TESTE INTERMÉDIO DE MATEMÁTICA A

10 de Maio de 2007

CRITÉRIOS DE CLASSIFICAÇÃO - VERSÃO 2

COTAÇÕES

	da resposta certada resposta errada	
	da questão não respondida ou anulada	
po II		
1.	1.1	19
	1.2.1	90
2.	2.1.	20
3.	3.1	20

Grupo I

Deverão ser anulados todos os itens com resposta de leitura ambígua (letra confusa, por exemplo) e todos os itens em que o aluno dê mais do que uma resposta.

As respostas certas são as seguintes:

Itens	1	2	3	4	5	6	7
Respostas	Α	C	В	C	С	D	С

Grupo II

Critérios gerais

- Se o aluno se enganar na identificação do item a que está a responder, ou se a omitir, mas, pela resolução apresentada, for possível identificá-lo inequivocamente, a resposta deve ser vista e classificada.
- 2. Se o aluno apresentar mais do que uma resposta a um item, e não indicar, de forma inequívoca, a que pretende que seja classificada, deve ser vista e classificada apenas a que se encontra em primeiro lugar, na folha de resposta.
- **3.** As classificações a atribuir às respostas dos alunos são expressas obrigatoriamente em números inteiros.
- **4.** Num item em que a respectiva resolução exija cálculos e/ou justificações, a classificação a atribuir deve estar de acordo com o seguinte critério:
 - Se o aluno se limitar a apresentar o resultado final, a classificação deve ser de 0 (zero) pontos.
 - Se o aluno não se limitar a apresentar o resultado final, a classificação deve ser a soma algébrica das classificações atribuídas a cada etapa, de acordo com o disposto nos pontos 6, 7, 8, 9, 10 e 11 destes critérios gerais. Se a soma for negativa, a classificação a atribuir é de 0 (zero) pontos.
- 5. Alguns itens da prova podem ser correctamente resolvidos por mais do que um processo. Sempre que o aluno utilizar um processo de resolução não contemplado nos critérios específicos, caberá ao professor classificador adoptar um critério de distribuição da cotação que julgue adequado e utilizá-lo em situações idênticas. Salienta-se que deve ser aceite qualquer processo cientificamente correcto, mesmo que envolva conhecimentos não contemplados no programa da disciplina.

- A cotação de cada item está subdividida pelas etapas que o aluno deve percorrer para o resolver.
 - **6.1.** Em cada etapa, a cotação indicada é a máxima a atribuir.
 - **6.2.** O classificador não pode subdividir, em cotações parcelares, a cotação atribuída a cada etapa.

Caso uma etapa envolva um único passo, testando apenas o conhecimento de um só conceito ou propriedade, e a sua resolução não esteja completamente correcta, deve ser atribuída a classificação de 0 (zero) pontos.

Caso uma etapa envolva mais do que um passo (por exemplo, o cálculo da derivada de uma função, a resolução de uma equação, a obtenção de uma expressão em função de uma variável, etc.) e a sua resolução esteja incompleta, ou contenha incorrecções, a classificação a atribuir deve estar de acordo com o grau de incompletude e/ou a gravidade dos erros cometidos. Por exemplo:

- · erros de contas ocasionais devem ser desvalorizados em um ponto;
- erros que revelem desconhecimento de conceitos, regras ou propriedades devem ser desvalorizados em, pelo menos, metade da cotação da etapa;
- transposições erradas de dados do enunciado devem ser desvalorizadas em um ponto, desde que o grau de dificuldade da etapa não diminua;
- transposições erradas de dados do enunciado devem ser desvalorizadas em, pelo menos, metade da cotação da etapa, caso o grau de dificuldade da etapa diminua.
- **6.3.** Nas etapas cuja cotação se encontra discriminada por níveis de desempenho, o classificador deve enquadrar a resposta do aluno numa das descrições apresentadas. O classificador não pode atribuir uma classificação diferente das cotações indicadas.
- **6.4.** No caso de o aluno cometer um erro numa das etapas, as etapas subsequentes devem merecer a respectiva cotação, desde que o grau de dificuldade não tenha diminuído, e o aluno as execute correctamente, de acordo com o erro que cometeu.
- 6.5. Caso o aluno cometa, numa etapa, um erro que diminua o grau de dificuldade das etapas subsequentes, cabe ao classificador decidir a cotação máxima a atribuir a cada uma destas etapas. Em particular, se, devido a um erro cometido pelo aluno, o grau de dificuldade das etapas seguintes diminuir significativamente, a cotação máxima a atribuir a cada uma delas não deverá exceder metade da cotação indicada.
- **6.6.** Pode acontecer que o aluno, ao resolver um item, não percorra explicitamente todas as etapas previstas nos critérios específicos. Todas as etapas não percorridas explicitamente pelo aluno, mas cuja utilização e/ou conhecimento estejam inequivocamente implícitos na resolução do item, devem receber a cotação indicada.

