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Abstract

The Area Method for Euclidean constructive geometry was proposed by Chou et al. in early
1990’s. The method produces human-readable proofs and can efficiently prove many non-
trivial theorems. It can be considered as one of the most interesting and most successful
methods in geometry theorem proving and probably the most successful in the domain of
automated production of readable proofs.

In this research report are the rigorous proofs of all the axioms and lemmas of the Area
Method with the geometrography coefficients of simplicity for all the lemmas.

This text is meant as a support text for the article, Measuring the Readability of a Proof,
by Pedro Quaresma and Pierluigi Graziani.



Chapter 1

Introduction

There are two major families of methods in automated reasoning in geometry: algebraic style
and synthetic style methods [1, 5, 18]

In this research report we focus on the area method, an efficient semi-algebraic method
for a fragment of Euclidean geometry, developed by Chou, Gao, and Zhang. This method
enables implementing efficient provers capable of generating human readable proofs. These
proofs often differ from the traditional, Hilbert-style, synthetic proofs, but still they are often
concise, consisting of steps that are directly related to the geometrical contents involved and
hence can be easily understood by a mathematician [2, 3, 4, 8].

This research report follows closely a previous research report, CISUC TR 2009/006, con-
taining the rigorous proofs of all the lemmas of the area method [8, 15]. Additionally the
geometrography coefficients of simplicity for the lemmas are added [9, 11, 16, 17].

This text is meant as a support text for the article, Measuring the Readability of Geometric
Proofs, by Pedro Quaresma and Pierluigi Graziani (submitted to JAR).

In the rest of the research report, we will use capital letters to denote points in the plane.
We denote by AB the length of the oriented segment from A to B and we denote by 4ABC
the triangle with vertices A, B, and C.

Overview of the Research Report The research report is organised as follows: After this
introduction, we proceed, in Section 2 introducing geometrography and in Section 3, the area
method rigorous proofs of all its lemmas with the corresponding simplicity coefficients.
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Chapter 2

Geometrography

Geometrography, “alias the art of geometric constructions” was proposed by Émile Lemoine
between the late 1800s and the early 1900s [9, 11].1

Geometrography consisted originally of a system to measure the complexity of ruler-and-
compass geometric constructions, capable of: designate every geometric construction by a pair
of values that manifests its simplicity and exactitude; teach the simplest way to execute an
assigned construction; allow the discussion of a known solution to a problem and eventually
replacing it with a better solution; compare different solutions for a problem, by deciding which
is the most exact and the simplest solution from the point of view of geometrography [9, 11].
Since then a few authors proposed different approaches and perspectives to the study of
geometrography [6, 10, 12, 13].

2.1 Lemoine’s Geometrography

In Lemoine’s geometrography two coefficients are defined to measure the relative difficulty
to perform some geometric constructions. The approach is applied to ruler and compass
geometry, i.e. geometric constructions made solely with the help of a ruler and a compass.

The drawing instruments—ruler and compass—can ensure a reasonable fit between the
geometric entity and its geometrical image. Without them, the discrepancy between one and
the other always exceeds the limits of tolerance. However, each time a drawing instrument is
used, two types of error can be introduced in the image, systematic error and accidental errors
due to personal operator’s actions. The first is inherent to the instrument itself, which must
be imperceptible for each operation, when taken in isolation, and the second error is about
visual acuity, visual motor coordination, manual dexterity, etc.

Considering the modifications proposed by Mackay [11], the following Ruler and Compass
constructions2 and the corresponding coefficients can be considered.

To place the edge of the ruler in coincidence with one point . . . . . . . . . . . . . . . . . . . . . . . R1

1Émile Lemoine presented geometrography first in mathematics meetings: the Oran meeting in 1888 and
the Pau meeting 1892. The first formal publications about geometrography is from J. S. Mackay in 1893,
already citing the work of Lemoine, whose first formal publication was in 1902.

2Lemoine considers the following basic operations: L1. place the ruler through a given point; L2. draw a
line; C1. place one leg of the compass on a given point; C2. place one leg of the compass on an indeterminate
point of a given line; C3. draw a circle.
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To place the edge of the ruler in coincidence with two points . . . . . . . . . . . . . . . . . . . . . 2R1

To draw a straight line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R2

To put one point of the compasses on a determinate point . . . . . . . . . . . . . . . . . . . . . . . . .C1

To put one point of the compasses on two determinate points . . . . . . . . . . . . . . . . . . . . 2C1

To describe a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C2

Then a given construction is measured against the number of those elementary steps.
For example, for the construction of a triangle, given its three vertices A,B and C, Mackay
estimate 4R1 + 3R2: to put the ruler in contact with A and B is 2R1; to draw AB is R2; with
the ruler in contact with B to put it also in contact with C is R1; to draw BC is R2; repeat
that for C and A is R1 and finally to draw CA is R2. In all, 4R1 + 3R2 [11].

For a given construction expressed by the equation:

l1R1 + l2R2 + m1C1 + m2C2

where li and mj are coefficients denoting the number of times any particular operation is
performed. The number (l1 + l2 + m1 + m2) is called the coefficient of simplicity of the
construction, it denotes the total number of operations. The number (l1 + m1) is called the
coefficient of exactitude of the construction, it denotes the number of preparatory operations
on which the exactitude of the construction depends [11, 12].

Example: To find the radius of a given circle, when the centre is not given.
This can be solved with the following construction (see Fig. 2.1).

A

B

C

D

E

F

Figure 2.1: Find the Radius of a Given Circle

The following ruler and compass steps where taken to draw the figure: C1, to put one
point of the compass on point A; C2 to describe circle cAB, with centre in A and radius AB
(point B chosen at random); C1, to put one point of the compass on B; C2, to describe circle
cBC, with centre in B and radius BC (point C choose at random, such that cAB and cBC
intersect); 2×C1, to put both points of the compass in D and B; C2 to describe circle cDB,
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with centre in D and radius DB; 2×R1, to place the ruler in coincidence with points E and
C; R2, to draw line EC; 2 × R1, to place the ruler in coincidence with points F and D; R2,
to draw line FD.

4R1 + 2R2 + 4C1 + 3C2

The coefficient of simplicity will be, cs = 4+2+4+3 = 13 and the coefficient of exactitude,
ce = 4 + 4 = 8.

Some variants of Lemoine’s geometrography can be defined, e.g. by adding rules for
other idealised tools/operations (e.g. carpenter’s square, graduated rulers, etc.), or by adding
a value for the change of the instrument/operation, or by considering different values for
different operations [6, 10].

Some variants of Lemoine’s geometrography can be defined, e.g. by adding rules for
other idealised tools/operations (e.g. carpenter’s square, graduated rulers, etc.), or by adding
a value for the change of the instrument/operation, or by considering different values for
different operations [6, 10].

2.2 Dynamic Geometry System’s Geometrography

Extrapolating (modernising) geometrography, considering the “tools” of dynamic geometry
systems (DGS), the coefficient of exactitude loose its meaning, constructions will be executed
by the DGS, so exact (minus floating point representation considerations). Regarding the
coefficient of simplicity, it can still be useful, as it can be used to classify the constructions by
levels of simplicity and, in this way, providing more meta-information on the construction [16,
17].

