TESTE INTERMÉDIO DE MATEMÁTICA A - 11º ANO

RESOLUÇÃO - VERSÃO 1

GRUPO I

1. O perímetro do triângulo $\ [OPQ]$ é igual a $\ \overline{OP} + \overline{OQ} + \overline{QP} = 1 + 1 + 2\cos 53^\circ \approx 3.2$

Resposta A

2. O facto de o ponteiro dos minutos do relógio da Inês ter rodado -3π radianos significa que rodou uma volta e meia, o que corresponde à passagem de 1 h 30 min.

Como 10 h 45 min + 1 h 30 min = 12 h 15 min, o relógio da Inês marcava 12 h e 15 min.

Resposta C

3. $\overrightarrow{CA} \cdot \overrightarrow{CB} = \|\overrightarrow{CA}\| \times \|\overrightarrow{CB}\| \times \cos(\overrightarrow{CA} \cap \overrightarrow{CB}) = 5 \times 5 \times \cos 180^{\circ} = 5 \times 5 \times (-1) = -25$

Resposta A

4. Como o gráfico da função f é uma parábola com a concavidade voltada para baixo, com vértice no ponto (3,2), a recta tangente ao gráfico em qualquer ponto de abcissa inferior a 3 tem declive positivo, no ponto de abcissa 3 tem declive 0 e em qualquer ponto de abcissa superior a 3 tem declive negativo. Portanto, f'(1)>0, f'(2)>0, f'(3)=0 e f'(4)<0.

Resposta D

5. $(f \circ g)(2) = f[g(2)] = f(-3) = -2$

Resposta A

GRUPO II

1.1.
$$f(x) \ge 3 \iff 4 - \frac{4}{x+2} \ge 3 \iff 4 - \frac{4}{x+2} - 3 \ge 0 \iff$$

$$\Leftrightarrow 1 - \frac{4}{x+2} \ge 0 \Leftrightarrow \frac{x+2-4}{x+2} \ge 0$$

$$\Leftrightarrow \quad \frac{x-2}{x+2} \ge 0$$

x	$-\infty$	- 2		2	$+\infty$
x-2	_	_	_	0	+
x + 2	_	0	+	+	+
Quociente	+	n.d.		0	+

Portanto, o conjunto dos números reais que são soluções da inequação $\ f(x) \geq 3 \$ é $]-\infty, \ -2[\ \cup\ [2,\ +\infty\,[$

1.2. Tem-se:

Área do quadrilátero [ABCD] == Área do trapézio [BODC] – Área do triângulo [BOA]

Tendo em vista o cálculo destas áreas, comecemos por determinar as coordenadas dos pontos $A,\ B,\ C$ e D.

 ${\rm Como} \quad f(0)=2, \ {\rm o \ ponto} \ \ A \ \ {\rm tem \ coordenadas} \ \ (0,2)$

Tem-se:
$$f(x) = 0 \Leftrightarrow 4 - \frac{4}{x+2} = 0 \Leftrightarrow x+2=1 \Leftrightarrow x=-1$$

Portanto, o ponto $\,B\,$ tem coordenadas $\,(\,-\,1,0)$

C é o ponto de intersecção das assimptotas do gráfico de $\,f$, cujas equações são $x=-2\,$ e $\,y=4.\,$ Logo, o ponto $\,C$ tem coordenadas $\,(\,-2,4)\,$

Como o ponto $\,D\,$ pertence ao eixo $\,Oy\,$ e tem ordenada igual à de $\,C$, as suas coordenadas são $\,(0,4)\,$

