

TESTE INTERMÉDIO

11.º Ano de Escolaridade

(Decreto-Lei n.º 74/2004, de 26 de Março)

Duração da Prova: 90 minutos 10/Maio/2007

MATEMÁTICA A

VERSÃO 2

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação da prova.

A prova é constituída por dois Grupos, I e II.

O Grupo I inclui sete itens de escolha múltipla.

O Grupo II inclui três itens de resposta aberta, subdivididos em alíneas, num total de sete.

Grupo I

• As sete questões deste grupo são de escolha múltipla.

• Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.

• Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para responder a cada questão.

• Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.

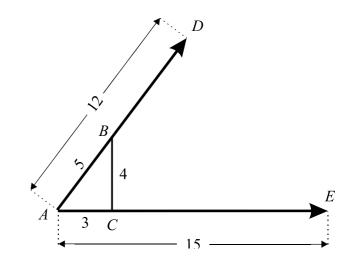
· Não apresente cálculos, nem justificações.

1. Na figura estão representados dois vectores, \overrightarrow{AD} e \overrightarrow{AE} , de normas 12 e 15, respectivamente.

No segmento de recta $\ [AD]\$ está assinalado um ponto $\ B.$

No segmento de recta $\ [AE]\$ está assinalado um ponto $\ C.$

O triângulo [ABC] é rectângulo e os seus lados têm $3,\ 4$ e 5 unidades de comprimento.



Indique o valor do produto escalar \overrightarrow{AD} . \overrightarrow{AE}

- **(A)** 108
- **(B)** 128
- **(C)** 134
- **(D)** 144

2. Indique as soluções da equação $4+2 \sin x=5$ que pertencem ao intervalo $[0,2\pi]$

(A) $\frac{\pi}{3}$ e $\frac{2\pi}{3}$

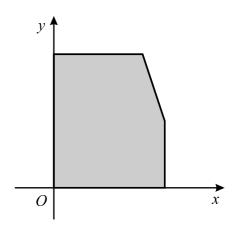
(B) $\frac{\pi}{3}$ e $\frac{4\pi}{3}$

(C) $\frac{\pi}{6}$ e $\frac{5\pi}{6}$

(D) $\frac{\pi}{6}$ e $\frac{7\pi}{6}$

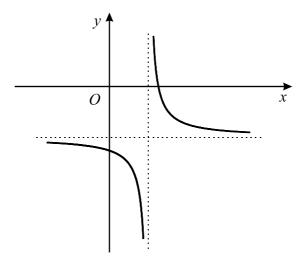
Na figura junta está representada a região admissível de um problema de Programação Linear. Esta região corresponde ao sistema

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x \le 5 \\ y \le 6 \\ 3x + y \le 18 \end{cases}$$



Qual é o valor máximo que a função objectivo, definida por $\ z=x+y$, pode alcançar nesta região?

- **(A)** 8
- **(B)** 10
- **(C)** 12
- **(D)** 14
- **4.** Para um certo valor de a e para um certo valor de b, a expressão $f(x) = a + \frac{1}{x-b}$ define a função f cujo gráfico está parcialmente representado na figura.



Qual das afirmações seguintes é verdadeira?

(A) $a > 0 \land b > 0$

(B) $a > 0 \land b < 0$

(C) $a < 0 \land b > 0$

(D) $a < 0 \land b < 0$

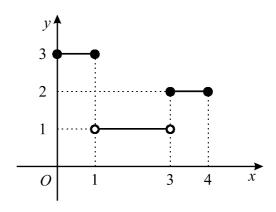
- Indique o conjunto dos números reais que são soluções da inequação $\frac{x^2+4}{1-x}>0$ 5.
 - **(A)**]-2,1[
- **(B)**] 1, 2 [
- (C) $]-\infty,1[$ (D) $]1,+\infty[$
- 6. Considere as seguintes funções:

 $f:\{1,2,3\} \rightarrow \{1,2,3\}$ $\,$ definida pela tabela

x	1	2	3
f(x)	3	1	2

 $g:\mathbb{R} \to \mathbb{R} \;\;$ definida por $\;\; g(x) = 2\,x + 1$

 $h:[0,4] \rightarrow \{1,2,3\}$ cujo gráfico é



Indique o valor de $f^{-1}(1) + (g \circ h)(\pi)$

- **(A)** 4
- **(B)** 5
- **(C)** 6
- **(D)** 7
- Considere a função $\,f$, de domínio $\,\mathbb{R}$, definida por $\,f(x)=3+x^2$ 7. Seja $\,t\,$ a recta tangente ao gráfico de $\,f\,$ no ponto de abcissa $\,-\,\frac{1}{2}\,$ Qual é a inclinação da recta t ?
 - **(A)** 30°
- **(B)** 45° **(C)** 135°
- **(D)** 150°

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o **valor exacto**.