Dynamic geometry systems introduce the notion of “free points”, points that can be moved
freely in the plane, therefore having two degrees of freedom. Other points can be subject to
restrictions, e.g. “a point in a line” or “a point resulting from the intersection of two lines”,
having one and zero degrees of freedom, respectively. As a way to measure the dynamism of
a construction, the coefficient of freedom, can be introduced. This new coefficient sets a value
to the dynamism of the geometric construction.

2.2.1 Geometrography in GCLC

In the following, the geometrography approach to the classification of the geometric construc-
tions made using the Geometry Constructions LaTeX Converter (GCLC)3 [7] is presented.

Considering the operations, define a point anywhere in the plane, D, and define a given
object using other objects, C, the following values for the GCLC basic constructions are
obtained:

point, fix a point in the plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D);

line, uses two points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2C);

circle, uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);
3http://poincare.matf.bg.ac.rs/~janicic/gclc/
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intersec, uses two lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

intersec, uses four points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4C);

intersec2, uses a circle and a circle or line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

midpoint, uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

med, uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

bis, uses three points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3C);

perp, uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

foot, uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

parallel, uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

onsegment, uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

online, uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C);

oncircle, uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2C).

The degrees of freedom are measured against the point definitions. The point construction
defines a point with two degrees of freedom. The onsegment, online and oncircle construc-
tions define points with one degree of freedom. Points obtained by other construction, e.g.
the intersection of two lines, have zero degrees of freedom.

Example: To find the radius of a given circle, when the centre is not given, using GCLC
(see Fig. 2.2).

This construction requires the use of the following construction steps:

2×point; 1×oncircle; 3×circle; 3×intersec2; 2×line.

A script4 that analyses GCLC constructions, giving its coefficients of simplicity (cs) and
freedom (cf), was implemented. For this example (see Fig 2.2) the calculated values are:
cs = 20 and cf=5.

2.3 Area Method’s Geometrography

Extrapolating geometrography, considering the proofs produced by the geometry automated
theorem prover (GATP) GCLC, implementing the Area Method [8].

Apart the geometric constructions used in the proof there are other steps to be considered.

Algebraic Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (AS)

Geometric Simplification (Area Method Definitions, etc.). . . . . . . . . . . . . . . . . . . . . . . .(GS);

Application of the Area Method Definition n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (AMDn).
4Available at https://github.com/GeoTiles/Geometrography.
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Figure 2.2: Find the Radius of a Given Circle Using GCLC

Application of the Area Method Lemma n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (AMLn).

So the extended coefficient of simplicity for a geometric proof with n1D + n2C + n3AS +
n4GS + n5AMDn1,...,nk

+ n6AMLn1,...,nl
would be:

CSproof = n1 + n2 + n3 + n4 + n5 + n6

where n5 and n6 can be seen as a compound value, each definition/lemma has a value that it
is the coefficient of simplicity for its geometric interpretation/proof.

The coefficient of freedom has no meaning on this setting.

2.3.1 Area Method’s Proof Trace Geometrography

The definition of a proof trace will be made by the trace of the geometrography value for all
the steps done by the GCLC implementation of the area method.
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Chapter 3

A Description of the Area Method

The geometrical quantities used within the area method can be defined in Hilbert style geom-
etry, but they also require axioms of the theory of real numbers.

The notion of the ratio of directed parallel segments relies on the notion of orientation of
segments, (it holds that AB = −BA). The ratio of two directed segments is considered only
if they belong to two parallel lines.

Definition 1: (Ratio of Directed Parallel Segments) For four collinear points P , Q, A, and
B, such that A 6= B, the ratio of directed parallel segments, denoted PQ

AB
is a real number. If

C and D are points such that ABCD is a parallelogram and P , Q are on the line CD, then

PQ

AB
=

PQ

DC
.

A

B

C

D

P

Q

Geometrography of Definition Ratio of Directed Parallel Segments

CSgcl = 17

CFgcl = 8

AMD1 =

{
CSproof = 17

CSgcl = 17

.
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The notion of signed areas relies on the notion of orientation of triangles.

Definition 2: (Signed Area) The signed area of triangle ABC, denoted SABC , is the area of
the triangle with a sign depending on its orientation in the plane: if it is positive, then SABC

is positive, otherwise it is negative.

A

B

C

Geometrography of Definition of Signed Area

CSgcl = 9

CFgcl = 6

AMD2 =

{
CSproof = 9

CSgcl = 9

.

The Pythagoras Difference is a generalisation of the Pythagoras equality regarding the
three sides of a right triangle, to an expression applicable to any triangle.

Definition 3: (Pythagoras difference) For three points A, B, and C, the Pythagoras difference,
denoted PABC , is defined in the following way:

PABC = AB
2

+ CB
2 −AC

2
.

A

B

C

Geometrography of Definition Pythagoras Difference

CSgcl = 9

CFgcl = 6
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AMD3 =

{
CSproof = 9

CSgcl = 9

.

In addition to this basic definitions, there are some others that should be introduced.

Definition 4: The signed area of a quadrilateral ABCD is defined as SABCD = SABC+SACD.

A

B

C

D

§ACD

SACB

SABCD

By the definition of SABC and SACD, and the fact that the orientation is preserved, the
equality follow.

Geometrography of Definition Signed Area of Quadrilateral

CSgcl = 14 = 4D + 10C

CFgcl = 8

• 2×GS, by the definition of SABC and SACD, SABCD = SABC + SACD.

AMD4 =

{
CSproof = 16 = 14 + 2

CSgcl = 14

.

Note that, more generally, we can define the signed area of an oriented n-polygonA1A2 . . . An,
(n ≥ 3) to be:

SA1A2...An =

n∑
i=3

SA1Ai−1Ai .

Definition 5: For a quadrilateral ABCD, PABCD, is defined as follows:

PABCD = PABD − PCBD = AB
2

+ CD
2 −BC

2 −DA
2
.

A

B

C

D

PCBD

PABD

PABCD
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PABCD = PABD − PCBD, by the definition

= AB
2

+ DB
2 −AD

2 − (CB
2

+ DB
2 − CD

2
), by the definition of PABD and PCBD

= AB
2

+ DB
2 −AD

2 − CB
2 −DB

2
+ CD

2
, by algebraic simplification

= AB
2

+ CD
2

+ DB
2 −DB

2 − CB
2 −AD

2
, by algebraic simplification

= AB
2

+ CD
2 − CB

2 −AD
2
, by algebraic simplification

= AB
2

+ CD
2 −BC

2 −DA
2
, by algebraic simplification

Geometrography of Definition Pythagoras Difference of Quadrilateral

CSgcl = 14 = 4D + 10C

CFgcl = 8

Following the demonstration above: 2GS + 4AS.

AMD5

{
CSproof = 20 = 4 + 10 + 2 + 4

CSgcl = 14

.

