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Abstract

We examine boundary regularity for a fully nonlinear free transmission
problem. We argue using approximation methods, comparing the oper-
ators driving the problem with a limiting profile. Working natural con-
ditions on the data of the problem, we produce regularity estimates in
Sobolev and C1,Log−Lip-spaces. Our findings extend recent developments
in the literature to the free boundary setting.
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1 Introduction

We examine a fully nonlinear free transmission problem of the form

F1(D2u,Du, x) = f in Ω ∩ {u > 0}

F2(D2u,Du, x) = f in Ω ∩ {u < 0} ,
(1)

equipped with the Dirichlet boundary condition u = g on ∂Ω. We suppose
Fi : S(d)×Rd ×Ω→ R satisfies a usual structure condition, for i = 1, 2. Also,
f ∈ Lp(Ω) for some p0 < p, where d/2 < p0 is the integrability exponent above
which the Aleksandrov-Bakelman-Pucci estimate is available for the solutions
to F = f ∈ Lp(Ω). The boundary datum g belongs to suitable functional spaces
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to be set further. We denote with Γ(u) the free boundary given by

Γ(u) := ∂ {u > 0} ∪ ∂ {u < 0} .

Our findings comprise boundary regularity in spaces C1,Log−Lip and bound-
ary W 2,p-estimates. We emphasise these two classes of results are different.
The first one concerns estimates for points x0 ∈ ∂Ω. The latter ensures the
existence of a universal neighbourhood Ωδ of ∂Ω such that u ∈ W 2,p(Ωδ). We
stress that our findings do not rely on convexity or convexity-like assumptions
on the operators Fi.

Transmission problems were introduced in the seminal work of Mauro Picone
[20], motivated by a model in the theory of elasticity. Consequential, Picone’s
work attracted relevant attention, as several authors covered important aspects
of the problem and expanded its scope; we refer the reader to [29, 19, 5, 6, 7, 26].
The contributions mentioned above focus on the existence and uniqueness of
solutions as well as on a priori estimates. The regularity theory associated with
transmission problems started to be examined circa 2000. See [17, 16]; see also
[1, 2]. In those papers, the authors consider models driven by equations in
the divergence form, in the scalar and vectorial settings. Their findings cover
gradient estimates with applications to the study of insulation, conductivity and
composite materials.

The issue of regularity theory for transmission problems has attracted re-
newed interest. Mostly motivated by the questions and methods put forward
in [4]. In that paper, the authors examine a transmission problem governed
by the Laplace operator in the presence of a C1,α-regular interface. Arguing
through mean-value formulas for harmonic functions and new stability results
for close-to-flat interfaces, the authors prove that solutions are of class C1,α up
to the interface.

The program launched in [4] is pursued in the fully nonlinear context in [28].
Here, the authors prove a new Aleksandrov-Bakelman-Pucci maximum princi-
ple. They establish estimates for the solutions to fully nonlinear transmission
problems up to the interface. The solutions’ regularity matches the interface’s
regularity in Ck,α-spaces, for k = 0, 1, 2.

In the aforementioned developments, the transmission interface is given and
fixed a priori. Conversely, one could consider a model with solution-dependent,
or free, interfaces. For instance, in the region where solutions are positive, the
diffusion process is governed by an operator F1. However, an operator F2 drives
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the model in the region where the solutions are negative.
Free transmission problems are mathematical models describing discontinu-

ous diffusions. Such discontinuities are solution-dependent, giving rise to a free
boundary. The discontinuous dependence on u entails genuine difficulties in
the analysis of (1). As a consequence, the existence and local regularity of the
solutions require new methods and techniques; see [23, 21]. For related devel-
opments in the degenerate fully nonlinear setting, see [13]; see also [14, 12, 11].

We examine the boundary regularity for Lp-viscosity solutions to (1). Our
focus lies on points at the intersection of ∂Ω with the free boundary Γ(u).
Indeed, if x0 ∈ ∂Ω but x0 /∈ Γ(u), the regularity of solutions in a neighbourhood
of x is well-understood and documented; see, for instance, [27]. Moreover, if we
take x1 ∈ ∂Ω ∩ ∂ {u > 0} with x1 /∈ ∂ {u < 0}, the problem in (1) reduces to a
one-phase obstacle problem.

Suppose however that x2 ∈ ∂Ω ∩ ∂ {u > 0} ∩ ∂ {u < 0}. In this case, a new
strategy is required to produce regularity results in the vicinity of x2 in Ω+.
Our analysis, though more general, addresses that case in particular; see Figure
1.

u > 0

u < 0

u = 0
x2

x1

x3

Ω

x0

Fig. 1: Boundary regularity regimes.

Our argument relies on approximation methods and imports regularity in-
formation from a homogeneous, fully nonlinear PDE back to (1). Our main
ingredient is a pair of viscosity inequalities. Indeed, let u ∈ C(Ω) be an Lp-
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viscosity solution of

min
(
F1(D2u,Du, x), F2(D2u,Du, x)

)
≤ |f | in Ω,

max
(
F1(D2u,Du, x), F2(D2u,Du, x)

)
≥ − |f | in Ω,

(2)

satisfying
u = g on ∂Ω. (3)

We suppose there exists a uniformly elliptic operator F satisfying an appro-
priate closeness regime with respect to F1 and F2. Also, we require the source
term f to be in Lp(B+

1 ), for some p > d. Under these conditions, and geometric
hypotheses on the domain Ω, we establish C1,Log−Lip-boundary regularity esti-
mates for the solutions to (2)-(3). This is the content of our first main result,
stated with Ω = B+

1 for simplicity.