- **1.** Considere, em referencial o.n. Oxyz, o ponto P(0,3,4)
 - **1.1.** Seja lpha o plano que contém o ponto P e é perpendicular à recta de equação vectorial $(x,y,z)=(-1,0,5)+k\,(2,1,0),\,k\in\mathbb{R}$

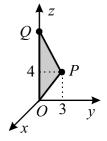
Determine a área da secção produzida pelo plano $\,\alpha\,$ na esfera definida pela condição $(x+1)^2+(y-5)^2+(z-4)^2 < 7.$

Sugere-se que:

- Determine uma equação do plano α .
- Mostre que o centro da esfera pertence ao plano α .
- Atendendo ao ponto anterior, determine a área da secção.
- **1.2.** Admita que um ponto $\,Q\,$ se desloca ao longo do semieixo positivo $\,Oz,\,$ nunca coincidindo com a origem $\,O\,$ do referencial.

Seja f a função que faz corresponder, à cota z do ponto Q, o perímetro do triângulo $\ [OPQ].$

- **1.2.1.** Mostre que $f(z) = z + 5 + \sqrt{z^2 8z + 25}$
- **1.2.2.** Sem recorrer à calculadora, determine a cota do ponto Q de modo que o perímetro do triângulo [OPQ] seja igual a 18.



2. Durante os ensaios de um motor, a velocidade de rotação do seu eixo variou, ao longo dos primeiros seis minutos da experiência, de acordo com a função

$$v(t) = 2t^3 - 21t^2 + 60t$$

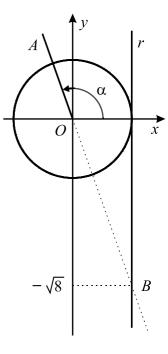
onde $\,t\,$ designa o tempo (medido em minutos), contado a partir do início da experiência, e $v(t)\,$ designa a velocidade de rotação do eixo do motor (medida em **centenas** de rotações por minuto).

- **2.1. Sem recorrer à calculadora**, a não ser para efectuar eventuais cálculos numéricos, determine qual foi a velocidade máxima atingida, nos primeiros seis minutos da experiência. Apresente o resultado em centenas de rotações por minuto.
- 2.2. Recorrendo às capacidades gráficas da calculadora, determine durante quanto tempo é que, nos primeiros seis minutos da experiência, a velocidade de rotação do eixo do motor foi superior a 4 600 rotações por minuto. Escreva o resultado final em minutos e segundos (com o número de segundos arredondado às unidades). Apresente todos os elementos recolhidos na utilização da calculadora, nomeadamente o gráfico, ou gráficos, obtidos, bem como as coordenadas dos pontos relevantes para a resolução do problema (apresente as abcissas com duas casas decimais).

- **3.1.** Na figura junta estão representados, em referencial o. n. xOy:
 - · o círculo trigonométrico
 - a recta r, de equação x=1
 - o ângulo, de amplitude α , que tem por lado origem o semieixo positivo Ox e por lado extremidade a semi-recta $\dot{O}A$
 - o ponto B, intersecção do prolongamento da semi-recta $\dot{O}A$ com a recta r.

Como a figura sugere, a ordenada de $\,B\,$ é $\,-\,\sqrt{8}\,$

$$8\cos(4\pi - \alpha) + 2\sin(\frac{3\pi}{2} + \alpha)$$



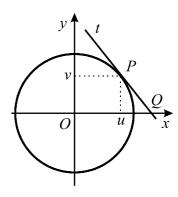
3.2. Considere agora um ponto P, do primeiro quadrante (eixos não incluídos), pertencente à circunferência de centro na origem e raio 1.

Sejam (u, v) as coordenadas do ponto P.

Seja $\,t\,$ a recta tangente à circunferência no ponto $\,P.\,$

Seja $\,Q\,$ o ponto de intersecção da recta $\,t\,$ com o eixo $\,Ox.$

Prove que a abcissa do ponto $Q \notin \frac{1}{n}$



FIM

COTAÇÕES

Cada recreata corta	0
Cada resposta certa	
Cada resposta errada Cada questão não respondida ou anulada	
Cada questao nao respondida od andiada	0
o II	
1	57
1.1 1.2	19
1.2.1.	
1.2.2.	
2	40
2.1	
2.2.	20
3	
3.1	
3.2	20