3.1 Geometric Constructions

The area method is used for proving constructive geometric conjectures: statements about
properties of objects constructed by some fixed set of elementary constructions. In this section
we first describe the set of available construction steps and then the set of conjectures that
can be expressed.

All constructions supported by the area method are expressed in terms of the involved
points. Therefore, only lines and circles determined by specific points can be used (rather then
arbitrarily chosen lines and circles). Then, the key constructions steps are those introducing
new points. For a construction steps to be well-defined, certain conditions may be required.
These conditions are called non-degeneracy condition (ndg-conditions). The degree of freedom
tells us if a point is free (degree bigger than 0), or not.

In the following text, we will denote by (Line U V) a line such that the points U and V
belong to it and we will denote by (Circle O U) a circle such that its center is point O and
such that the point U belongs to it.

Given below is the list of elementary constructions in the area methods, along with the
corresponding ndg-conditions and the degrees of freedom of the constructed points.

ECS1 construction of an arbitrary point U; we denote this construction step by (Point U).

ndg-condition: –

degree of freedom for U: 2
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ECS2 construction of a point Y such that it is the intersection of two lines (Line U V) and
(Line P Q); we denote this construction step by (Inter Y (Line U V) (Line P Q))

ndg-condition: UV ∦ PQ; U 6= V ; P 6= Q.

degree of freedom for Y: 0

ECS3 construction of a point Y such that it is a foot from a given point P to (Line U V);
we denote this construction step by (Foot Y P (Line U V)).

ndg-condition: U 6= V

degree of freedom for Y: 0

ECS4 construction of a point Y on the line passing through point W and parallel to (Line
U V), such that WY = rUV , where r can be a rational number, a rational expression
in geometric quantities, or a variable; we denote this construction step by (Pratio Y
W (Line U V) r).

ndg-condition: U 6= V ; if r is a rational expression in geometric quantities then the
denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a variable.

ECS5 construction of a point Y on the line passing through point U and perpendicular
to (Line U V), such that r = 4SUV Y

PUV U
, where r can be a rational number, a rational

expression in geometric quantities, or a variable; we denote this construction step by
(Tratio Y (Line U V) r).

ndg-condition: U 6= V ; if r is a rational expression in geometric quantities then the
denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a variable.

The above set of constructions is sufficient for expressing many constructions based on ruler
and compass, but not all of them. For instance, an arbitrary line cannot be constructed by
the above construction steps. Still, we can construct two arbitrary points and then implicitly
the line going through these points.

3.1.1 Constructive Geometric Statements

In the area method, geometric statement have a specific form.

Definition 6: (Constructive Geometric Statement) A constructive geometric statement, is a
list S = (C1, C2, . . . , Cn, G) where Ci, for 1 ≤ i ≤ n, are elementary construction steps, and
the conclusion of the statement, G, is of the form E1 = E2, where E1 and E2 are polynomials
in geometric quantities of the points introduced by the steps Ci.

We denote the class of all constructive geometric statement by C.
For a statement S = (C1, C2, . . . , Cn, (E1 = E2)) from C, the ndg-condition is the set of

ndg-conditions of the steps Ci plus the condition that the denominators of the length ratios
in E1 and E2 are not equal to zero.

Note that the area method cannot deal with inequalities in its conclusion statement, G.
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3.2 Properties of Geometric Quantities & Elimination Lemmas

We present here the properties of geometric quantities, required by the area method. We
follow the material from [2, 3, 4, 19], but in a reorganised, more methodological form.

Properties of the Signed Area

For any points A, B, C and D, we have the following properties.

Lemma 1: SABC = SCAB = SBCA = −SACB = −SBAC = −SCBA.

Lemma 2: SABC = 0 iff A, B, and C are collinear.

Lemma 3: PQ ‖ AB iff SPAB = SQAB, i.e., iff SPAQB = 0.

Lemma 4: SABC = SABD + SADC + SDBC .

Lemma 5: If points C and D are on line AB, A 6= B and P is any point not on line AB

then, SPCD
SPAB

= CD
AB

.

Lemma 6: SABCD = SABD + SBCD.

Lemma 7: SABCD = SBCDA = SCDAB = SDABC = −SADCB = −SDCBA = −SCBAD =
−SBADC .

Lemma 8: (EL1) (The Co-side Theorem) LetM be the intersection of two non-parallel lines
AB and PQ and Q 6= M . Then it holds that PM

QM
= SPAB
SQAB

; PM
PQ

= SPAB
SPAQB

; QM

PQ
=
SQAB

SPAQB
.

Lemma 9: Let R be a point on the line PQ. Then for any two points A and B it holds that
SRAB = PR

PQ
SQAB + RQ

PQ
SPAB.

Properties of the Ratio of Directed Parallel Segments

For any points A, B, P , and Q we have the following properties.

Lemma 10: PQ

AB
= −QP

AB
= QP

BA
= −PQ

BA
.

Lemma 11: PQ

AB
= 0 iff P = Q.

Lemma 12: PQ

AB
AB
PQ

= 1.

Lemma 13: AP
AB

+ PB
AB

= 1.

Lemma 14: For any real number there is a unique point P which is collinear with A and B,
and satisfies AP

AB
= r.

Since SPAB and SQAB cannot both be zero, we always assume that the non-zero one is
the denominator. Also note that PQ 6= 0 since AB ∦ PQ.

The lemma EL1 is the first of a set of important lemmas for the area method, called
elimination lemmas (EL). The proofs of any conjecture in C will be based in this lemmas.
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Notice that the point M , which was introduced by a given construction, can be eliminated by
the substitution from the ratio of directed parallel segments by a ratio of two signed areas,
not involving M .

Lemma 15: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
SABC = SPAB + SPCD, SPAB = SPDAC = SPDBC , and SPAB = SPCD − SACD =
SPDAC .

Lemma 16: Let ABCD be a parallelogram, P and Q be two arbitrary points. Then it holds
that SAPQ + SCPQ = SBPQ + SDPQ or SPAQB = SPDQC .

Properties of the Pythagoras Difference

For any points A, B, C and D we have the following properties.

Lemma 17: PAAB = 0.

Lemma 18: PABC = PCBA.

Lemma 19: PABA = 2AB
2.

Lemma 20: If A, B, and C are collinear then, PABC = 2BA BC.

Lemma 21: PABCD = −PADCB = PBADC = −PBCDA = PCDAB = −PCBAD = PDCBA =
−PDABC .

Lemma 22: (Pythagorean Theorem) AB ⊥ BC iff PABC = 0.

Lemma 23: AB ⊥ CD iff PACD = PBCD or PACBD = 0.

Lemma 24: Let D be the foot of the perpendicular from a point P to a line AB. Then, it
holds that

AD

DB
=
PPAB

PPBA
,

AD

AB
=
PPAB

2AB
2 ,

DB

AB
=
PPBA

2AB
2 .

Lemma 25: Let AB and PQ be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY

QY
=
PPAB

PQAB
,

PY

PQ
=
PPAB

PPAQB
,

QY

PQ
=
PQAB

PPAQB
.

