TESTE INTERMÉDIO DE MATEMÁTICA A

10 de Maio de 2007

CRITÉRIOS DE CLASSIFICAÇÃO - VERSÃO 3

COTAÇÕES

rupo l	63
Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	0
rupo II	137
1	
2	40
3.	40
OTAL	200

Grupo I

Deverão ser anulados todos os itens com resposta de leitura ambígua (letra confusa, por exemplo) e todos os itens em que o aluno dê mais do que uma resposta.

As respostas certas são as seguintes:

Itens	1	2	3	4	5	6	7
Respostas	Α	D	С	С	В	В	В

Grupo II

Critérios gerais

- Se o aluno se enganar na identificação do item a que está a responder, ou se a omitir, mas, pela resolução apresentada, for possível identificá-lo inequivocamente, a resposta deve ser vista e classificada.
- 2. Se o aluno apresentar mais do que uma resposta a um item, e não indicar, de forma inequívoca, a que pretende que seja classificada, deve ser vista e classificada apenas a que se encontra em primeiro lugar, na folha de resposta.
- **3.** As classificações a atribuir às respostas dos alunos são expressas obrigatoriamente em números inteiros.
- **4.** Num item em que a respectiva resolução exija cálculos e/ou justificações, a classificação a atribuir deve estar de acordo com o seguinte critério:
 - Se o aluno se limitar a apresentar o resultado final, a classificação deve ser de 0 (zero) pontos.
 - Se o aluno não se limitar a apresentar o resultado final, a classificação deve ser a soma algébrica das classificações atribuídas a cada etapa, de acordo com o disposto nos pontos 6, 7, 8, 9, 10 e 11 destes critérios gerais. Se a soma for negativa, a classificação a atribuir é de 0 (zero) pontos.
- 5. Alguns itens da prova podem ser correctamente resolvidos por mais do que um processo. Sempre que o aluno utilizar um processo de resolução não contemplado nos critérios específicos, caberá ao professor classificador adoptar um critério de distribuição da cotação que julgue adequado e utilizá-lo em situações idênticas. Salienta-se que deve ser aceite qualquer processo cientificamente correcto, mesmo que envolva conhecimentos não contemplados no programa da disciplina.

- **6.** A cotação de cada item está subdividida pelas etapas que o aluno deve percorrer para o resolver.
 - **6.1.** Em cada etapa, a cotação indicada é a máxima a atribuir.
 - **6.2.** O classificador não pode subdividir, em cotações parcelares, a cotação atribuída a cada etapa.

Caso uma etapa envolva um único passo, testando apenas o conhecimento de um só conceito ou propriedade, e a sua resolução não esteja completamente correcta, deve ser atribuída a classificação de 0 (zero) pontos.

Caso uma etapa envolva mais do que um passo (por exemplo, o cálculo da derivada de uma função, a resolução de uma equação, a obtenção de uma expressão em função de uma variável, etc.) e a sua resolução esteja incompleta, ou contenha incorrecções, a classificação a atribuir deve estar de acordo com o grau de incompletude e/ou a gravidade dos erros cometidos. Por exemplo:

- erros de contas ocasionais devem ser desvalorizados em um ponto;
- erros que revelem desconhecimento de conceitos, regras ou propriedades devem ser desvalorizados em, pelo menos, metade da cotação da etapa;
- transposições erradas de dados do enunciado devem ser desvalorizadas em um ponto, desde que o grau de dificuldade da etapa não diminua;
- transposições erradas de dados do enunciado devem ser desvalorizadas em, pelo menos, metade da cotação da etapa, caso o grau de dificuldade da etapa diminua.
- **6.3.** Nas etapas cuja cotação se encontra discriminada por níveis de desempenho, o classificador deve enquadrar a resposta do aluno numa das descrições apresentadas. O classificador não pode atribuir uma classificação diferente das cotações indicadas.
- **6.4.** No caso de o aluno cometer um erro numa das etapas, as etapas subsequentes devem merecer a respectiva cotação, desde que o grau de dificuldade não tenha diminuído, e o aluno as execute correctamente, de acordo com o erro que cometeu.
- 6.5. Caso o aluno cometa, numa etapa, um erro que diminua o grau de dificuldade das etapas subsequentes, cabe ao classificador decidir a cotação máxima a atribuir a cada uma destas etapas. Em particular, se, devido a um erro cometido pelo aluno, o grau de dificuldade das etapas seguintes diminuir significativamente, a cotação máxima a atribuir a cada uma delas não deverá exceder metade da cotação indicada.
- **6.6.** Pode acontecer que o aluno, ao resolver um item, não percorra explicitamente todas as etapas previstas nos critérios específicos. Todas as etapas não percorridas explicitamente pelo aluno, mas cuja utilização e/ou conhecimento estejam inequivocamente implícitos na resolução do item, devem receber a cotação indicada.

