TESTE INTERMÉDIO DE MATEMÁTICA A

RESOLUÇÃO - VERSÃO 1

GRUPO I

1. Como a recta r passa nos pontos A(2,0) e B(0,8), um vector director da recta r é $\overrightarrow{AB}=(0,8)-(2,0)=(-2,8)$

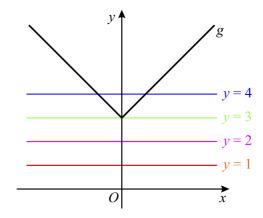
Vem, então, que o declive da recta $\, r \,$ é $\, \frac{8}{-2} = \, -4 \,$

Como a recta $\,r\,$ intersecta o eixo $\,Oy\,$ no ponto de ordenada $\,8\,$, tem-se que a ordenada na origem da recta $\,r\,$ é igual a $\,8\,$

Portanto, a equação reduzida da recta $\, r \,$ é $\, y = \, - \, 4x + 8 \,$

Resposta A

2. Na figura, está representada parte do gráfico da função g, bem como as rectas de equações $y=1,\ y=2,\ y=3$ e y=4



Como se pode observar na figura, apenas a recta de equação $y=4\,$ intersecta o gráfico da função $\,g\,$ em dois pontos. Portanto, a opção correcta é a opção D.

Este item também pode ser resolvido algebricamente do seguinte modo:

$$g(x)=1\Leftrightarrow \mid x\mid +3=1\Leftrightarrow \mid x\mid =-2$$
 equação impossível

$$g(x) = 2 \Leftrightarrow \ |\ x\ | + 3 = 2 \Leftrightarrow \ |\ x\ | = \ -1 \quad \ \mbox{equação impossível}$$

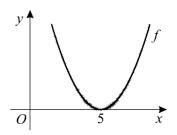
$$g(x) = 3 \Leftrightarrow \mid x \mid +3 = 3 \Leftrightarrow \mid x \mid = 0 \Leftrightarrow x = 0$$

$$g(x) = 4 \Leftrightarrow |x| + 3 = 4 \Leftrightarrow |x| = 1 \Leftrightarrow x = -1 \lor x = 1$$

Resposta **D**

3. O gráfico da função f é uma parábola com a concavidade voltada para cima e que intersecta o eixo Ox num único ponto.

Portanto, o contradomínio de f é $[0,\,+\infty[$



Resposta B

4. O gráfico da função h pode ser obtido deslocando o gráfico da função f uma unidade para a direita e uma unidade para cima.

Resposta D

5. $g\left(\frac{2}{3}\right) = \frac{2}{3} + \frac{1}{6} = \frac{5}{6}$

Resposta C

GRUPO II

1.1. O ponto Q tem coordenadas (5,5,0)

A distância do ponto $\,Q\,$ ao ponto $\,O\,$ é $\,5\sqrt{2}=\sqrt{50}\,$

Assim, uma equação da superfície esférica de centro no ponto $\,Q\,$ e que passa no ponto $\,O\,$ é $\,(x-5)^2+(y-5)^2+z^2=50\,$

1.2. A área da base da pirâmide é $5^2=25$

Designando por $\,h\,$ a altura da pirâmide, tem-se $\,\frac{25\,h}{3}\,=75\,$

Vem, então: $\frac{25\,h}{3} = 75 \ \Leftrightarrow \ 25\,h = 225 \ \Leftrightarrow \ h = 9$

Portanto, as coordenadas do ponto $\,W\,$ são $\,\left(\frac{\,5\,}{\,2}\;,\;\frac{\,5\,}{\,2}\;,\;9\right)$

2. As funções f e g podem estar representadas graficamente na opção A.

A opção B está incorrecta, pois a Fernanda e a Gabriela percorrem a mesma distância, ao contrário do que é sugerido pelos gráficos apresentados nesta opção.

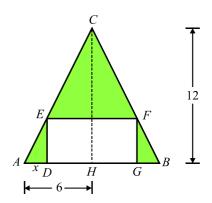
A opção C está incorrecta, pois, no instante inicial, a distância da Fernanda a casa é zero, ao contrário do que é sugerido pelo gráfico da função f apresentado nesta opção.