Lemma 26: Let R be a point on the line PQ such that r1 = PR
PQ

, r2 = RQ

PQ
. Then, for points

A, B, it holds that

PRAB = r1PQAB + r2PPAB

PARB = r1PAQB + r2PAPB − r1r2PPQP .

Lemma 27: Let ABCD be a parallelogram. Then for any points P and Q, it holds that

PAPQ + PCPQ = PBPQ + PDPQ ⇔ PAPBQ = PDPCQ case 1
PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD case 2

14



Elimination Lemmas

Considering the constructions steps we need only to eliminate points introduced by four con-
structions (ECS2 to ECS5), from three kinds of geometric quantities.

Lemma 28: Let G(Y ) be one of the following geometric quantities: SABY , SABCY , PABY ,
or PABCY for distinct points A, B, C, and Y . For three collinear points Y , U , and V it
holds

(3.1) G(Y ) =
UY

UV
G(V ) +

Y V

UV
G(U).

The above result follows from lemmas 9 and 25. Note that, given lemmas 1, 7, 18, 21, all
signed areas and Pythagoras differences (not of the form PAY B) involving Y can be reduced
to quantities of the form SABY , SABCY , PABY , or PABCY .

We call G(Y ) a linear geometric quantity for the variable Y . Elimination procedures for
all linear geometric quantities are similar for constructions ECS2 to ECS4.

We now present the set of elimination lemmas that in conjunction with the already pre-
sented lemma EL1 are the base for the area method’s algorithm.

Lemma 29: (EL2) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Pratio Y W (Line U V) r). Then it holds

G(Y ) = G(W ) + r(G(V )−G(U)).

Lemma 30: (EL3) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Inter Y (Line U V) (Line P Q). Then it holds

G(Y ) =
SUPQG(V )− SV PQG(U)

SUPV Q
.

Lemma 31: (EL4) Let G(Y ) be a linear geometric quantity (6= PAY B) and point Y is in-
troduced by the construction (Foot Y P (Line U V)). Then it holds

G(Y ) =
PPUV G(V ) + PPV UG(U)

PUV U
.

Lemma 32: (EL5) Let G(Y ) = PAY B and point Y is introduced by the construction (Foot
Y P (Line U V)) or (Inter Y (Line U V) (Line P Q)). Then it holds

G(Y ) =
PPUV

PUV U
G(V ) +

PPV U

PUV U
G(U)− PPUV × PPV U

PUV U
.

Lemma 33: (EL6) Let point Y be introduced by (Pratio Y W (Line U V) r). Then it
holds:

PAY B = PAWB + r(PAV B − PAUB + 2PWUV )− r(1− r)PUV U .

15



Lemma 34: (EL7) Let point Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

SABY = SABP −
r

4
PPAQB.

Lemma 35: (EL8) Let point Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

PABY = PABP − 4rSPAQB.

Lemma 36: (EL9) Let point Y be introduced by (Tratio Y (Line P Q) r). Then it holds

PAY B = PAPB + r2PPQP − 4r(SAPQ + SBPQ).

Now we consider how to eliminate points from the ratio of directed parallel segments.

Lemma 37: (EL10) Let Y be introduced by (Inter Y (Line U V) (Line P Q)). Then it
holds

AY

CD
=

{ SAPQ

SCPDQ
if A is on UV

SAUV
SCUDV

otherwise

Lemma 38: (EL11) Let Y be introduced by (Foot Y P (Line U V)). We assume D 6= U ;
otherwise interchange U and V . Then it holds

AY

CD
=

{
PPCAD
PCDC

if A is on UV
SAUV
SCUDV

otherwise

Lemma 39: (EL12) Let Y be introduced by (Pratio Y R (Line P Q) r). Then it holds

AY

CD
=


AR
PQ

+r

CD
PQ

if A is on RY

SAPRQ

SCPDQ
otherwise

Lemma 40: (EL13) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds

AY

CD
=

{ SAPQ− r
4
PPQP

SCPDQ
if A is on PY

PAPQ

PCPDQ
otherwise

The information on the elimination lemmas is summarized on table 3.1.

3.3 Rigorous Proofs

3.3.1 Proof of the Properties of the Ratio of Directed Parallel Segments

In the following we will present all the proofs of the lemmas presented above. To a better
reading, the statements of the lemmas will be repeated.

We assume A 6= B whenever needed.
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Geometric Quantities
PAY B PABY PABCY SABY SABCY

AY
CD

AY
BY

ECS2 EL5 EL3 EL10 EL1
ECS3 EL5 EL4 EL11
ECS4 EL6 EL2 EL12

C
on

st
ru
ct
iv
e

St
ep

s

ECS5 EL9 EL8 EL7 EL13
Elimination Lemmas

Table 3.1: Elimination Lemmas

3.3.2 Proofs of the Properties of the Signed Area

For any points A, B, C, and D, it holds that

Lemma 1: SABC = SCAB = SBCA = −SACB = −SBAC = −SCBA.

Proof of Lemma 1 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

C

CSgcl = 9 = 3D + 6C

CFgcl = 6

SABC = SCAB = SBCA

• 1 × GS, application of a definition for the area method quantities, SABC = SCAB =
SBCA, the triangles have the same orientation.

SABC = −SACB = −SCBA = −SBAC

• 1 ×GS, application of a definition for the area method quantities, SABC = −SACB =
−SCBA = −SBAC , the triangles ∆ACB, ∆CBA and ∆BAC have different orientation
from ∆ABC.

Geometrography for the demonstration: 3D + 6C + 1GS.

AML1

{
CSproof = 10 = 3 + 6 + 1

CSgcl = 9

.

Lemma 2: SABC = 0 iff A, B, and C are collinear.

17



Proof of Lemma 2 (Geometrography Coefficient of Simplicity)
Required constructions:

A B

C

D

CSgcl = 11 = 3D + 8C

CFgcl = 6

• 1×AS, the application of absolute value;

• 1×GS, the definition of the signed area;

• 1×AS, multiplication property (ab = 0 ≡ a = 0 ∨ b = 0);

• 2×GS, a line as a degenerate triangle;

Geometrography for the demonstration: 3D + 8C + 2AS + 3GS

AML2

{
CSproof = 16 = 3 + 8 + 2 + 3

CSgcl = 11

.

Lemma 3: PQ ‖ AB iff SPAB = SQAB, i.e., iff SPAQB = 0.

Proof of Lemma 3 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

P Q

H1 H2

CSgcl = 15 = 3D + 12C

CFgcl = 7

18



Case 1: P ‖ Q iff SPAB = SQAB

• sc = 15, cf = 7, initial construction.

• 1×GS, the definition of the signed area, ∆PAB and ∆QAB have the same orientation.

• 1×GS, geometric definition, parallel lines (Euclidean Geometry).

• 1×GS, the definition of the signed area, ∆PAB and ∆QAB have the same orientation
and |∆PAB|= AB · PH ′ = PH ′′ ·AB = |∆QAB|.