Theorem 1 (C1,Log-Lip-boundary regularity estimates). Let u ∈ C(B+
1 ) be a

normalized viscosity solution of (2)-(3). Suppose Assumptions A1, A2, and A4,
to be detailed further, are in force. Suppose further f ∈ Lp(B+

1 ), for some p > d.
Then u ∈ C1,Log−Lip

(
B0

1

)
. That is, there exists a constant C > 0 such that, for

every x0 ∈ B0
1/2, we have

sup
x∈B+

r (x0)

|u(x)− u(x0)−Du(x0)(x− x0)| ≤ C |x− x0|2 ln
1

|x− x0|
.

Moreover, C = C
(
d, λ,Λ, ∂Ω, ‖u‖L∞(B+

1 ) , ‖f‖Lp(B+
1 )

)
.

To improve the findings in the previous theorem, one imposes further con-
ditions on the limiting profile F . Namely, suppose one requires F to be differ-
entiable with respect to the matrix entry. In that case, it is possible to prove
that solutions to (2)-(3) are in the Sobolev space W 2,p in a neighbourhood of
∂Ω. This is the content of our second main result.

Theorem 2 (Sobolev boundary regularity). Let u ∈ C(B+
1 ) be a viscosity

solution to (2)-(3). Suppose Assumptions A1, A2, A3, and A5, to be detailed
further, are in force. Suppose further f ∈ Ld(B+

1 ). Then u ∈ W 2,d(B+
1/2) and

there exists a universal constant C > 0 such that

‖u‖W 2,d(B+
1/2

) ≤ C
(
‖u‖L∞(B+

1 ) + ‖f‖Ld(B+
1 )

)
.

We remark on the connection between (1) and (2). Let u ∈ W 2,d(Ω) be
an Ld-strong solution to (1). It is clear that u is an Ld-strong solution to (2)
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and, therefore, an Ld-viscosity solution to the latter. Therefore, Theorems 1
and 2 yield information on strong solutions to (1). If u ∈ C(Ω) is an Lp-
viscosity solution to (1), then it solves (2) in the Lp-viscosity sense in the subset
{u 6= 0} ∩ Ω.

Remark 1 (Propagation of boundary regularity). Regarding optimal regularity,
one cannot expect the solutions to (1) to have a Hölder-continuous Hessian.
We produce an example where F1 coincides with F2 on the boundary, with
both operators being convex. Moreover, Fi(·, x) ∈ Cβ(B+

1 ) for i = 1, 2. Still,
the C2,α-regularity of the boundary data does not propagate to the domain’s
interior. Indeed, fix d = 2 and consider the operator Fi : S(d) × B+

1 → R,
defined by

Fi(M,x) :=

(
1 +

(
−x2

2

)i)2

Tr(M),

for i = 1, 2. Prescribe the transmission problem

F1(D2u, x) = 1 in B+
1 ∩ {x1 < 0}

F2(D2u, x) = 1 in B+
1 ∩ {x1 > 0} ,

(4)

with u = 0 on B0
1 and u = g on ∂B+

1 \ B0
1 . Notice that in B+

1 ∩ {x1 < 0} a
solution to (4) satisfies

∆u =

(
2

2− x2

)2

,

whereas in B+
1 ∩ {x1 > 0} it satisfies

∆u =

(
4

4 + x2
2

)2

.

The Laplacian of u is discontinuous across {x1 = 0}, leading to a discontinuous
Hessian across this surface.

The remainder of the paper is organised as follows. Our main assumptions
are the subject of Section 2.1, whereas Section 2.2 gathers preliminary notions
and results used in the paper. We discuss the scaling properties of (2) in Section
2.3. Section 3 resorts to approximation methods to connect solutions to (2)
with a limiting problem of the form F = 0. We detail the proof of Theorem 1
in Section 4. The final section presents the proof of Theorem 2.
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2 Preliminaries

In what follows, we detail our main assumptions and gather preliminary notions
and results used in the paper.

2.1 Main Assumptions

Our first assumption concerns the regularity of the domain Ω.

A 1 (Geometry of the domain). We suppose Ω ⊂ Rd is a bounded domain. In
addition, its boundary is locally the graph of a C2,β-regular function for some
fixed β ∈ (0, 1). We also suppose that 0 ∈ ∂Ω.

We denote with Br(x) the ball of center x ∈ Rd and radius r > 0, with
Br(0) = Br. Given a point x0 ∈ ∂Ω, we denote with Ω+

x0
(r) the intersection

Ω+
x0

(r) := Ω ∩Br(x0).

Since we are interested in the boundary regularity of the solutions to (2)-(3),
we also define Ω0

x0
(r) as

Ω0
x0

(r) := ∂Ω ∩Br(x0).

The operators F1 and F2 satisfy a structural condition. Before detailing it,
we recall the definition of the extremal Pucci operators.

Definition 1 (Extremal Pucci operators). Fix 0 < λ ≤ Λ. We define the
extremal Pucci operatorsM−λ,Λ,M

+
λ,Λ : S(d)→ R as

P+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei

and
P−λ,Λ(M) = λ

∑
ei>0

ei + Λ
∑
ei<0

ei,

where ei are the eigenvalues of M .

A 2 (Structural condition). Fix 0 < λ ≤ Λ and K > 0. For i = 1, 2, we suppose
the operator Fi : S(d)× Rd × Ω→ R satisfies

M−λ,Λ(M−N)−K |p− q| ≤ Fi(M,p, x)−Fi(N, q, x) ≤M+
λ,Λ(M−N)+K |p− q| ,

for every M,N ∈ S(d), p, q ∈ Rd and x ∈ Ω.
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The former assumption builds upon A1 allowing us to work under a flat-
ness hypothesis on ∂Ω while remaining in the same class of operators; see [27,
Proposition 2.1].

A 3 (Closeness condition). For i = 1, 2, we suppose there exists a uniformly
elliptic operator F : S(d)× Rd → R, and a constant 0 < κ� 1 such that

|Fi(M,p, x)− F (M,p)| ≤ κ(1 + |p|+ |M |),

for every x ∈ Ω, p ∈ Rd and M ∈ S(d).

