PROPOSTA DE RESOLUÇÃO DO EXAME NACIONAL DE MATEMÁTICA 9º ano – Prova 23 – 1ª Chamada - 2005

1. Ter lido mais que dois livros

2.

2.1.
$$A = \begin{bmatrix} -1,1 \end{bmatrix} \cup \begin{bmatrix} -\frac{1}{2},+\infty \end{bmatrix}$$

$$2.2. \quad 3 + \frac{1-x}{2} \le 4 \Leftrightarrow \frac{6}{2} + \frac{1-x}{2} \le \frac{8}{2} \Leftrightarrow 6 + 1 - x \le 8 \Leftrightarrow -x \le 8 - 6 - 1 \Leftrightarrow -x \le 1 \Leftrightarrow x \ge -1$$

Conjunto solução: $[-1,+\infty[$

A é o conjunto solução da inequação.

3. --- João

____ Carlos

3.1. 500 m.

3.2. 15 s.

4. Número de cubos que têm só duas faces pintadas = 4

Número total de cubos = 12

A probabilidade do cubo escolhido ter só duas faces pintadas é $\frac{4}{12}$ ou seja $\frac{1}{3}$.

5.

- 5.1.1. Por exemplo, IJ
- 5.1.2. Por exemplo, o plano EFK
- 5.2. Processo 1, por tentativas:

Até 10 anos	Mais de 10 anos	Total (em euros)
10 x 19 = 190	15 x 1 = 15	205
()	()	()
10 x 17 = 170	$15 \times 3 = 45$	215
()	()	()
10 x 13 = 130	15 x 7 = 105	235

O número de crianças do grupo com mais de 10 anos de idade é 7.

Processo 2:

 $x \rightarrow$ número de crianças até 10 anos de idade (inclusive)

y → número de crianças com mais de 10 anos

$$\begin{cases} x + y = 20 \\ 10x + 15y = 235 \end{cases} \Leftrightarrow \begin{cases} x = 20 - y \\ 10(20 - y) + 15y = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y + 15y} = 235 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{200 - 10y} = 2$$

O número de crianças do grupo com mais de 10 anos de idade é 7.

7.

7.2. Os ângulos referidos estão inscritos no mesmo arco CFI, logo têm a mesma amplitude.

ou

Os ângulos CDI e CHI são ângulos inscritos numa circunferência. A amplitude de um ângulo inscrito é igual a metade da amplitude do arco que ele contém, logo:

$$\hat{CDI} = \frac{4 \times 36^{\circ}}{2} = 72^{\circ}$$
 $\hat{CHI} = \frac{4 \times 36^{\circ}}{2} = 72^{\circ}$

7.3. Para dividir a circunferência em três arcos geometricamente iguais consideram-se três ângulos ao centro de amplitude 120° (360°/3).

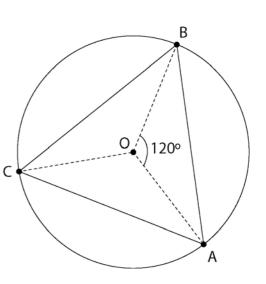
Marca-se um ponto na circunferência (ponto A).

Traça-se o raio OA

Marca-se, com o transferidor, um ângulo ao centro cuja amplitude seja 120º e marca-se o ponto B.

Procede-se da mesma forma para marcar o ponto C ou utiliza-se o compasso com abertura \overline{AB} e com a ponta fixa no ponto B, marca-se o ponto C.

Une-se A, B e C.



8.

8.1. Área do rectângulo = 18 ; $c \times l = 18$

	Rectângulo A	Rectângulo B	Rectângulo C
Comp. (cm)	4	36	9
Larg (cm)	4,5	0,5	2

8.2. Gráfico C

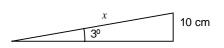
9.

$$sen \alpha = \frac{\text{Medida do cateto oposto a } \alpha}{\text{Medida da hipotenusa}}$$

 $sen 3^{\circ} = \frac{10}{x} \Leftrightarrow 0.0523 = \frac{10}{x} \Leftrightarrow x = \frac{10}{0.0523} \Leftrightarrow x = 191,2046$

O comprimento da rampa é, aproximadamente, 3,8 metros

 $c = 2 \times x \Leftrightarrow c = 2 \times 191,2046 \Leftrightarrow c = 382,4092cm$



10.
$$P = 2\pi r = \pi d$$

$$P = 3,14159 \times 10 \Leftrightarrow P = 31,4159 \Leftrightarrow P = 31,42cm$$

A melhor aproximação foi dada pelo João

11.
$$V_{cilindro} = A_{base} \times altura$$

$$A_{base} = \pi r^{2}$$

$$altura = 6r$$

$$V_{n\tilde{a}oocupado} = 6\pi r^{3} - 4\pi r^{3} = 2\pi r^{3}$$

$$V_{cilindro} = \pi r^{2} \times 6r = 6\pi r^{3}$$

$$V_{esfera} = \frac{4}{3}\pi r^{3}$$

$$V_{esfera} = \frac{4}{3}\pi r^{3}$$

$$V_{tr\hat{e}sesferas} = 3 \times \frac{4}{3}\pi r^{3} = 4\pi r^{3}$$

$$V_{n\tilde{a}oocupado} = 6\pi r^{3} - 4\pi r^{3} = 2\pi r^{3}$$

$$Metade do volume das três esferas:$$

$$\frac{4\pi r^{3}}{2} = 2\pi r^{3}$$

Conclusão, o volume da caixa que não é ocupado é igual a metade do volume das três esferas

FIM

Esta proposta de resolução também pode ser consultada em http://www.apm.pt