• 1×GS, the definition of the signed area, ∆PAB = 1
2ABh′ and ∆QAB = 1

2ABh′′.

• 1×AS, property of multiplication 1
2ABh′ = 1

2ABh′′.

• 1×GS, geometric definition, parallel lines (Euclidean Geometry).

Geometrography for the demonstration: 3D + 12C + 5GS + 1AS

AML3,case1

{
CSproof = 21 = 15 + 5 + 1

CSgcl = 15

Case 2: P ‖ Q iff SPAQB = 0

• sc = 15, cf = 7, initial construction.

• 1×GS, definition of the area method, SPAQB = SPAQ + SPQB.

• 1 ×GS, geometric definition, parallel lines (Euclidean Geometry), PQ ‖ AB, implies
h′ = h′′.

• 2×GS, definition of the area method, |SPAQ|= 1
2PQh′ = 1

2PQ′′ = |SPQB| and opposite
direction SPAQ + SPQB = 0.

• 1×GS, definition of the area method, SPAQB = SPAQ + SPQB.

• 1×AS, addition elementary property, SPAQ + SPQB = 0 ≡ SPAQ = −SPQB.

• 1×AML1, application of lemma 1, −SPQA = −SPQB.

• 1×AS, definition of signed area of a triangle, −1
2PQh′ = −1

2PQh′′.

• 1 × GS, geometric definition, parallel lines (Euclidean Geometry), h′ = h′′ implies
PQ ‖ AB.

Geometrography for the demonstration: 3D + 12C + 6GS + 2AS + 1AML1

AML3,case2

{
CSproof = 33 = 15 + 6 + 2 + 10

CSgcl = 15

.

Lemma 4: SABC = SABD + SADC + SDBC .
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Proof of Lemma 4 (Geometrography Coefficient of Simplicity)
Initial Construction

b

b

bb

b

A

B

D
C

P

a

d

c

b

CSgcl 10

CFgcl 8

• 4×GS, the definition of the signed area, SABP = a, . . .;

• 4×GS, the definition of the signed area, SABC = a + b, . . .;

• 1×AS, distributive property of multiplication over addition −(d + c) = −d− c;

• 2×AS, the associative property of addition (a + d)− d = a + (d− d), . . .;

• 2×AS, the property of simetric elements, d− d = 0, . . .;

• 2×AS, the property of neutral element of addition, a + 0 = a, . . ..

Geometrography for the demonstration: 4D + 6C + 8GS + 7AS

AML4

{
CSproof = 25 = 10 + 8 + 7

CSgcl = 10

.

Lemma 5: If points C and D are on line AB, A 6= B and P is any point not on line AB

then, SPCD
SPAB

= CD
AB

.

Proof of Lemma 5 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

P

S C D

CSgcl = 11 = 3D + 8C

CFgcl = 10

• 2 × GS, the definition of the area of a triangle, |SPCD|= |DC|×|PS|
2 and |SPAB|=

|AB|×|PS|
2 ;
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• 1×AS, the division of fractional numbers, |SPCD|
|SPAB | =

|DC|×|PS|
2

|AB|×|PS|
2

= |DC|×|PS|×2
|AB|×|PS|×2 ;

• 1×AS, arithmetic elementary property, |SPCD|
|SPAB | = |DC|×|PS|×2

|AB|×|PS|×2 =
∣∣∣DC
AB

∣∣∣;
• 2 × GS, the definition of signed area and signed segments, ∆PCD and ∆PAB have

different orientations, and CD and AB have opposite directions (for any C and D in
line AB), −SPCD

SPAB
= −CD

AB
;

• 1×AS, application of an arithmetic elementary properties, SPCD
SPAB

= CD
AB

Geometrography for the demonstration: 3D + 8C + 4GS + 3AS

AML5

{
CSproof = 18 = 3 + 8 + 4 + 3

CSgcl = 11

.

Lemma 6: SABCD = SABD + SBCD.

Proof of Lemma 6 (Geometrography Coefficient of Simplicity)
Initial Construction

A

B

C

D

P

a

b

c

d

CSgcl = 10 = 4D + 6C

CFgcl = 8

• SABCD = a + b + c + d, definition of area of triangles, 1×GS

• SABCD = (a + b) + (c + d), associativity of addition, 1×AS

• SABCD = SABD + SBCD, definition of signed area of triangles, 2×GS

21



Geometrography for the demonstration: 4D + 6C + 1AS + 3GS.

AML6

{
CSproof = 14 = 10 + 1 + 3

CSgcl = 10

.

Lemma 7: SABCD = SBCDA = SCDAB = SDABC = −SADCB = −SDCBA = −SCBAD =
−SBADC .

Proof of Lemma 7 (Geometrography Coefficient of Simplicity)
Initial Construction (definition 4)

A

B

C

D

CSgcl = 16 = 4D + 12C

CFgcl = 8

• SABCD = SABC + SACD, definition 4, 2×GS

• SABC +SACD = SBCD+SBDA, area of triangles with the same orientation (definition 2),
2×GS

• SBCD + SBDA = SBCDA, definition 4, 2×GS

Geometrography for the demonstration: 4D + 12C + 6GS

AML7

{
CSproof = 22 = 16 + 6

CSgcl = 16

.

Lemma 8: (EL1) (The Co-side Theorem) LetM be the intersection of two non-parallel lines
AB and PQ and Q 6= M . Then it holds that PM

QM
= SPAB
SQAB

; PM
PQ

= SPAB
SPAQB

; QM

PQ
=
SQAB

SPAQB
.

Proof of Lemma 8 (Geometrography Coefficient of Simplicity)
Initial Construction

A

B

C

D
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CSgcl = 14

CFgcl = 8

Case 1 Equality: PM
QM

= SPAB
SQAB

• 1×AML14, application of lemma 14 there exist a unique point such that, MR
AB

= 1;

• 2 ×AML5, application of lemma 5, the points A, B, M and R are collinear and
P and Q are not on line AB so, SPMR

SPAB
= MR

AB
and SQMR

SQAB
= MR

AB

• 2×AS, application of an arithmetic elementary properties, SPMR
SPAB

= 1⇔ SPMR =

SPAB,
SQMR

SPAB
= 1⇔ SQMR = SPAB, that is, SPAB

SQAB
= SPMR
SQMR

.

• 2×AML1, application of lemma 1, SPMR
SQMR

= SRPM
SRQM

;

• 1×AML5, application of lemma 5, SRPM
SRQM

= PM
QM

;

• 1×AS, application of associativity of equality, SPAB
SQAB

= PM
QM

.