A 4 (Uniform closeness condition). For i = 1, 2, we suppose there exists a
uniformly elliptic operator F : S(d)× Rd → R, and a constant 0 < τ � 1 such
that

|Fi(M,p, x)− F (M,p)| ≤ τ(1 + |p|),

for every x ∈ Ω, p ∈ Rd and M ∈ S(d).

Although the universal constants 0 < κ, τ � 1 in Assumptions A3 and A4
are fixed, they are determined further in the paper. When examining Sobolev
regularity, we require the limiting profile F = F (M,p) to be differentiable with
respect to M .

A 5 (Differentiability of the limiting profile). We suppose the operator F :

S(d)× Rd → R is of class C1 concerning its first entry.

Under Assumption A5, we denote withDMF the derivative of F with respect
toM . The modulus of continuity for DMF is denoted with ωF . In what follows,
we gather preliminary results used in the paper.

2.2 Preliminary notions and auxiliary results

We start with the definition of Lp-viscosity solutions for an equation of the form

G(D2u,Du, u, x) = f in Ω. (5)

Definition 2 (Viscosity solution). Let p > d/2. We say that u ∈ C(Ω) is an
Lp-viscosity sub-solution to (5) if, whenever φ ∈W 2,p

loc (Ω) is such that u−φ has
a local minimum at x0 ∈ Ω, we have

ess lim sup
x→x0

(
G(D2φ(x), Dφ(x), u(x), x)− f(x)

)
≥ 0.
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We say that u ∈ C(Ω) is an Lp-viscosity super-solution to (5) if, whenever
φ ∈W 2,p

loc (Ω) is such that u− φ has a local maximum at x0 ∈ Ω, we have

ess lim inf
x→x0

(
G(D2φ(x), Dφ(x), u(x), x)− f(x)

)
≤ 0.

If u ∈ C(Ω) is an Lp-viscosity sub-solution and an Lp-viscosity super-solution
to (5), we say it is an Lp-viscosity solution to (5).

When testing against smooth functions φ ∈ C2(Ω), Definition 2 yields the
usual notion of C-viscosity solutions [9, Section 2]. We say that u ∈ C(Ω) is a
normalized viscosity solution if ‖u‖L∞(Ω) ≤ 1. Next, we recall a version of the
Aleksandrov-Bakelman-Pucci maximum principle; see [15, Theorem 1.1].

Proposition 1 (Aleksandrov-Bakelman-Pucci estimate). Fix q > d. Let γ ∈
Lq(Ω) and f ∈ Ld(Ω). Suppose u ∈ C(Ω) is a viscosity solution to

M+
λ,Λ(D2u) + γ(x)|Du| ≥ −f in Ω[

resp. M−λ,Λ(D2u)− γ(x)|Du| ≤ f in Ω
]
.

Then there exists a positive constant C = C
(

(d, λ,Λ, ‖γ‖Ld(Ω)

)
such that

max
Ω

u ≤ max
∂Ω

u+ C diam(Ω) ‖f‖Ld(Γ+(u))

[
resp. max

Ω
(−u) ≤ max

∂Ω
(−u) + C diam(Ω) ‖f‖Ld(Γ+(−u))

]
.

Under the structural condition in Assumption A2, one notices that a solution
u ∈ C(Ω) to the first equation in (2) satisfies

M−λ,Λ(D2u)−K|Du| ≤ f in Ω.

Also, a solution v ∈ C(Ω) to the second equation in (2) satisfies

M+
λ,Λ(D2u) +K|Du| ≥ f in Ω.

Hence, the upper bounds in Proposition 1 are available for the viscosity solu-
tions to (2). We proceed by recalling boundary-regularity results for viscosity
solutions to fully nonlinear equations. Our strategy is to import information
from those results into the context of the free transmission problems.
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The next results account for the boundary regularity of viscosity solutions
to {

F (D2u,Du) = 0 in Ω
u = 0 on ∂Ω.

(6)

Proposition 2 (Boundary regularity). Let u ∈ C(Ω) be a viscosity solution to
(6). Suppose Assumptions A1 and A2 are in force. Then there exists a Hölder
continuous function H : B0

1/2 → Rd×d, and constants α = α(d, λ,Λ) ∈ (0, 1)

and C = C(d, λ,Λ,K) > 0 such that

F (H,Du) = 0 on B0
1/2,

and∣∣∣∣u(x)− u(x0)−Du(x0) · (x− x0)− H(x0)(x− x0) · (x− x0)

2

∣∣∣∣ ≤ C|x− x0|2+α,

for every x ∈ B+
1 , and x0 ∈ B0

1/2. Moreover,

‖H‖
Cα

(
B0

1/2

) ≤ C ‖u‖L∞(B+
1 ) .

In the former proposition, H represents the Hessian of u. For a proof of
Proposition 2, we refer the reader to [27, Theorem 1.2]. The next proposition
extends the Hessian regularity obtained above to a δ-neighbourhood of ∂Ω. To
be more precise, let 0 < δ � 1; we define Ωδ ⊂ Ω as

Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ} .

Proposition 3 (Interior regularity near the boundary). Let u ∈ C(Ω) be an
Lp-viscosity solution to (6). Suppose Assumptions A1, A2, A3, and A5 are in
force. Then there exist universal constants α ∈ (0, 1), and C > 0, such that
u ∈ C2,α(Ωδ) and

‖u‖C2,α(Ωδ)
≤ C‖g‖L∞(∂Ω).

Here, 0 < δ � 1 depends on universal constants, the boundary ∂Ω, and ωF on
a ball BR ⊂ S(d), with universal radius R > 0 depending also on ∂Ω.