- 7. Quando, num item, é pedida uma forma específica de apresentação do resultado final (por exemplo, "em minutos", "em percentagem", etc.), este deve ser apresentado na forma pedida. Se o resultado final apresentado pelo aluno não respeitar a forma pedida no enunciado (por exemplo, se o enunciado pedir o resultado em minutos, e o aluno o apresentar em horas), devem ser atribuídos 0 (zero) pontos à etapa correspondente ao resultado final. No entanto, a cotação não deve ser desvalorizada caso o aluno não indique a unidade em que é pedido o resultado (por exemplo, se o resultado final for 12 minutos, ou 12 metros, e o aluno escrever simplesmente 12, não se deve aplicar nenhuma desvalorização). Se não for pedida aproximação para o resultado final, o aluno deve apresentar o valor exacto. Se o aluno apresentar, como resultado final, uma aproximação do valor exacto, deve ser aplicada uma desvalorização de 1 ponto na cotação a atribuir à etapa correspondente ao resultado final.
- **8.** O aluno deve respeitar sempre a instrução relativa à apresentação de todos os cálculos e de todas as justificações. Se, numa etapa, o aluno não respeitar esta instrução, apresentando algo (valor, quadro, tabela, gráfico, etc.) que não resulte de trabalho anterior, deve ser atribuída a classificação de 0 (zero) pontos a essa etapa. Todas as etapas subsequentes que dela dependam devem ser igualmente classificadas com 0 (zero) pontos.
- 9. O aluno deve respeitar sempre qualquer instrução relativa ao método a utilizar na resolução de um item (por exemplo, "sem recorrer à calculadora", "equacione o problema", "resolva graficamente", etc.). Na resolução apresentada pelo aluno, deve ser inequívoco, pela apresentação de todos os cálculos e de todas as justificações, o cumprimento da instrução. Se tal não acontecer, considera-se que o aluno não respeitou a instrução. A etapa em que se dá o desrespeito, bem como todas as subsequentes que dela dependam devem ser classificadas com 0 (zero) pontos.
- 10. Se, na resolução de um item, o aluno utilizar simbologia, ou escrever uma expressão, inequivocamente incorrecta do ponto de vista formal (por exemplo, se escrever o símbolo de igualdade onde deveria estar o símbolo de equivalência), a cotação total a atribuir ao item deve ser desvalorizada em um ponto. Esta desvalorização não se aplica no caso em que tais incorrecções ocorram apenas em etapas classificadas com 0 (zero) pontos, nem a eventuais utilizações do símbolo de igualdade, onde, em rigor, deveria estar o símbolo de igualdade aproximada.
- 11. Existem itens em cujo enunciado é dada uma instrução relativa ao número mínimo de casas decimais que o aluno deve conservar, sempre que, em cálculos intermédios, proceder a arredondamentos. Indicam-se, a seguir, as desvalorizações a aplicar, na classificação total a atribuir ao item, em caso de desrespeito dessa instrução e/ou de arredondamentos mal efectuados.

Todos os valores intermédios estão de acordo com a instrução, mas existe, pelo menos, um valor intermédio mal arredondado1 pont	0
Todos os valores intermédios estão bem arredondados, mas existe, pelo menos, um que não está de acordo com a instrução1 pont	0
Existe, pelo menos, um valor intermédio mal arredondado e existe, pelo menos, um que não está de acordo com a instrução2 ponto	s