Geometrography for the demonstration: 4D+10C+3AS+2AML1+3AML5+1AML14

AML8,case1

{
CSproof = 84 = 14 + 3 + (10 + 9) + (18 + 11 + 11) + 8

CSgcl = 14

Case 2 Equality: PM
PQ

= SPAB
SPAQB

• CSproof = 84, first part of the proof, PM
QM

= SPAB
SQAB

;

• 2 × (AS + GS), application of a definition for the area method quantities and
properties of equality, PM

−PQ+PM
= SPAB
−SPAQB+SPAB

;

• 2×AS, properties of equality, PM(−SPAQB + SPAB) = SPAB(−PQ + PM);

• 2×AS, application of an arithmetic elementary properties, −PMSPAQB+PMSPAB =
−SPABPQ + SPABPM

• 1×AS, properties of equality, −PMSPAQB = −SPABPQ;

• 1×AS, properties of equality, PM
PQ

= SPAB
SPAQB

.

Geometrography for the demonstration: 1× previous demonstration + 2GS + 8AS.

AML8,case2

{
CSproof = 94 = 84 + 2 + 8

CSgcl = 14

Case 3 Equality: QM

PQ
=
SQAB

SPAQB

• CSproof = 84, first part of the proof, PM
QM

= SPAB
SQAB

;
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• 2 × (AS + GS), application of a definition for the area method quantities and
properties of equality, SPAQB−SAQB

SQAB
= PQ−MQ

QM
;

• 2×GS, application of a definition for the area method quantities, SPAQB+SQAB

SQAB
=

PQ+QM

QM
;

• 2×AS, properties of equality, QM(SPAQB + SQAB) = (PQ + QM)SQAB;

• 2×AS, application of an arithmetic elementary properties, QMSPAQB+QMSQAB =
PQSQAB + QMSQAB;

• 1×AS, properties of equality, QMSPAQB = PQSQAB;

• 1×AS, properties of equality, SPAQB

SQAB
= PQ

QM
;

• 1×AS, properties of equality, SQAB

SPAQB
= QM

PQ
.

Geometrography for the demonstration: 1× previous demonstration + 4GS + 9AS.

AML8,case3

{
CSproof = 97 = 84 + 4 + 9

CSgcl = 10

.

Lemma 9: Let R be a point on the line PQ. Then for any two points A and B it holds that
SRAB = PR

PQ
SQAB + RQ

PQ
SPAB.

Proof of Lemma 9 (Geometrography Coefficient of Simplicity)
Initial Construction:

A B

P

Q

R

CSgcl = 22 = 4D + 18C

CFgcl = 8

• s = SABPQ, initial construction;

• 1×GS, areas of triangles with the same orientation, SRAB = s− SARQ − SBPR;

• 1×AML14, lemma 14, PR
PQ

= r;

24



• 1×AML5, lemma 5, SARQ

SAPQ
= RQ

PQ
;

• 1×GS, segments with the same orientation, RQ

PQ
= PQ−PR

PQ
;

• 1×AS, algebraic simplification, PQ−PR

PQ
= (1− r);

• 1×AS, algebraic simplification, SARQ = (1− r)SAPQ;

• 1×AML5, lemma 5, SBPR
SBPQ

= PR
PQ

;

• 1×AS, algebraic simplification, SBPR = rSBPQ;

• 1×AS, algebraic simplification, SRAB = s− (1− r)SAPQ − rSBPQ;

• 2×GS, areas of triangles with the same orientation, SRAB = s− (1− r)(s− SPAB)−
r(s− SQAB);

• 2×AS, algebraic simplification, SRAB = s− s + rs + SPAB − rSPAB − rs + rSQAB;

• 3×AS, algebraic simplification, SRAB = rSQAB + (1− r)SPAB;

• 2×AS, algebraic simplification, , SRAB = PR
PQ
SQAB + RQ

PQ
SPAB;

Geometrography for the demonstration: 4D+ 18C+ 4GS+ 11AS+ 1AML14 + 2AML5

AML9

{
CSproof = 74 = 22 + 4 + 11 + 8 + (18 + 11)

CSgcl = 22

.

Lemma 10: PQ

AB
= −QP

AB
= QP

BA
= −PQ

BA
.

Proof of Lemma 10 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

C

CSgcl = 11 = 3D + 8D

CFgcl = 7

• 1×GS, the definition of ratio of parallel diagrams, PQ

AB
= −QP

AB
;

• 1×AS, algebraic simplification, −QP

AB
= −QP

AB
.
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The other equalities have the same coefficient of simplicity value.

Geometrography for the demonstration: 3D + 8C + 1GS + 1AS

AML10

{
CSproof = 13 = 11 + 1 + 1

CSgcl = 11

.

Lemma 11: PQ

AB
= 0 iff P = Q.

Proof of Lemma 11 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

P Q

CSgcl = 6 = 4D + 2C

CFgcl = 8

PQ

AB
= 0⇒ P = Q

• 1×AS, algebraic simplification. PQ

AB
= 0⇒ PQ = 0.

• 1×GS, the definition of length of a segment, PQ = 0⇒ P = Q.

PQ

AB
= 0⇐ P = Q

• 1×GS, the definition of length of a segment, P = Q⇒ PQ = 0.

• 1 × AS, arithmetic elementary property, PQ

AB
= 0 ⇐ PQ = 0, it is assumed that

A 6= B.

Geometrography for the demonstration: 4D + 2C + 2AS + 2GS

AML11

{
CSproof = 10 = 6 + 2 + 2

CSgcl = 6

.

Lemma 12: PQ

AB
AB
PQ

= 1.

Proof of Lemma 12 (Geometrography Coefficient of Simplicity)
Initial Construction
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A B

P Q

CSgcl = 11 = 3D + 8C

CFgcl = 7

• 2×GS, the definition of ratio of parallel segment, PQ

AB
AB
PQ

= r · 1r .

• 1×AS, arithmetic simplification, r · 1r = 1.

Geometrography for the demonstration: 3D + 8C + 2GS + 1AS.

AML12

{
CSproof = 14 = 11 + 2 + 1

CSgcl = 11

.

Lemma 13: AP
AB

+ PB
AB

= 1.

Proof of Lemma 13 (Geometrography Coefficient of Simplicity)
Initial Construction

A1 B1

P1

A2 B2

P2

A3 B3

P3

CSgcl = 15 = 9D + 6C

CFgcl = 18

• 1×GS, the definition of ratio of parallel segment, P1, A1, B1, are collinear;

• 1×GS, the definition of signed segment, A1P1 + P1B1 = −P1A1 + P1B1;

• 1×AS, arithmetic elementary property, −P1A1 + P1B1 = A1, B1;

• 1×AS, arithmetic elementary property, A2P2 + P2B2 = A2, B2;

• 1×GS, the definition of signed segment, A3P3 + P3B3 = A3P3 −B3P3;

• 1×AS, arithmetic elementary property, A3P3 −B3P3 = A3, B3.
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Geometrography for the demonstration: 9D + 6C + 3GS + 3AS

AML13

{
CSproof = 21 = 15 + 3 + 3

CSgcl = 15

.

Lemma 14: For any real number there is a unique point P which is collinear with A and B,
and satisfies AP

AB
= r.