For the proof of Proposition 3, we refer the reader to [27, Theorem 1.3]. We
conclude this section by collecting definitions and notation used in the study of
Sobolev boundary regularity (see [3, Chapter 7]; see also [22, Definition 4]).
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A paraboloid of opening M > 0 is a function of the form

PM (x) := `(x)± 1

2
M |x|2 ,

where `(·) is an affine function. The choice of sign determines whether P is
concave or convex.

Definition 3. Let U ⊂ Ω be an open subset, and take 0 < ρ < diam(O)/π. For
M > 0, define

GM (u, U) = GM (U)

as the set of all points z ∈ U for which there exists a concave paraboloid PM
satisfying

1. u(z) = PM (z);

2. u(x) > PM (x) for all x ∈ Bρ(z), with x 6= z.

Also, set
GM (u, U) = GM (U)

as the set of all points z ∈ U for which there exists a convex paraboloid PM

satisfying

1. u(z) = PM (z);

2. u(x) < PM (x) for all x ∈ Bρ(z), with x 6= z.

Finally
GM (U) = GM (U) ∩GM (U).

We also define
AM (U) := U \GM (U)

AM (U) := U \GM (U)

and
AM (U) := U \GM (U).

Using this notation, the opening function associated with u ∈ C(Ω), with
respect to the subset B ⊂ Ω, is denoted with Θ(x,B) : B → [0,+∞] and given
by

Θ(u,B)(x) := inf {M |x ∈ GM (B)} ∈ [0,∞], x ∈ B. (7)
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The integrability of Θ is equivalent to the regularity of u in Sobolev spaces.
Hence, we recall the distribution function of Θ in a set B, denoted with µΘ and
given by

µΘ(t) := |{x ∈ B |Θ(x) > t}| .

For completeness, we recall a lemma relating the integrability of Θ with the
summability of its distribution function µΘ.

Lemma 1. Let Θ be defined as in (7) and set B := Ω. Fix constants η > 0 and
M > 1. For 0 < p <∞, we have Θ ∈ Lp(Ω) if, and only if,

S :=
∑
k≥1

MpkµΘ(ηMk) <∞.

In the case S is finite, we also have

C−1S ≤ ‖Θ‖pLp(Ω) ≤ C (|Ω|+ S) ,

for some constant C > 0, depending only on η, M and p.

As a consequence, the p-integrability of Θ amounts to the analysis of the
summability of Mpk |AMk(B)|. Lastly, recall the definition of maximal function
associated with an element f ∈ L1

loc(Rd); it is defined by

M(f)(x) := sup
r>0

1

|Qr|

∫
Qr(x)

|f(y)|dy.

We use elementary properties of the maximal function. Namely, that it is an
operator of weak type (1, 1) and of strong type (p, p), for 1 < p ≤ ∞. That is,
there exists C > 0 such that∣∣{x ∈ Rd |M(f) ≥ t

}∣∣ ≤ C

t
‖f‖L1(Rd) ,

for all t > 0 and
‖M(f)‖Lp(Rd) ≤ C ‖f‖Lp(Rd) ,

for every 1 < p ≤ ∞. In what follows, we discuss scaling properties of (2).
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2.3 Scaling properties

Let u ∈ C(Ω) be a viscosity solution to (2) and define u ∈ C(Ω) as

u(x) :=
u(rx)

K
,

for some 0 < r ≤ 1 and K > 0. A simple computation ensures that u solves

min
(
F 1(D2u,Du, x), F 2(D2u,Du, x)

)
≤
∥∥f∥∥

L∞(Ω)

and
max

(
F 1(D2u,Du, x), F 2(D2u,Du, x)

)
≥ −

∥∥f∥∥
L∞(Ω)

where

F i(M,p, x) :=
r2

K
Fi

(
K

r2
M,

K

r
p, rx

)
, for i = 1, 2,

and

f(x) =
r2

K
f(rx).

Clearly, F i satisfies the structural condition in Assumption A2. By taking r = 1

and K := 1 + ‖u‖L∞(Ω) + ‖f‖L∞(Ω), we suppose u to be a normalized viscosity
solution to (2) and ‖f‖L∞(Ω) to be as small as required.

Finally, standard covering arguments build upon Assumption A1, allowing
us to consider Ω = B+

1 and to study the boundary regularity along the flat
boundary B0

1 . For simplicity, we set Ω = B+
1 in the sequel. When dealing with

estimates in Sobolev spaces, we consider Ω = B+

14
√
d
to fine-tune with the usual

notation [3, 31]. The next section concerns approximation methods.

3 Approximation methods

In this section, we establish an approximation lemma under Assumptions A3
and A5. Namely, requiring the limiting operator F to be locally uniformly close
to Fi and to be differentiable with respect to the Hessian of solutions.

This result ensures that solutions to (2) can be arbitrarily approximated by
C2,α-regular functions near the boundary ∂Ω, with estimates. More precisely,
it guarantees the existence of a function h ∈ C2,α(Ωδ) approximating u in the
L∞-norm, for some small 0 < δ � 1, depending on the dimension, λ, Λ and ∂Ω.
It is instrumental in examining Sobolev boundary regularity for the solutions
to (2). This is the content of Proposition 4.
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Afterwards, we remove Assumption 5 and work under Assumptions A2 and
A4. That is, we suppose F1 and F2 are close to a merely (λ,Λ)-elliptic operator
F . However, such closeness is uniform with respect to the matrix entry. In
this setting, we obtain an approximation lemma involving functions satisfying
a C2,α-regularity estimate along the boundary ∂Ω. The approximation regimes
in Proposition 4 and Corollary 1 are used in the proofs of Theorems 2 and 1,
respectively.

Remark 2. As mentioned, we use standard flattening, covering and rescaling
arguments to replace Ω with B+

14
√
d
. Moreover, instead of obtaining results in

Ωδ we localize the arguments in the set B0
12
√
d
× (0, δ). Because the boundary

data is C2,α-regular, we can suppose g is identically zero. Then we define, for
K = δ/(14

√
d), the rescaling

ū(x′, xd) = u(x′,Kxd).