Tem-se, então: Área do quadrilátero [ABCD] =

 $= \ \, {\rm \, Area \, do \, trap\'ezio} \, [BODC] - {\rm \, Area \, do \, triângulo} \, [BOA] =$

$$=$$
 $\frac{\overline{BO} + \overline{DC}}{2} \times \overline{OD} - \frac{\overline{BO} \times \overline{OA}}{2} =$

$$= \frac{1+2}{2} \times 4 - \frac{1 \times 2}{2} = 6 - 1 = 5$$

2.1. Volume do prisma = Área da base \times Altura

A área da base é $\,a^2\,$

A altura é a cota do ponto $\,P\,$

Como o ponto $\,P\,$ pertence ao plano $\,ABC\,$ e tem ordenada igual à abcissa, vem:

$$a + 2a + 3z = 9 \Leftrightarrow 3z = 9 - 3a \Leftrightarrow z = 3 - a$$

Portanto, o volume do prisma é igual a $a^2(3-a)=3a^2-a^3$

2.2. Tem-se: $V'(a) = 6a - 3a^2$ $(a \in]0,3[)$

$$V'(a) = 0 \iff 6a - 3a^2 = 0 \iff a(6 - 3a) = 0$$

Como $\,a\in\,]\,0,3[\,$, tem que ser $\,6-3a=0,\,$ ou seja, $\,a=2\,$

a	0	2	3
V'	+	0	_
V	7	Máx.	>

Concluímos assim que o volume do prisma é máximo quando $\,a=2\,$

2.3. O ponto A pertence ao eixo Ox, pelo que a sua ordenada e a sua cota são iguais a zero.

Como o ponto A pertence ao plano ABC, vem:

$$x + 2 \times 0 + 3 \times 0 = 9 \iff x = 9$$

Portanto, o ponto A tem coordenadas (9,0,0)

Como o plano ABC tem equação x+2y+3z=9, o vector de coordenadas (1,2,3) é perpendicular ao plano, pelo que é um vector director da recta pedida.

Assim, uma equação vectorial da recta pedida é

$$(x, y, z) = (9, 0, 0) + k (1, 2, 3), k \in \mathbb{R}$$

- **3.1.** O Manuel atrasou-se uma hora e um quarto, ou seja, 75 minutos. Como $c(75) \approx 99$, conclui-se que o Manuel saiu 99 minutos depois do meio dia, ou seja, às 13 h e 39 min.
- **3.2.** O Manuel saiu 25 minutos depois do meio dia. Ora,

$$c(t) = 25 \Leftrightarrow \frac{t^2 + 25t}{t+1} = 25$$

Como $\ t \geq 0, \quad t+1 \ \ {\rm nunca}\ {\rm \acute{e}}\ {\rm igual}\ {\rm a}\ {\rm zero}, \ {\rm pelo}\ {\rm que}$

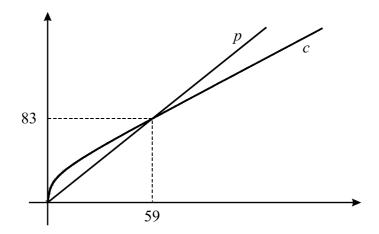
$$\frac{t^2 + 25t}{t+1} = 25 \quad \Leftrightarrow \quad t^2 + 25t = 25t + 25 \Leftrightarrow t^2 = 25 \Leftrightarrow t = 5$$

O Manuel chegou com cinco minutos de atraso.

3.3. De acordo com a proposta do Manuel, o tempo de permanência de um trabalhador na empresa, após o meio-dia, deverá ser igual ao tempo de atraso, acrescido de 40% desse tempo. Portanto, de acordo com esta proposta, o número de minutos depois do meio-dia que um trabalhador terá de permanecer na empresa, quando se atrasa t minutos, é dado por $t+0.4\,t$, ou seja, $1.4\,t$.

Consideremos os gráficos das duas funções: a função $\,c$, correspondente ao contrato em vigor, e a função $\,p$, correspondente à proposta do Manuel.

Assinalemos o ponto de intersecção destes gráficos (as suas coordenadas podem ser obtidas utilizando a ferramenta de intersecção da calculadora).



Da análise dos gráficos, concluímos que a proposta do Manuel é favorável ao trabalhador para atrasos inferiores a 59 minutos. Para atrasos superiores a 59 minutos, o contrato em vigor penaliza menos o trabalhador.

Quando o atraso é de 59 minutos, a proposta do Manuel e o contrato em vigor determinam o mesmo tempo de permanência na empresa, após o meio-dia, tempo esse igual a 83 minutos.