Proof of Lemma 14 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

P

CSgcl = 5 = 3D + 2C

CFgcl = 6

• 1×GS, bijection between the real numbers and the real line;

• 1×GS, the definition of ratio of directed parallel segments, AP
AB

= x
y ;

• 1×AS, arithmetic elementary property, x
y = r;

Geometrography for the demonstration: 3D + 2C + 2GS + 1AS

AML14

{
CSproof = 8 = 5 + 2 + 1

CSgcl = 5

.

Lemma 15: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
SABC = SPAB + SPCD, SPAB = SPDAC = SPDBC , and SPAB = SPCD − SACD =
SPDAC .

Proof of Lemma 15 (Geometrography Coefficient of Simplicity)
Initial Construction

A

B

C

D

P

S
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CSgcl = 30 = 4D + 26C
CFgcl = 8

1. 1×AML3, by application of lemma 3, AD ‖ BC ⇔ SABC = SDBC ;

2. 1×AML3, by application of lemma 3, PS ‖ CD ⇔ SPDC = SSDC ;

3. 1×AML1, by application of lemma 1, −SPCD = SDCS ;

4. 1×AS, algebraic simplification, SPCD = −SDCS ;

5. 1×AML3, by application of lemma 3, PS ‖ AB ⇔ SPAB = SSAB;

6. 1×AML3, by application of lemma 3, AD ‖ BS ⇔ SABS = SDBS ;

7. 1×AML1, by application of lemma 1 SSAB = SABS so, SPAB = SDBS ;

8. 1×AML1, by application of lemma 1, SSDC = SDCS ;

9. 2×AS, by steps 2, 7 and 8, SPAB − SPDC = SDBS − SDCS ;

10. 1×GS, by the definition of areas of triangles, SPAB − SPDC = SDBC ;

11. 1×AML1, by application of lemma 1, −SPDC = SPCD;

12. 1×AS, by 1 and 10, SABC = SPAB + SPCD.

Geometrography for the demonstration: 4D + 26C + 4AS + 1GS + 4AML3 + 4AML1

AML15

{
CSproof = 138 = 30 + 4 + 1 + (21 + 3× 15) + (10 + 3× 9)

CSgcl = 30

.

Lemma 16: Let ABCD be a parallelogram, P and Q be two arbitrary points. Then it holds
that SAPQ + SCPQ = SBPQ + SDPQ or SPAQB = SPDQC .

Proof of Lemma 16 (Geometrography Coefficient of Simplicity)
Initial Construction

A

B

C

D

P

Q
O

SAPQ

SBPQ

−SCPQ

−SDPQ
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CSgcl = 39 = 5D + 34C

CFgcl = 10

1. 1×AML9, by lemma 9, since O is the midpoint of AC, SOPQ = OA
AC
SCPQ + OC

AC
SAPQ;

2. 1×AML9, by lemma 9, since O is the midpoint of BD, SOPQ = OB
BD
SDPQ + OD

BD
SBPQ;

3. 1×GS, given O is the midpoint of AC, SOPQ = 1
2SCPQ + 1

2
SAPQ;

4. 1×GS, given O is the midpoint of BD, SOPQ = 1
2SDPQ + 1

2SBPQ;

5. 1×AS, by step 3, 2SOPQ = SCPQ + SAPQ;

6. 1×AS, by step 4, 2SOPQ = SDPQ + SBPQ;

7. 3×AS, by steps 5, 6 and commutative property, SAPQ + SCPQ = SBPQ + SDPQ 2

Geometrography for the demonstration: 5D + 34C + 2AML9 + 2GS + 5AS

AML16

{
CSproof = 142 = 39 + (74 + 22) + 2 + 5

CSgcl = 39

.

3.3.3 Proofs of the Properties of the Pythagoras Difference

We begin by introducing the concept of co-area of triangles [3].

Definition 7: (Co-area of a triangle) Given a triangle ABC, we construct the square ABPQ
such that SABC and SABPQ have the same sign (see figure 3.1).

b b

b

A B

C

bb PQ

Figure 3.1: Co-area of a triangle

The Co-area of a triangle ABC, CABC , is a real number such that

CABC =

{
5ACQ, if ∠A ≤ 90o;
−5ACQ, if ∠A > 90o;

where 5ABC is the area of triangle ABC.

For a triangle ABC we have CABC + CBAC = 5BPC +5ACQ = 2ABPQ
2 = AB

2

2 , where
2ABCD is the area of the square ABCD
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Considering the different permutations of the vertices of the triangle ABC we can conclude
that, PABC = 4CABC .

Geometrography of Definition 7
Initial Construction

A B

C

PQ

X Y

CSgcl = 31 = 3D + 28C

CFgcl = 6

1. 2×GS, application of co-area definition, CABC + CBAC = 5ACQ +5BPC;

2. 2×GS, definition of area of a triangle, AQ CX
2 + PB CY

2 ;

3. 1×GS, definition of square, AQ CX
2 + AQ CY

2 ;

4. 1×AS, addition of racional, AQ CX+AQ CY
2 ;

5. 1×AS, distribution of addition over multiplication, AQ (CX+CY )
2 ;

6. 1×GS, addition of length of segments, AQ XY
2 ;

7. 1×GS, definition of square, 2ABPQ
2 ;

8. 1×GS, definition of square, AB
2

2 ;

Geometrography for the demonstration:

AMD7

{
CSproof = 41 = 31 + 8 + 2

CSgcl = 31

.

Lemma 17: PAAB = 0.

Proof of Lemma 17 (Geometrography Coefficient of Simplicity)
Initial Construction
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A

B

CSgcl = 4 = 2D + 2C

CFgcl = 4

1. 1×AMD3, by definition of Pythagoras Difference, PAAB = AA
2

+ CA
2 −AC

2;

2. 1×GS, a degenerate segment (a point) has zero length, PAAB = 0 + CA
2 −AC

2;

3. 1×AS, definition of square of a real number, CA
2

= CA× CA;

4. 1×GS, by definition of length of oriented segments, CA× CA = (−AC)× (−AC);

5. 1×AS, definition of square of a real number, AC2
= (−AC)× (−AC);

6. 1×AS, by 3, 5 and addition of symmetric elements, PAAB = 0 + AC
2 −AC

2
= 0.

Geometrography for the demonstration: 2D + 2C + 3AS + 2GS + 1AMD3

AML17

{
CSproof = 18 = 4 + 3 + 2 + 9

CSgcl = 4

.

Lemma 18: PABC = PCBA.

Proof of Lemma 18 (Geometrography Coefficient of Simplicity)
Initial Construction

A

BC

CSgcl = 9 = 3D + 6C

CFgcl = 6

• 1×AMD3, by definition of Pythagoras difference, PABC = AB
2

+ CB
2 −AC

2;

• 2 ×AS + 1 ×GS, by definition of square of a real number and definition of length of
oriented segments,AC2

= CA
2;

• 1×AS, by commutativity of addition, AB2
+ CB

2 −AC
2

= CB
2

+ AB
2 − CA

2;

• 1×AMD3, by definition of Pythagoras difference, CB
2

+ AB
2 − CA

2
= PCBA.
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Geometrography for the demonstration: 3D + 6C + 3AS + 1GS + 2AMD3

AML18

{
CSproof = 31 = 9 + 3 + 1 + (9 + 9)

CSgcl = 9

.