Critérios específicos

	•••••
Indicar as coordenadas de um vector normal ao plano	3
Escrever uma equação do plano	3
Indicar as coordenadas do cento da esfera	3
Verificar que estas coordenadas satisfazem a equação do plano	3
Identificar a secção	3
Indicar a área	4
Referir que $\overline{OQ}=z$	1
→ 1	
Determinar \overline{OP}	5
Escrever a igualdade $\overline{OP}^2=3^2+4^2$ (ou	5
Escrever a igualdade $\ensuremath{\overline{OP}}^{2} = 3^2 + 4^2$ (ou	3
Escrever a igualdade $\overline{OP}^2=3^2+4^2$ (ou equivalente)	3
Escrever a igualdade $\ensuremath{\overline{OP}}^2 = 3^2 + 4^2$ (ou equivalente)	3
Escrever a igualdade $\overline{OP}^2=3^2+4^2$ (ou equivalente)	3
Escrever a igualdade $\overline{OP}^2=3^2+4^2$ (ou equivalente)	3 2 12
Escrever a igualdade $\overline{OP}^2=3^2+4^2$ (ou equivalente)	2 12

2	
Equa	cionar o problema4
Reso	lver a equação15
	Isolar o radical
	Elevar ambos os membros ao quadrado (ver nota) 3
	Desenvolver o quadrado da diferença3
	Concluir que $z=8$ 3
	Verificar se o valor obtido é solução3
	: crita do símbolo de equivalência, em vez do símbolo de implicação, deve ter valorização prevista no critério geral 6.
Este i	item pode ser resolvido por, pelo menos, dois processos:
<u> 1º Pro</u>	ocesso:
Deter	minar a derivada de v (ver nota 1)5
Deter	minar os zeros da derivada de v (ver nota 2)5
mono	lo do sinal de v^\prime e consequente conclusão, relativamente à stonia de v (estudo que pode ser apresentado através de uadro)
	Primeira linha do quadro (ver nota 3)2
	Segunda linha do quadro (sinal de v^{\prime}) (ver nota 4) 2
	Terceira linha do quadro (relação entre o sinal de v^\prime e a monotonia de v)
Deter	minar $v(2)$ 2
Deter	minar $v(6)$
Conc	minar $v(6)$

2º Processo: Determinar os zeros da derivada de v (ver nota 2)5 Determinar $v(0), v(2), v(5) \in v(6)$ (ver nota 6)9 Concluir que a velocidade máxima atingida foi de 52 centenas de rotações Notas: 1. Se existir evidência de que o aluno pretende determinar a derivada de v, a cotação mínima a atribuir a esta etapa é de 1 ponto. 2. Se existir evidência de que o aluno pretende determinar os zeros da derivada de v, a cotação mínima a atribuir a esta etapa é de 1 ponto. 3. A primeira linha do quadro deve ser cotada de acordo com o seguinte critério: Primeira linha correcta (indicação dos zeros da derivada de \boldsymbol{v} Outras situações0 4. A segunda linha do quadro deverá ser cotada de acordo com o seguinte critério: Segunda linha do quadro de acordo com a primeira linha e com a expressão obtida para a derivada de $\it v$2 Outras situações0 5. A cotação desta etapa só deve ser atribuída caso o aluno tenha determinado v(6), para além de v(2). **6.** Caso o aluno se limite a determinar v(2) e v(5), a cotação a atribuir a esta etapa deve ser de 4 pontos.

7. A cotação desta etapa só deve ser atribuída caso o aluno tenha

determinado v(0), v(2), v(5) e v(6).

	20
Tra	duzir o problema pela inequação $v(t)>60$ (ver nota 1)3
Re	solver graficamente a inequação12
	Apresentar o gráfico de v , a recta de equação $y=46$ e os pontos de intersecção das duas linhas
	ou
	apresentar o gráfico da função definida por $v(t)-46$ e os pontos de intersecção deste gráfico com o eixo Ox (ver nota 2)4
	Indicar as abcissas dos pontos de intersecção (ver notas 3 e 4)
Арі	resentar o resultado5
	Subtrair as abcissas2
	Converter o valor obtido em minutos e segundos (ver nota 5)
No	tas:
1.	O aluno não necessita de apresentar explicitamente esta inequação. Havendo evidência de que a considerou, os 3 pontos relativos a esta etapa devem ser atribuídos.
2.	Os 4 pontos relativos a esta etapa devem ser atribuídos de acordo com o seguinte critério:
	Apresentação correcta e completa de todos os elementos relevantes (gráfico da função v , no intervalo $[0,6]$, recta de equação $y=46$ e pontos de intersecção)
	Apresentação correcta mas com ausência de alguns elementos ou apresentação completa mas com algumas incorrecções2 ou 3
	Apresentação incompleta e com algumas incorrecções 1
	Outras situações0

2.2.

