
Numerical Analysis and Optimization
Probability and Statistics
Algebra, Logic and Topology
Laboratory for Computational Mathematics
Thematic Lines
History of Mathematics
Outreach Activities
PhD Program
People
Members
Post-docs
Students
Visiting Scientists
Collaborators
Past Members
Activities
Events
Seminars
Colloquia
Highlights
Publications
All
Articles
Books
Preprints
Home
Moduli spaces and applications (Products)
Moduli spaces and applications
Goals
Tasks
Overall
Description
Contacts
Financers
Team
Products
Publications:
Publications
MELO, Margarida, RAPAGNETTA, Antonio, VIVIANI, Filippo (2019). Fourier-Mukai and autoduality for compactified Jacobians, II.
Geometry & Topology
. Vol. 23. 5, pp. 2335-2395.
MELO, Margarida, RAPAGNETTA, Antonio, VIVIANI, Filippo (2019). Fourier-Mukai and autoduality for compactified Jacobians. I.
Journal für die Reine und Angewandte Mathematik (Crelle Journal)
. Vol. 755, pp. 1-65.
MELO, Margarida, RAPAGNETTA, Antonio, VIVIANI, Filippo (2017). Fine compactified Jacobians of reduced curves.
Transactions of the American Mathematical Society
. Vol. 369. 8, pp. 5341-5402.
MELO, Margarida, RAPAGNETTA, Antonio, VIVIANI, Filippo (2014). Fine compactified Jacobians of reduced curves. arXiv:1406.2299 Preprint.
MELO, Margarida, RAPAGNETTA, Antonio, VIVIANI, Filippo (2013). Fourier-Mukai and autoduality for compactified Jacobians II. arXiv:1308.0564 Preprint.
MELO, Margarida, VIVIANI, Filippo (2014). The Picard group of the compactified universal Jacobian.
Documenta Mathematica
. Vol. 19, pp. 457--507.
VIVIANI, Filippo (2014). A tour on Hermitian symmetric manifolds. Sandra Di Rocco, Bernd Sturmfels (Eds.),
Combinatorial Algebraic Geometry.
(pp. 149-239). Berlin: Springer.
VIVIANI, Filippo (2013). A tour on Hermitian symmetric manifolds. arXiv:1310.3665 Preprint.
VIVIANI, Filippo (2013). Tropicalizing vs Compactifying the Torelli morphism.
Number of registers: 19
<< previous
1
,
2
next >>
© Centre for Mathematics, University of Coimbra, funded by
Powered by: rdOnWeb v1.4 |
technical support