Notice u solves the same inequalities as u with Fi, F and f replaced with
F̃i(M) = K2Fi(K

−2M), F̃ (M) = K2F (K−2M) and f̃(x′, xd) = K2f(x′,Kxd).
Note all the relevant assumptions still hold, since δ is a universal constant. Thus
we transform the set B0

14
√
d
× (0, δ) into B0

14
√
d
× (0, 14

√
d). From now on, to

ease notation, we set Ω := B′
14
√
d
× (0, 14

√
d).

Proposition 4 (Approximation Lemma I). Let u ∈ C(B1) be a normalized
viscosity solution to (2)-(3). Suppose Assumptions A1-A3 and A5 are in force.
Then there exists a function h ∈ C2,α(B+

12
√
d
) and ϕ ∈ C(B+

12
√
d
) such that

u− h ∈ S∗(ϕ) in B+

12
√
d
,

‖h‖
C2,α

(
B+

12
√
d

) ≤ C ‖u‖L∞(B′
14
√
d
×(0,14

√
d)) ,

and

‖u− h‖L∞(B+

12
√
d
) + ‖ϕ‖Ld(B+

12
√
d
) ≤ C

(
κγ + ‖f‖Ld(B′

14
√
d
×(0,14

√
d))

)
,

for some universal exponents α, γ ∈ (0, 1).

Proof. Let h ∈ C(B+

13
√
d
) be the viscosity solution to the problem

{
F (D2h,Dh) = 0 in B+

13
√
d

h = u on ∂B+

13
√
d
.
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It follows from Proposition 3, rescaled accordingly, that h ∈ C2,α(B+

12
√
d
), for

some universal α ∈ (0, 1). Since u ∈ S∗(f), we have u ∈ C0,β(B+

13
√
d
) with

‖u‖
C0,β

(
B+

13
√
d

) ≤ C
(
‖u‖L∞ + ‖f‖

Ld
(
B+

13
√
d

)) .
Therefore we also have, by [3, Proposition 4.13],

‖h‖
C0,α

(
B+

13
√
d

) ≤ C
(

1 + ‖u‖
C0,β

(
B+

13
√
d

)) ≤ C (1 + ‖f‖
Ld

(
B+

14
√
d

)) ,
where 0 < α < β are universal constants. Let 0 < θ � 1; since u − h = 0 on
∂B+

13
√
d
, for every x ∈ ∂B+

13
√
d−θ

one gets

(u− h)(x) ≤ θα ‖u− h‖
C0,α

(
B+

13
√
d

) .
Hence

‖u− h‖
L∞

(
∂B+

13
√
d−θ

) ≤ Cθα
(

1 + ‖f‖
Ld

(
B+

14
√
d

)) . (8)

For fixed x0 ∈ B+

13
√
d−θ

, there are two possibilities. Either Bθ/2(x0) ⊂ B+

13
√
d

or there exists a point z0 ∈ B′
13
√
d−θ such that x0 ∈ B+

θ/2(z0). In any case,
Proposition 3 applied to h− h(x0) in Bθ/2(x0) yields

θ2‖D2h(x)‖ ≤ Cθα
(

1 + ‖f‖
Ld

(
B+

14
√
d

)) .
Using the closeness regime in Assumption A3, one gets

|Fi(M,p, x)− F (M,p)| ≤ κ (1 + |p|+ |M |) ; (9)

the former inequality combined with and F (D2h,Dh) = 0, produces

∣∣Fi(D2h(x), Dh(x), x)
∣∣ ≤ Cθα−2κ

(
1 + ‖f‖

Ld
(
B+

14
√
d

)) . (10)

Therefore, we conclude the inequalities
min

(
F1(D2h,Dh, x), F2(D2h,Dh, x)

)
≤ Cθα−2κ

(
1 + ‖f‖

Ld
(
B+

14
√
d

))
max

(
F1(D2h,Dh, x), F2(D2h,Dh, x)

)
≥ −Cθα−2κ

(
1 + ‖f‖

Ld
(
B+

14
√
d

))
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hold in the classical sense. Hence u− h ∈ S∗(ϕ) in B+

12
√
d
, with

‖ϕ‖
Ld

(
B+

12
√
d

) ≤ ‖f‖
Ld

(
B+

14
√
d

) + Cθα−2κ

(
1 + ‖f‖

Ld
(
B+

14
√
d

)) .
Combining this with (8) we get

‖u− h‖L∞(B+

12
√
d
) + ‖ϕ‖Ld(B+

12
√
d
) ≤ Cθ

α

(
1 + ‖f‖

Ld
(
B+

14
√
d

))
+ Cθα−2κ

(
1 + ‖f‖

Ld
(
B+

14
√
d

))
+ ‖f‖+ ‖f‖Ld

(
B+

14
√
d

).
By choosing θ2 < κ and setting γ := α/2 onde completes the proof.

δ

∂Ω

δ
2

x0

x1

2δ
5

Fig. 2: Proposition 4 profits from the estimates in Proposition 3. Indeed, the approx-
imating function h solves a PDE with C2,α estimates in a δ-vicinity of ∂Ω. Therefore,
if we focus on points x0 ∈ ∂Ω or in x1 ∈ Ωδ, the function h ∈ C2,α(Ωδ) with estimates.
This idea unlocks the proof of Proposition 3.