- 7. Quando, num item, é pedida uma forma específica de apresentação do resultado final (por exemplo, "em minutos", "em percentagem", etc.), este deve ser apresentado na forma pedida. Se o resultado final apresentado pelo aluno não respeitar a forma pedida no enunciado (por exemplo, se o enunciado pedir o resultado em minutos, e o aluno o apresentar em horas), devem ser atribuídos 0 (zero) pontos à etapa correspondente ao resultado final. No entanto, a cotação não deve ser desvalorizada caso o aluno não indique a unidade em que é pedido o resultado (por exemplo, se o resultado final for 12 minutos, ou 12 metros, e o aluno escrever simplesmente 12, não se deve aplicar nenhuma desvalorização). Se não for pedida aproximação para o resultado final, o aluno deve apresentar o valor exacto. Se o aluno apresentar, como resultado final, uma aproximação do valor exacto, deve ser aplicada uma desvalorização de 1 ponto na cotação a atribuir à etapa correspondente ao resultado final.
- **8.** O aluno deve respeitar sempre a instrução relativa à apresentação de todos os cálculos e de todas as justificações. Se, numa etapa, o aluno não respeitar esta instrução, apresentando algo (valor, quadro, tabela, gráfico, etc.) que não resulte de trabalho anterior, deve ser atribuída a classificação de 0 (zero) pontos a essa etapa. Todas as etapas subsequentes que dela dependam devem ser igualmente classificadas com 0 (zero) pontos.
- 9. O aluno deve respeitar sempre qualquer instrução relativa ao método a utilizar na resolução de um item (por exemplo, "sem recorrer à calculadora", "equacione o problema", "resolva graficamente", etc.). Na resolução apresentada pelo aluno, deve ser inequívoco, pela apresentação de todos os cálculos e de todas as justificações, o cumprimento da instrução. Se tal não acontecer, considera-se que o aluno não respeitou a instrução. A etapa em que se dá o desrespeito, bem como todas as subsequentes que dela dependam devem ser classificadas com 0 (zero) pontos.
- 10. Se, na resolução de um item, o aluno utilizar simbologia, ou escrever uma expressão, inequivocamente incorrecta do ponto de vista formal (por exemplo, se escrever o símbolo de igualdade onde deveria estar o símbolo de equivalência), a cotação total a atribuir ao item deve ser desvalorizada em um ponto. Esta desvalorização não se aplica no caso em que tais incorrecções ocorram apenas em etapas classificadas com 0 (zero) pontos, nem a eventuais utilizações do símbolo de igualdade, onde, em rigor, deveria estar o símbolo de igualdade aproximada.
- 11. Existem itens em cujo enunciado é dada uma instrução relativa ao número mínimo de casas decimais que o aluno deve conservar, sempre que, em cálculos intermédios, proceder a arredondamentos. Indicam-se, a seguir, as desvalorizações a aplicar, na classificação total a atribuir ao item, em caso de desrespeito dessa instrução e/ou de arredondamentos mal efectuados.

Todos os valores intermédios estão de acordo com a instrução, mas existe, pelo menos, um valor intermédio mal arredondado1 ponto
Todos os valores intermédios estão bem arredondados, mas existe, pelo menos, um que não está de acordo com a instrução1 ponto
Existe, pelo menos, um valor intermédio mal arredondado e existe, pelo menos, um que não está de acordo com a instrução2 pontos

