Exact completion and small sheaves

Michael Shulman

University of California, San Diego

International Category Theory Conference July 20, 2011

Outline

1 Background and motivation

2 Exact completion of unary sites

3 Pretopos completions of higher-ary sites

4 Small sheaves

Exact completions

Recall: a (Barr-)exact category has finite limits and quotients of equivalence relations, which interact as they do in Set.

The following forgetful functors have left adjoints:

- Exact categories → lex categories (= finitely-complete)
- Regular categories \rightarrow lex categories

. . .

References: Carboni & Celia Magno, Carboni & Vitale, Hu, Hu & Tholen, Lawvere, Succi Cruciani, Freyd & Scedrov, Lack, Karazeris

The ex/reg completion

Let \boldsymbol{C} be regular. Then $\boldsymbol{C}_{ex/reg}$ has

- objects: equivalence relations in C.
- morphisms: relations in **C** which are equivalence-respecting, entire, and functional.

Constructed by splitting symmetric monads in the allegory of relations.

Or: if **C** is small, $C_{ex/reg}$ is the full subcategory of $Sh(C, J_{reg})$ spanned by the quotients of equivalence relations in **C**.

The ex/lex completion

Let \boldsymbol{C} be lex. Then $\boldsymbol{C}_{ex/lex}$ has

- objects: "pseudo-equivalence relations" in C.
- morphisms: equivalence classes of equivalence-respecting morphisms in **C**.

Constructed by splitting symmetric monads in the allegory of "relations" in the preorder reflections of slice categories.

Or: if **C** is small, $C_{ex/lex}$ is the full subcategory of Psh(C) spanned by the quotients of pseudo-equivalence relations in **C**.

Question 1: The ex/wlex completion?

The ex/lex construction works just as well when **C** only has *weak* finite limits (which satisfy the existence, but not the uniqueness, part of the usual universal property).

But the result is not left adjoint to the forgetful functor

exact categories \rightarrow weakly lex categories!

Instead it classifies "left covering functors" (Carboni & Vitale).

Question 2: Other topologies?

What is special about

1 the regular topology on a regular category, and

2 the trivial topology on a weakly lex category,

so that we can find "exact completions" inside their categories of sheaves?

Outline

1 Background and motivation

2 Exact completion of unary sites

3 Pretopos completions of higher-ary sites

4 Small sheaves

Exact completion of sites

Theorem

There is a 2-category of unary sites, in which exact categories form a full reflective sub-2-category.

The reflector:

- on a regular category with its regular topology, constructs its ex/reg completion;
- on a weakly lex category with its trivial topology, constructs its ex/wlex completion.

What is a unary site?

Definition A site is unary if

1 Its topology is generated by singleton covers (every covering sieve

contains a covering sieve that is generated by a single morphism), $\ and$

- 2 It has local weak finite limits.
- A local weak limit of a diagram G in a site is
 - **1** A cone $T: x \Rightarrow G$ such that
 - 2 For every other cone S: z ⇒ G, there exists a covering family {p_i: w_i → z} such that each cone S ∘ p_i factors through T.

Examples

- The regular topology on a regular category;
- The trivial topology on a weakly lex category.

What is a morphism of unary sites?

Theorem

Let C, D be unary sites. For a functor $F : C \to D$, the following are equivalent.

- 1 F preserves local weak finite limits.
- 2 F preserves covers, and is flat relative to the topology of **D**.
- 3 (If **C** is lex and **D** is subcanonical) F is lex and preserves covers.

These are the morphisms of (unary) sites.

Definition (Karazeris)

 $F: \mathbf{C} \to \mathbf{D}$ is *flat relative to the topology of* **D** if for any finite diagram *G* in **C**, and any cone $S: z \Rightarrow FG$ in **D**, there is a covering family $\{p_i: w_i \to z\}$ such that each cone $S \circ p_i$ factors through F(T) for some cone $T: x \Rightarrow G$ in **C**.

What is a morphism of unary sites?

Examples

- Between regular categories: regular functors.
- Between (weakly) lex categories: (weakly) lex functors.
- From weakly lex categories to exact categories: left covering functors (Karazeris).