3.	A apresentação do valor $1{,}24$ deve ser cotada de acordo com o seguinte critério:
	1.º Caso (apresentação com duas casas decimais, de acordo com o enunciado):
	1,24 4
	1,25
	1,23 ou $1,26$
	Outros valores0
	2.º Caso (apresentação com mais de duas casas decimais):
	$ \mbox{Valor no intervalo} \ [\ 1,24\ ;\ 1,25] \ \dots \qquad \qquad \mbox{2} $
	Valor fora do intervalo anterior, mas pertencente ao intervalo $[1,\!232\ ;1,\!258]$
	Outros valores 0
	3.º Caso (apresentação com uma casa decimal):
	Valor igual a $1,2$
	Outros valores 0
	4.º Caso (apresentação com zero casas decimais):
	Qualquer valor0
4.	A apresentação do valor $2{,}91$ deve ser cotada de acordo com o seguinte critério:
	1.º Caso (apresentação com duas casas decimais, de acordo com o enunciado):
	2,91 4
	2,92
	2,90 ou $2,93$
	Outros valores0

2.º Caso (apresentação com mais de duas casas decimais):
Valor no intervalo $[2,\!91\ ;2,\!92]$
Valor fora do intervalo anterior, mas pertencente ao intervalo $[2,\!902\;;2,\!928]$
Outros valores 0
3.º Caso (apresentação com uma casa decimal):
Valor igual a 2,9 1
Outros valores 0
4.º Caso (apresentação com zero casas decimais):
Qualquer valor0

5. Se o aluno apresentar o número de segundos não arredondado às unidades ou mal arredondado, a cotação a atribuir a esta etapa deve ser desvalorizada em 1 ponto.

3.1	20
Simplificar a expressão $8\cos{(4\pi-\alpha)}+2\sin{\left(\frac{3\pi}{2}+\alpha\right)}$ 8	
$8\cos{(4\pi-\alpha)}=8\cos{\alpha}$ (ver nota) 4	
$2 \operatorname{sen} \left(\frac{3\pi}{2} + \alpha \right) = -2 \cos \alpha$ (ver nota) 4	
Concluir que $\ensuremath{\mathrm{tg}}\alpha = -\sqrt{8}$ 3	
Escrever a equação $1+\left(-\sqrt{8}\right)^2=\frac{1}{\cos^2\alpha}$ ou	
o sistema $\frac{\sin\alpha}{\cos\alpha}=-\sqrt{8}$ \wedge $\sin^2\alpha+\cos^2\alpha=1$ 3	
Determinar o valor de $\cos \alpha$ (ver nota)4	
Determinar o valor pedido	
Nota: Um erro de sinal implica uma desvalorização de 2 pontos nesta etapa.	
3.2	20
Este item pode ser resolvido por, pelo menos, três processos:	
1º Processo:	
Estabelecer a igualdade $\frac{u}{1} = \frac{1}{\overline{OQ}}$ a partir de	
semelhança de triângulos ou tendo em conta que ambos os	
quocientes são iguais a \cos β , sendo β a amplitude do	
ângulo QOP 16	
Concluir que $\overline{OQ}=rac{1}{u}$ 4	

2º Processo:

Escrever as coordenadas de $\mathcal Q$ como $(x,0)$	3
Escrever as coordenadas de \overrightarrow{PQ}	2
Escrever a igualdade \overrightarrow{PQ} . $\overrightarrow{OP}=0$	3
Referir que \overrightarrow{PQ} . $\overrightarrow{OP} = u x - u^2 - v^2$	3
Reconhecer que $u^2+v^2=1$	7
Mostrar que $x = \frac{1}{u}$	2
<u>3º Processo:</u>	

Escrever uma equação da recta t
Escrever uma equação da recta t
Reconhecer que $u^2+v^2=1$
Mostrar que a recta t intersecta o eixo Ox no ponto de abcissa $\frac{1}{x}$

Nota:

A verificação do resultado para um caso particular deve ser classificada com zero pontos.