By replacing the Assumption A3 with A4 in Proposition 4, the inequality in
(9) becomes

|Fi(M,p, x)− F (M,p)| ≤ τ (1 + |p|) ,

for every M ∈ S(d), p ∈ Rd, x ∈ B+
1 , and every i = 1, 2. Hence, a simpli-

fied version of the proof of Proposition 4 produces the following approximation
result.
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Corollary 1 (Approximation Lemma II). Let u ∈ C(B+
1 ) be a normalized

viscosity solution to (2)-(3). Suppose Assumptions A1, A2, and A4 are in force.
Then for every ε > 0 there exists τ > 0 such that, if A4 holds for such a τ > 0,
one finds a function h ∈ C2,α(B0

1/2) satisfying

‖h‖
C2,α

(
B+

1/2

) ≤ C ‖u‖L∞(B+
1 )

and

‖u− h‖L∞(B+
1/2

) ≤ ε.

In the next section, an application of Corollary 1 unlocks the proof of The-
orem 1.

4 Boundary regularity in C1,Log−Lip-spaces

In the sequel, we detail the proof of Theorem 1.

Proof of Theorem 1. We prove the theorem for x0 ∈ B0
1 fixed, though arbitrary.

For simplicity, we let x0 ≡ 0. We split the argument into three steps.

Step 1 - We prove the existence of a universal constant 0 < ρ � 1 and of
sequences (an)n∈N ⊂ R and (Mn)n∈N ⊂ Rd×d such that

|an − an+1| ≤ Cρn, (11)

|Mn −Mn+1| ≤ C, (12)

and
sup
x∈B+

ρn

∣∣u(0)− anxd −M i,j
n xixj

∣∣ ≤ ρ2n, (13)

for every n ∈ N. As usual, we resort to an induction argument. The next step
accounts for the base case.

Step 2 - Set a0 ≡ 0 and M0 ≡ 0. Let h be the function from Corollary
1, satisfying a τ -proximity regime with respect to u in B+

3/4. Because of the
boundary regularity available for h, we infer there exists C > 0 such that

sup
x∈B+

ρ

∣∣∣∣h(0)−Dh(0) · x− 1

2
D2h(0)x · x

∣∣∣∣ ≤ Cρ2+α, (14)
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where α ∈ (0, 1) depends only on the dimension, λ and Λ. Notice the only non-
trivial coordinate in Dh(0) is the d-th one, since h ≡ 0 on B0

3/4. Now, Corollary
1 builds upon (14) in the usual way to ensure

sup
x∈B+

ρ

∣∣∣∣u(x)−Dh(0) · x+
1

2
D2h(0)x · x

∣∣∣∣ ≤ Cτ + Cρ2+α.

Define τ and ρ as

τ :=

(
ρ2

2C

)
and ρ :=

(
1

2C

) 1
α

.

Take a1 = Dh(0) ·ed and 2M1 := D2h(0); the former computation ensures (13).
The universal estimates available for h ensure (11)-(12) also hold, and the base
case follows. The next step concludes the induction argument.

Step 3 - Suppose we have established (11)-(13) for n = 1, . . . , k. Define uk :

B+
1 → R as

uk(x) :=
u(ρkx)− akρkx− ρ2kMkx · x

ρ2k
.

Notice that uk satisfies

min
(
F k1 (D2uk, Duk, x), F k2 (D2uk, Duk, x)

)
≤ |f | in B+

1

and

max
(
F k1 (D2uk, Duk, x), F k2 (D2uk, Duk, x)

)
≥ − |f | in B+

1 ,

where
F ki (M,p, x) := Fi(M +Mk, ρ

kp+ aked + ρkMk · x, x).

Since Assumption 3 holds uniformly for Fi, it also holds for F ki . Therefore,
the argument in the previous step ensures the existence of a real number ãk and
a matrix M̃k such that

sup
x∈B+

ρ

∣∣∣∣uk(x)− ãkxd −
1

2
M̃kx · x

∣∣∣∣ ≤ ρ2.

Scaling back to the unit picture, we obtain

sup
x∈B

ρk+1

∣∣∣∣u(x)− ak+1xd −
1

2
Mk+1x · x

∣∣∣∣ ≤ ρ2(k+1), (15)

17



where
ak+1 := ak + ρkãk and Mk+1 := Mk + M̃k.

Gathering (15) and the definitions of ak+1 and Mk+1, one verifies (11)-(13)
at the level k + 1 and completes the induction argument. Once (11)-(13) are
available, the proof of the theorem follows from straightforward computations
(e.g., [24, p. 1398]).

5 Sobolev estimates up to the boundary

In the sequel, we present the proof of Theorem 2. In line with Remark 2, we set
Ω := B+

14
√
d
throughout this section. We start with a boundary variant of Lin’s

Lµ-estimate for the solutions to (2)-(3), as established in [31, Proposition 2.12].
See also [18], for the original argument in the linear case, and [3, Proposition
7.4] for the fully nonlinear elliptic setting.

Proposition 5. Let u ∈ C(B+

14
√
d
) be a viscosity solution to (2)-(3). Suppose

Assumptions A1 and A2 are in force. Suppose further that f ∈ Lp(B+

14
√
d
) .

Then there exist universal constants µ > 0 and C > 0 such that∫
B+

13
√
d

∣∣D2u
∣∣µ dx ≤ C

(
‖u‖

L∞
(
B+

14
√
d

) + ‖f‖
Ld

(
B+

14
√
d

)) .
The proof of Proposition 5 follows from the very same argument as in the

proof of [31, Proposition 2.12]. We note the former result is stated in [31] for
the class S(f). However, a close inspection of the proof reveals that it holds
for the class S∗(f). We notice Proposition 5 implies an upper bound for the
measure of the sets At, in terms of t > 0. Indeed, it unlocks a decrease rate for
the measure of those sets. This is the content of the next proposition.

Proposition 6. Let u ∈ S∗(f) in B+

12
√
d
⊂ Ω ⊂ Rd+ and suppose u is normal-

ized. Suppose Assumptions A1, A2, A3 and A5 are in force. Then there exist
universal constants C, µ > 0 such that, if ‖f‖Lp(Ω) ≤ 1, we get∣∣At(u,Ω) ∩ ((Q+

1 ) + x0)
∣∣ ≤ Ct−µ (16)

for any x0 ∈ B+

9
√
d
.