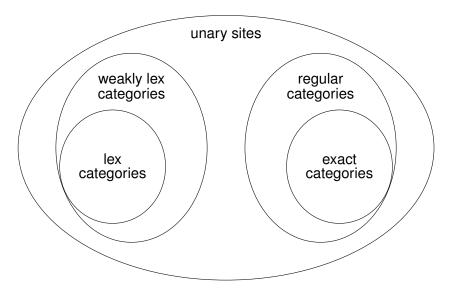
The universal property

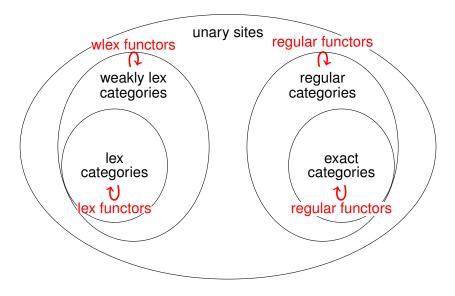
For a unary site C, and an exact category D,

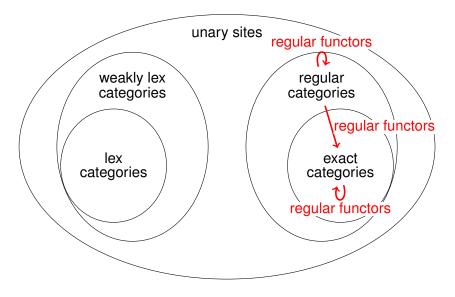
morphisms of sites $\boldsymbol{C} \rightarrow \boldsymbol{D}$

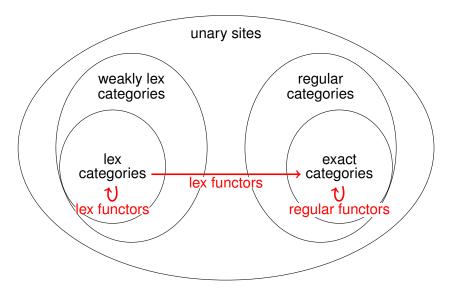
regular functors $\boldsymbol{C}_{ex} \rightarrow \boldsymbol{D}$

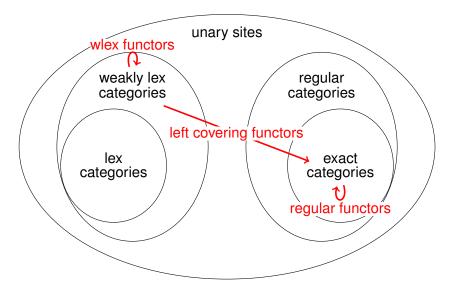
where \mathbf{C}_{ex} and \mathbf{D} have their regular topologies.











Constructing the exact completion

Let \boldsymbol{C} be a unary site. Then \boldsymbol{C}_{ex} has

- objects: "equivalence relations" in C, modulo its topology.
- morphisms: either
 - relations in **C** which are equivalence-respecting, entire, and functional (modulo the topology); or
 - a category of fractions of equivalence-respecting morphisms in **C**.

Can be constructed by splitting symmetric monads in a suitable allegory of relations.

Or: if **C** is small, C_{ex} is the full subcategory of Sh(C) spanned by the quotients of such equivalence relations in **C**.

Outline

Background and motivation

2 Exact completion of unary sites

3 Pretopos completions of higher-ary sites

4 Small sheaves

κ -ary pretoposes

Let κ be a regular cardinal, or the size of the universe " ∞ ".

Definition

A κ -ary pretopos is an exact category which is also κ -ary extensive (has disjoint and stable coproducts of size $< \kappa$).

Examples

- A ω -ary pretopos is usually called just a "pretopos".
- An ∞-ary pretopos (or "∞-pretopos" or "faux topos") is a category which satisfies all the exactness conditions of Giraud's theorem.
- A 2-ary pretopos is an exact category with a strict initial object.

κ -ary sites

Definition

A site is *k*-ary if

- its topology is generated by families of size $< \kappa$, and
- it has "local weak finite κ-multilimits". That is, every finite diagram has a κ-small family of cones through which every other cone factors modulo passage to a covering family.

Examples

- The κ -canonical topology on a κ -ary pretopos is κ -ary.
- Every κ -ary site is λ -ary for any $\lambda \geq \kappa$.
- Every *small* site is ∞ -ary.

Morphisms of κ -ary sites

Theorem

Let C, D be κ -ary sites. For a functor $F : C \to D$, the following are equivalent.

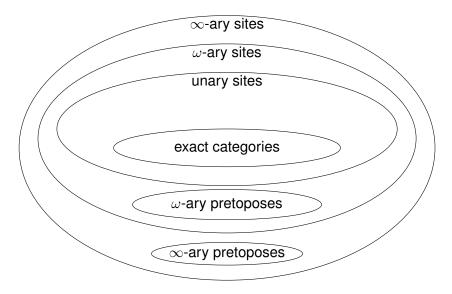
- **1** *F* preserves local weak finite κ -multilimits
- 2 F preserves covers, and is flat relative to the topology of D
- (If C is lex and D is subcanonical) F is lex and preserves covers.