Critérios específicos

1	'
Indicar as coordenadas de um vector normal ao plano	3
Escrever uma equação do plano	3
Indicar as coordenadas do cento da esfera	3
Verificar que estas coordenadas satisfazem a equação do plano	3
Identificar a secção	3
Indicar a área	4
2.1	
Referir que $\ \overline{OQ}=z$	1
Determinar \overline{OP}	5
Escrever a igualdade $\overline{OP}^{2}=3^2+4^2$ (ou equivalente)	3
Concluir que $\overline{OP}=~5~$	2
Exprimir $\ \overline{PQ}$ em função de z	12
Escrever a igualdade $\overline{PQ} = \sqrt{\left(z-3\right)^2 + 4^2}$ (ou equivalente)	6
Desenvolver o quadrado da diferença	4
Concluir que $\ \overline{PQ}=\sqrt{z^2-6z+25}$	2
Concluir que $f(z)=z+5+\sqrt{z^2-6z+25}$	1

1.2.2.	19
	Equacionar o problema4
	Resolver a equação15
	Isolar o radical 3
	Elevar ambos os membros ao quadrado (ver nota)
	Desenvolver o quadrado da diferença3
	Concluir que $z=6$ 3
	Verificar se o valor obtido é solução3
	Nota: A escrita do símbolo de equivalência, em vez do símbolo de implicação, deve ter a desvalorização prevista no critério geral 6.
2.1	20
	Este item pode ser resolvido por, pelo menos, dois processos:
	1º Processo:
	Determinar a derivada de v (ver nota 1)
	Determinar os zeros da derivada de v (ver nota 2)
	Estudo do sinal de v^{\prime} e consequente conclusão, relativamente à monotonia de v (estudo que pode ser apresentado através de um quadro)
	Primeira linha do quadro (ver nota 3)2
	Segunda linha do quadro (sinal de v^{\prime}) (ver nota 4) 2
	Terceira linha do quadro $({\rm relação}{\rm entre}{\rm o}{\rm sinal}{\rm de}$ v' e a monotonia de v)
	Determinar $v(3)$
	Determinar $v(8)$
	Concluir que a velocidade máxima atingida foi de 81 centenas de rotações

2º Processo: Determinar os zeros da derivada de v (ver nota 2)5 Determinar v(0), v(3), v(7) = v(8) (ver nota 6)9 Concluir que a velocidade máxima atingida foi de 81 centenas de rotações Notas: 1. Se existir evidência de que o aluno pretende determinar a derivada de v, a cotação mínima a atribuir a esta etapa é de 1 ponto. 2. Se existir evidência de que o aluno pretende determinar os zeros da derivada de v, a cotação mínima a atribuir a esta etapa é de 1 ponto. 3. A primeira linha do quadro deve ser cotada de acordo com o seguinte critério: Primeira linha correcta (indicação dos zeros da derivada de \boldsymbol{v} Outras situações0 4. A segunda linha do quadro deverá ser cotada de acordo com o seguinte critério: Segunda linha do quadro de acordo com a primeira linha e com a expressão obtida para a derivada de $\it v$2 Outras situações0 5. A cotação desta etapa só deve ser atribuída caso o aluno tenha determinado v(8), para além de v(3). **6.** Caso o aluno se limite a determinar v(3) e v(7), a cotação a atribuir a esta etapa deve ser de 4 pontos.

7. A cotação desta etapa só deve ser atribuída caso o aluno tenha

determinado v(0), v(3), v(7) e v(8).

Tra	duzir o problema pela inequação $v(t)>60$ (ver nota 1)3
Res	solver graficamente a inequação12
	Apresentar o gráfico de $v,$ a recta de equação $y=60$ e os pontos de intersecção das duas linhas $$ ou
	apresentar o gráfico da função definida por $v(t)-60$ e os pontos de intersecção deste gráfico com o eixo Ox (ver nota 2)4
	Indicar as abcissas dos pontos de intersecção (ver notas 3 e 4) 4 + 4
Apr	resentar o resultado5
	Subtrair as abcissas2
	Converter o valor obtido em minutos e segundos (ver nota 5)
Not	tas:
1.	O aluno não necessita de apresentar explicitamente esta inequação. Havendo evidência de que a considerou, os 3 pontos relativos a esta etapa devem ser atribuídos.
2.	Os 4 pontos relativos a esta etapa devem ser atribuídos de acordo com o seguinte critério:
	Apresentação correcta e completa de todos os elementos relevantes (gráfico da função v , no intervalo $[0,8]$, recta de equação $y=60$ e pontos de intersecção)
	Apresentação correcta mas com ausência de alguns elementos ou apresentação completa mas com algumas incorrecções2 ou 3
	Apresentação incompleta e com algumas incorrecções 1
	Outras situações0

2.2.