As usual, once Proposition 6 is available, we resort to an approximation
lemma (Proposition 4) to improve the decay rate in (16). We start by refining
the bound on |GM (u)|.
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Lemma 2. Let u ∈ C(B+

14
√
d
) be a viscosity solution to (2)-(3). Let σ ∈ (0, 1)

be fixed, though arbitrary. Suppose Assumptions A1, A2, A3 and A5 are in
force. Suppose further f ∈ Lp(B+

14
√
d
). If there exists x0 ∈ B+

9
√
d
such that

G1(u,Ω) ∩
(
Q+

2 + x0

)
6= ∅,

then one can find a universal constant M > 1 such that∣∣GM (u,Ω) ∩
(
Q+

1 + x
)∣∣ ≥ 1− σ,

for every x ∈ B+

9
√
d
.

Proof. Let

ũ =
u− L
C

where L = a + b · x is an affine function and C is taken sufficiently large such
that ‖ũ‖L∞ ≤ 1 and

−|x|2 ≤ ũ(x) ≤ |x|2 in B+

14
√
d
\B+

12
√
d
.

Let F̃i(M,p, x) = C−1Fi(CM,Cp + Cb, x), F̃ (M,p) = C−1F (CM,Cp + Cb)

and f̃ = C−1f . The rescaled data satisfy Assumptions A2, A3 and A5, with
the same constants. Also, ũ solves the inequalities in (2) driven by the rescaled
data.

As in the proof of Proposition 4, let h be the solution of{
F (D2h,Dh) = 0 in B+

13
√
d

h = ũ on ∂B+

13
√
d
.

The maximum principle ensures that

‖h‖
L∞

(
B+

13
√
d

) ≤ ‖ũ‖
L∞

(
B+

13
√
d

) ≤ 1.

An application of Proposition 3 ensures the existence of a universal constant
C1 > 0 such that

‖h‖
C2,α

(
B+

12
√
d

) ≤ C1.

Hence,
AN

(
h,B+

12
√
d

)
= ∅,
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for N := 2C1. Extend h continuously such that h = ũ outside B+

13
√
d
and

‖ũ− h‖
L∞

(
B+

14
√
d

) = ‖ũ− h‖
L∞

(
B+

12
√
d

) .
Hence ‖ũ− h‖L∞(Ω) ≤ 2, and

−2− |x|2 ≤ h(x) ≤ 2 + |x|2 in Ω \B+

12
√
d
.

These estimates imply
AM0(h,Ω) ∩ (Q+

1 ) = ∅

for some universal M0 > 0. Set w := ũ − h and resort to Proposition 4 to
conclude

‖w‖
L∞

(
B+

12
√
d

) + ‖ϕ‖
Ld

(
B+

12
√
d

) ≤ C (κγ + ‖g‖Ld) ≤ Cκγ ,

with w ∈ S∗(ϕ) in B+

12
√
d
. It follows that

‖w‖
L∞

(
B+

14
√
d

) ≤ ‖w‖
L∞

(
B+

12
√
d

) ≤ Cκγ .
Finally, observe that w̃ = (Cκγ)−1w satisfies the assumptions of Proposition 6;
then we obtain, for t > 1,∣∣∣At(w̃, B+

14
√
d
) ∩Q+

1

∣∣∣ ≤ Ct−µ,
where C > 0 is a universal constant. Noting thatA2M0(ũ) ⊂ (AM0(w) ∪AM0(h)),
and using the scaling properties of At, we get∣∣∣A2M0

(ũ, B+

14
√
d
) ∩Q+

1

∣∣∣ ≤ CκµγMµ
0 .

To complete the proof, notice A2M0
(ũ, B+

14
√
d
) = A2CM0

(u,B+

14
√
d
), let M =

2CM0 and choose 0 < κ� 1 sufficiently small.

Once again, for the sake of completeness, we recall the consequence of the
so-called Calderón-Zygmund cube decomposition. Let Q1 be the unit cube and
split it dyadically and successively, calling Q̃ a predecessor of Q if we obtain Q
from the splitting of Q̃. The following lemma is pivotal in our analysis.

Lemma 3 (Corollary to the Calderón-Zygmund cube decomposition). Let A ⊂
B ⊂ Q1 be measurable sets. Let 0 < σ < 1 be such that
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1. |A| ≤ δ;

2. If Q is a dyadic cube such that |A ∩Q| > σ|Q|, then Q̃ ⊂ B.

Then |A| ≤ σ|B|.

For the proof of Lemma 3, we refer the reader to [3, Lemma 4.2].

Proposition 7. Let u ∈ C(B+

14
√
d
) be a viscosity solution to (2)-(3). Let σ ∈

(0, 1) be fixed, though arbitrary. Suppose Assumptions A1, A2, A3 and A5 are
in force. Suppose further f ∈ Lp(B+

14
√
d
). Set

A :=AMk+1

(
u,B+

14
√
d

)
∩Q+

1

B := (AMk+1

(
u,B+

14
√
d

)
∩Q+

1 ) ∪
{
x ∈ Q+

1 : M
(
fd
)
≥
(
C0M

k
)d}

.

Then |A| ≤ σ|B|, where M > 1 is universal.

Proof. We resort to Lemma 3. Notice A ⊂ B ⊂ Q+
1 and, from Lemma 2, we

conclude |A| ≤ σ < 1.
We aim to establish that dyadic cubes with |A ∩ Q| > σ|Q| must satisfy

Q̃ ⊂ B. Consider a generic dyadic cube Q = Q+
1/2i + x0 for some i ∈ N and x0,

and consider its predecessor Q̃ = Q+
1/2i−1 + x̃0.