These are the morphisms of (κ -ary) sites.

Remarks

- Independent of *κ*.
- Between Grothendieck topoi: inverse image functors.
- From a small site **C** to a topos **D**: the functors which Sh(**C**) classifies.

The 2-categories of κ -ary sites



κ -ary pretopos completion

Theorem

The 2-category of κ -ary sites contains the 2-category of κ -ary pretoposes as a full reflective sub-2-category.

The reflector:

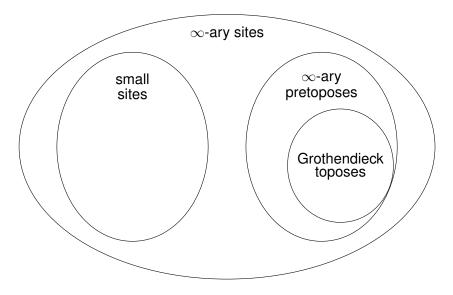
- on lex and coherent categories, constructs pretop/lex and pretop/coh completions;
- on a small (∞ -ary) site, constructs its topos of sheaves.

The universal property:

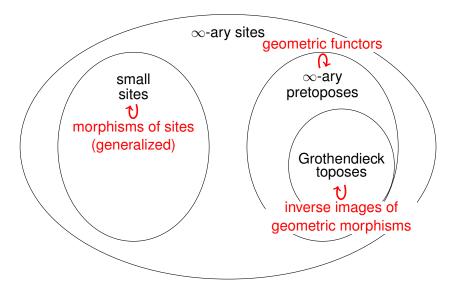
 $\frac{\text{morphisms of sites } \mathbf{C} \rightarrow \mathbf{D}}{\kappa\text{-coherent functors } \mathbf{C}_{ex} \rightarrow \mathbf{D}}$

where C_{ex} and **D** have their κ -canonical topologies.

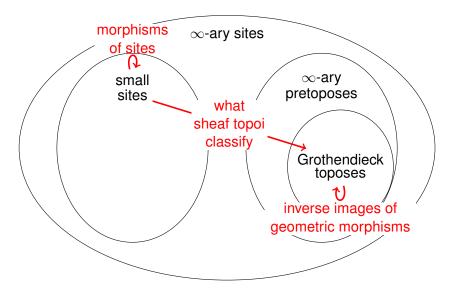
The 2-category of ∞ -ary sites



The 2-category of ∞ -ary sites



The 2-category of ∞ -ary sites



Constructing the pretopos completion

Let **C** be a κ -ary site. Then **C**_{κ -pretop} has

- objects: "(< κ)-object equivalence relations" in C, modulo its topology.
- morphisms: either
 - (<κ)-object equivalence-respecting relations which are entire and functional (modulo the topology); or
 - a category of fractions of equivalence-respecting families of morphisms in C.

Can be constructed by adjoining κ -ary coproducts and splitting symmetric monads in a suitable allegory of relations.

Or: if **C** is small, $C_{\kappa\text{-pretop}}$ is the full subcategory of Sh(**C**) spanned by the quotients of such many-object equivalence relations in **C**.

Outline

Background and motivation

2 Exact completion of unary sites

3 Pretopos completions of higher-ary sites

4 Small sheaves

Small presheaves

Let **C** be a large category.

Definition

A small presheaf on C is a presheaf $C^{op} \rightarrow Set$ which is a small colimit of representables.

The category $\mathcal{P}C$ of small presheaves on C is its free cocompletion under small colimits.

Now suppose **C** has weak finite ∞ -multilimits, so that its trivial topology is ∞ -ary. Day and Lack proved this is equivalent to $\mathcal{P}\mathbf{C}$ being lex. But in fact:

Theorem

In this case, $\mathcal{P}\mathbf{C}$ is equivalent to the ∞ -ary pretopos completion of \mathbf{C} . In particular, it is an ∞ -ary pretopos.

Small sheaves

Let \mathbf{C} be a large ∞ -ary site.

Definition

A small sheaf on ${\bf C}$ is an object of its $\infty\text{-ary pretopos completion.}$

Example

 $\mathbf{C} = \operatorname{Ring}^{\operatorname{op}}$ with the Zariski topology. Then a small sheaf is a many-object equivalence relation in \mathbf{C} : a family of rings with information about how to glue them together. Any scheme can be seen as such an object.

Thanks!