3.1. A área da zona relvada é dada pela diferença entre a área do triângulo $\left[ABC\right]$ e a área do rectângulo $\left[DEFG\right]$

Os triângulos [AHC] e [ADE] são semelhantes, pelo que, sendo $\overline{CH}=2\,\overline{AH}$, se tem $\overline{ED}=2\,\overline{AD}$

Portanto,
$$\overline{ED} = 2x$$

Como $\overline{DG}=12-2x$, vem que a área do rectângulo [DEFG] é dada, em função de x, por 2x(12-2x)



Então, a área da zona relvada é dada, em função de x, por

$$S(x) = \frac{12 \times 12}{2} - 2x(12 - 2x) = 4x^2 - 24x + 72$$

3.2. Tem-se:

$$4x^{2} - 24x + 72 = 4(x^{2} - 6x) + 72 =$$

$$= 4(x^{2} - 6x + 9) - 36 + 72 = 4(x - 3)^{2} + 36$$

Portanto, o gráfico da função $\,S\,$ é parte de uma parábola, com a concavidade voltada para cima, cujo vértice é o ponto de coordenadas $\,(3,36)\,$

Assim, o valor de $\,x\,$ para o qual a área da zona relvada é mínima é $\,3\,$ e a respectiva área é $\,36\,$

3.3. Uma condição que traduz o problema é $4x^2-24x+72>40 \ \land \ x\in]0,6[$

Tem-se:
$$4x^2 - 24x + 72 > 40 \Leftrightarrow 4x^2 - 24x + 32 > 0$$

Ora,
$$4x^2 - 24x + 32 = 0 \Leftrightarrow x = 2 \lor x = 4$$

Portanto,
$$4x^2 - 24x + 32 > 0 \Leftrightarrow x < 2 \ \lor \ x > 4$$

Como $~x\in]0,6[$, o conjunto dos valores de ~x~ para os quais a área da zona relvada é superior a $~40~m^2~$ é $~]0,2[~\cup~]4,6[$

4.1. Como o gráfico da função f intersecta o eixo das abcissas em quatro pontos, a função f tem quatro zeros. Como um dos pontos tem abcissa -3 e outro tem abcissa 1, dois dos quatro zeros da função f são -3 e 1

Portanto, o polinómio $x^4 + x^3 - 7x^2 - x + 6$ é divisível por (x+3)(x-1)

Determinemos o quociente da divisão de $x^4+x^3-7x^2-x+6$ por x+3, utilizando a Regra de Ruffini.

Determinemos agora o quociente da divisão de x^3-2x^2-x+2 por x-1, utilizando novamente a Regra de Ruffini.

Portanto,
$$x^4 + x^3 - 7x^2 - x + 6 = (x+3)(x-1)(x^2 - x - 2)$$

Tem-se
$$x^2 - x - 2 = 0 \Leftrightarrow x = -1 \lor x = 2$$

Portanto, os quatro zeros da função $\,f\,$ são $\,-\,3,\,$ $\,-\,1,\,$ $\,1\,$ e $\,2\,$

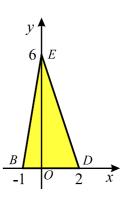
Assim, o ponto $\,B\,$ tem abcissa $\,-\,1\,$ e o ponto $\,D\,$ tem abcissa $\,2\,$

$${\rm Como}\ f(0)=6,\ {\rm o\ ponto}\ E\ {\rm tem\ ordenada}\ 6$$

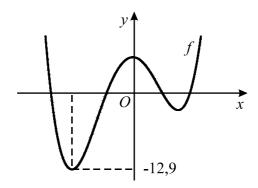
Tomando $\left[BD\right]$ para base do triângulo $\left[BED\right]$, a altura correspondente é $\left[OE\right]$

Tem-se
$$\overline{BD}=3$$
 e $\overline{OE}=6$

Portanto, a área do triângulo [BED] é $\frac{3\times 6}{2}=9$



4.2. Na figura, está representada parte do gráfico da função $\,f\,$



Assinalou-se no gráfico o ponto de ordenada mínima.

Tem-se, $a \approx -12.9$