3.	A apresentação do valor $1{,}34$ deve ser cotada de acordo com o seguinte critério:
	1.º Caso (apresentação com duas casas decimais, de acordo com o enunciado):
	1,34 4
	1,35
	$1,\!33$ ou $1,\!36$
	Outros valores0
	2.º Caso (apresentação com mais de duas casas decimais):
	$\label{eq:Valor no intervalo} \ [1{,}339;1{,}349]\qquad \qquad 2$
	Valor fora do intervalo anterior, mas pertencente ao intervalo $[1,\!331\ ;1,\!357]$
	Outros valores 0
	3.º Caso (apresentação com uma casa decimal):
	Valor igual a 1,3 1
	Outros valores 0
	4.º Caso (apresentação com zero casas decimais):
	Qualquer valor0
4.	A apresentação do valor $5{,}42$ deve ser cotada de acordo com o seguinte critério:
	1.º Caso (apresentação com duas casas decimais, de acordo com o enunciado):
	5,424
	5,43
	5,41 ou $5,44$
	Outros valores0

2.º Caso (apresentação com mais de duas casas decimais):
$\label{eq:Valor no intervalo} \ [\ 5,418\ ;\ 5,428]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Valor fora do intervalo anterior, mas pertencente ao intervalo $[5,\!410\;;5,\!436]$
Outros valores 0
3.º Caso (apresentação com uma casa decimal):
Valor igual a $5,4$
Outros valores 0
4.º Caso (apresentação com zero casas decimais):
Qualquer valor0

5. Se o aluno apresentar o número de segundos não arredondado às unidades ou mal arredondado, a cotação a atribuir a esta etapa deve ser desvalorizada em 1 ponto.

3.1
Simplificar a expressão $5 \mathrm{sen} \left(\frac{\pi}{2} + \alpha \right) + 2 \mathrm{cos} \left(3 \pi - \alpha \right)$ 8
$5 \operatorname{sen} \left(\frac{\pi}{2} + \alpha \right) = 5 \cos \alpha$ (ver nota) 4
$2\cos{(3\pi-\alpha)}=-2\cos{\alpha}$ (ver nota) 4
Concluir que $\ensuremath{\mathrm{tg}}\alpha=\sqrt{8}$
Escrever a equação $1+\left(\sqrt{8}\right)^2=rac{1}{\cos^2\alpha}$ ou
o sistema $\frac{ \operatorname{sen} \alpha}{ \operatorname{cos} \alpha} = \sqrt{8} \wedge \operatorname{sen}^2 \alpha + \operatorname{cos}^2 \alpha = 1 \ldots 3$
Determinar o valor de $\cos \alpha$ (ver nota)4
Determinar o valor pedido2
Nota: Um erro de sinal implica uma desvalorização de 2 pontos nesta etapa.
3.2
Este item pode ser resolvido por, pelo menos, três processos:
1º Processo:
Estabelecer a igualdade $\ \frac{r}{1} \ = \ \frac{1}{\overline{OQ}} \ $ a partir de semelhança
de triângulos ou tendo em conta que ambos os quocientes são
iguais a $\cos \alpha$, sendo α a amplitude do ângulo QOP
Concluir que $\ \overline{OQ} = rac{1}{r}$ 4

2º Processo:

Escrever as coordenadas de Q como $(x,0)$	3
Escrever as coordenadas de \overrightarrow{PQ}	2
Escrever a igualdade \overrightarrow{PQ} . $\overrightarrow{OP}=0$	3
Referir que \overrightarrow{PQ} . $\overrightarrow{OP}= rx-r^2-s^2$	3
Reconhecer que $\ r^2+s^2=1$	7
Mostrar que $x = \frac{1}{r}$	2
3º Processo:	

Reconnecer que o vector (r,s) e perpendicular a recta ι	J
Escrever uma equação da recta t	. 5
Reconhecer que $r^2+s^2=1$	7
Mostrar que a recta t intersecta o eixo Ox no ponto de abcissa $\stackrel{1}{-}$	_
de adcissa —	. ວ

Nota

A verificação do resultado para um caso particular deve ser classificada com zero pontos.