Assume that Q satisfies

|A ∩Q| =
∣∣AMk+1

(
u,B14

√
d

)
∩Q

∣∣ > σ|Q|, (17)

however Q̃ 6⊂ B. In this case, there exists x1 ∈ Q̃ \B. It means that

x1 ∈ Q̃ ∩GMk

(
u,B+

14
√
d

)
and M

(
fd
)

(x1) <
(
C0M

k
)d
. (18)

Now, we distinguish two cases depending on the distance from x0 to {xd = 0}.
If |x0 − x′0| < 8

2i

√
d, we consider L(y) = x′0 + 2−iy and define

ũ(y) :=
22i

Mk
u(L(y)),

F̃i(X, p, y) :=
1

Mk
Fi

(
MkX,

2i

Mk
p, L(y)

)
,

F̃ (X, p) :=
1

Mk
F

(
MkX,

2i

Mk
p

)
,
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and
f̃(y) :=

1

Mk
f (L(y))

Since Q ⊂ Q+
1 implies B14

√
d/2i(x

′
0) ⊂ B+

14
√
d
, we have that ũ solves

min
(
F̃1(D2ũ, Dũ, x), F̃2(D2ũ, Dũ, x)

)
≤ |f̃(x)| in B+

14
√
d

max
(
F̃1(D2ũ, Dũ, x), F̃2(D2ũ, Dũ, x)

)
≥ −|f̃(x)| in B+

14
√
d
,

with ũ = 0 on B′
14
√
d
, and the same assumptions as before.

Note that from (18) we have

∥∥∥f̃∥∥∥
Ld(B+

12
√
d
)
≤ 2i

Mk

(∫
Q42
√
d/2i (x1)

fd(x) dx

) 1
d

≤ C(d)C0 ≤ κ

for C0 sufficiently small. Here we used the fact thatB+

12
√
d/2i

(x′0) ⊂ Q42
√
d/2i(x1).

From (18) it also follows that

G1(ũ, L−1(B+

14
√
d
)) ∩ (Q+

2 + 2i(x̃0 − x′0)) 6= ∅

From |x0 − x̃0| ≤ 2−2
√
d we get |2i(x̃0 − x′0)| < 9

√
d. Hence, the assumptions

of Lemma 2 are in force. Therefore,∣∣∣GM (ũ, L−1(B+

14
√
d
)
)
∩
(
Q+

1 + 2i(x0 − x′0)
)∣∣∣ ≥ 1− σ.

Rescaling back to u, we get∣∣∣GMk

(
u,B+

14
√
d

)
∩Q

∣∣∣ ≥ (1− σ) |Q| ,

which contradicts (17).
On the other hand, if |x0 − x′0| ≥ 8

2i

√
d we conclude

B+

8
√
d/2i

(x0 + 2−i−1ed) ⊂ B+

8
√
d
.

Now, we use instead the transformation L(y) = (x0 +2−i−1ed)+2−iy. Proceed-
ing exactly as in the first case, we evoke [3, Lemma 7.11] instead of Lemma 2
and complete the proof.

Proof of Theorem 2. Let 0 < κ � 1 be the same as Lemma 2. Fix ε0 > 0 to
be set further. Let M > 0 and C0 > 0 be the same as in Lemma 7, and choose

22



σ := (2Mp)−1. We define

αk :=
∣∣∣AMk

(
ũ, B+

14
√
d

)
∩Q+

1

∣∣∣ ,
βk :=

∣∣∣{x ∈ Q+
1 |M

(
fd
)

(x) ≥
(
C0M

k
)d}∣∣∣ .

An application of Proposition 7 yields αk+1 ≤ σ(αk + βk); thus

αk ≤ εk0 +

k−1∑
i=0

σk−iβi. (19)

Using the fact that M(fd) is of strong-type (p, p) for 1 < p ≤ ∞, and the
integrability of f , we get∥∥M (

fd
)∥∥
L
p
d (Ω)

≤C(d, p)
∥∥fd∥∥

L
p
d (Ω)

= C(d, p) ‖f‖dLp(Ω) ≤ C(d, p)

By Lemma 1 we get ∑
k≥0

Mpkβk ≤ C(d, p). (20)

The choice of σ, together with (19) and (20), implies

∑
k≥0

Mpkαk ≤
∑
k≥0

2−k +

∑
k≥0

Mpkβk

∑
k≥0

Mpkτk

 ≤ C(d, p)

By Lemma 1 again, we conclude∥∥D2u
∥∥
Lp

(
B+

12
√
d

) ≤ C(d, p,M)

as intended, and the proof is complete.

Remark 3 (BMO-estimates and C1,Log−Lip-regularity). In case p =∞, our ar-
guments imply that u ∈W 2,BMO(B+

1/2). As a consequence, u ∈ C1,Log−Lip(B+
1/2),

with estimates; see, for instance [8]. It means that for every x0 ∈ B+
1/2 there

exists C > 0 such that

sup
x∈Br(x0)

|u(x)− u(x0)−Du(x0) · (x− x0)| ≤ Cr2 ln
1

|x− x0|
,

and the constant does not depend on the distance dist(x0, ∂Ω). We notice that
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imposing a differentiability condition on the limiting profile F improves the
regularity available under merely uniform ellipticity conditions on the limiting
operator. See [25].

Remark 4 (Regularity in W 1,q-spaces and potential estimates). If d/2 ≤ p0 <

p < d, it is well-known thatW 2,p-regularity estimates are no longer available for
the solutions to (2). However, Proposition 4 builds upon the arguments in [30],
under minor adjustments, to yield estimates inW 1,q-spaces. Here, the exponent
q > 1 can be chosen arbitrarily under the constraint

q < p∗ :=
dp

d− p
,

with d∗ :=∞. To obtain estimates in the borderline case q =∞, one may resort
to the machinery of potential estimates, as put forward in [10].
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