Lemma 19: PABA = 2AB
2.

Proof of Lemma 19 (Geometrography Coefficient of Simplicity)
Initial Construction

A

B

CSgcl = 4 = 2D + 2C

CFgcl = 4

• 1×AMD3, by definition of Pythagoras difference, PABA = AB
2

+ AB
2 −AA

2;

• 1 × GS, given that a degenerate segment (a point) has zero length, PABA = AB
2

+

AB
2 − 0;

• 1×AS, addition of two equal elements, PABA = 2×AB
2.

Geometrography for the demonstration: 2D + 2C + 1GS + 1AS + 1AMD3

AML19

{
CSproof = 15 = 4 + 1 + 1 + 9

CSgcl = 4

.

Lemma 20: If A, B, and C are collinear then, PABC = 2BA BC.

Proof of Lemma 20 (Geometrography Coefficient of Simplicity)
Initial Construction

A

B

CSgcl = 6 = 2D + 4C

CFgcl = 5

• 1×AMD3, by definition of Pythagoras difference, PABC = AB
2

+ CB
2 −AC

2;

• 3 × AS, by addition with zero, addition with inverse element and commutativity of
addition, AB2

+ BC
2

+ 2ABBC − 2AB BC −AC
2;
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• 1×AS, square of a sum,
(
AB + BC

)2 − 2ABBC −AC
2;

• 1×GS, points A, B and C are collinear so AB + BC = AC, AC2 − 2ABBC −AC
2;

• 2×AS, commutativity and inverse element, −2ABBC;

• 1×GS, definition of length of oriented segments, 2BABC.

Geometrography for the demonstration: 2D + 4C + 6AS + 2GS + 1AMD3

AML20

{
CSproof = 23 = 6 + 6 + 2 + 9

CSgcl = 6

.

Lemma 21: PABCD = −PADCB = PBADC = −PBCDA = PCDAB = −PCBAD = PDCBA =
−PDABC .

Proof of Lemma 21 (Geometrography Coefficient of Simplicity)
Initial Construction

A

B

C

D

CSgcl = 12 = 4D + 6C

CFgcl = 8

• 1×AMD5, generalized definition of Pythagoras difference for a quadrilateral, PADCB =

AD
2

+ CB
2 −DC

2 −BA
2;

• 5×AS, commutativity of addition, −BA
2 −DC

2
+ CB

2
+ AD

2;

• 4×GS+4×AS, definition of length of a segment squared, −AB2−CD
2
+BC

2
+DA

2;

• 1×AMD5, generalized definition of Pythagoras difference for a quadrilateral, −PABCD.

Geometrography for the demonstration: 4D + 6C + 9AS + 4GS + 2AMD5

AML21

{
CSproof = 59 = 12 + 9 + 4 + (20 + 14)

CSgcl = 12

.

Lemma 22: (Pythagoras Theorem) AB ⊥ BC iff PABC = 0.
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Proof of Lemma 22 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

C

CSgcl = 9 = 3D + 6C

CFgcl = 6

AB ⊥ BC ⇒ PABC = 0

• 1×GS, AB ⊥ BC implies A = B, B = C or ∆ABC is a right triangle;

• (A = B) 1×AML17, by lemma 17, A = B ⇒ PABC(= PAAC) = 0;

• (B = C) 1×AML17 + 1×AML18, by lemmas 17 and 18, B = C ⇒ PABC(= PCBA =
PCCA) = 0;

• (∆ABC is a right triangle) 1×AMD7, by definition of co-area (definition 7).

AB ⊥ BC ⇐ PABC = 0

• (A = B) 1×AML17, by lemma 17, PABC = 0⇒ A = B;

• 1×GS, by definition of perpendicularity (degenerate case) AB ⊥ BC;

• (B = C) 1×AML17 + 1×AML18, by lemmas 17 and 18, PABC = 0⇒ B = C;

• 1×GS, by definition of perpendicularity (degenerate case) AB ⊥ BC;

• (∆ABC is a right triangle) 1×AMD7, by definition of co-area (definition 7).

Geometrography for the demonstration: 3D+6C+3GS+2AMD7+4AML17+2AML18.

AML22

{
CSproof = 228 = 9 + 3 + 2× 41 + 4× 18 + 2× 31

CSgcl = 9

.
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Lemma 23: AB ⊥ CD iff PACD = PBCD or PACBD = 0.

Geometrography for the demonstration: 4×D + 6×C + 9×AS + 4×GS + 2×AMD5

Proof of Lemma 23 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

C

D

P

CSgcl = 10 = 4D + 6C

CFgcl = 8

• 1×GS, AD
2

= AP
2

+ PD
2, Pythagoras Theorem;

• 1×GS, AC
2

= AP
2

+ PC
2, Pythagoras Theorem;

• 1×AS, AD
2 − PD

2
= AP

2, algebraic simplification;

• 1×AS, AC
2 − PC

2
= AP

2, algebraic simplification;

• 1×AS, AD
2 − PD

2
= AC

2 − PC
2, algebraic simplification;

• 1×GS, BD
2

= BP
2

+ PD
2, Pythagoras Theorem;

• 1×GS, BC
2

= BP
2

+ PC
2, Pythagoras Theorem;

• 1×AS, BD
2 − PD

2
= BP

2, algebraic simplification;

• 1×AS, BC
2 − PC

2
= BP

2, algebraic simplification;

• 1×AS, BD
2 − PD

2
= BC

2 − PC
2, algebraic simplification;

• 2×AS, AD
2 −AC

2
= PD

2 − PC
2, algebraic simplifications;

• 2×AS, BD
2 −BC

2
= PD

2 − PC
2, algebraic simplifications;

• 1×AS, AD
2 −AC

2
= BD

2 −BC
2, algebraic simplification;

• 1×AS, AC
2 −AD

2
= BC

2 −BD
2, algebraic simplifications;
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• 2×AS, AC
2

+ DC
2 −AD

2
= BC

2
+ DC

2 −BD
2, algebraic simplifications;

• 2×AMD, PACD = PBCD, Pythagoras difference definition.

Geometrography for the demonstration: 4D + 6C + 4GS + 14×AS + 2×AMD3

AML23

{
CSproof = 46 = 10 + 4 + 14 + 2× 9

CSgcl = 10

.

Lemma 24: Let D be the foot of the perpendicular constructed from a point P to a line AB.
Then, it holds that

AD

DB
=
PPAB

PPBA
,

AD

AB
=
PPAB

2AB
2 ,

DB

AB
=
PPBA

2AB
2 .

Proof of Lemma 24 (Geometrography Coefficient of Simplicity)
Initial Construction

A BD

P

CSgcl = 7 = 3D + 4C

CFgcl = 6

Case 1:

• AD
DB

= PPAB
PPBA

• 2×AMD3, PA
2
+BA

2−PB
2

PB
2
+AB

2−PA
2 , Pythagoras Definition;

• 2×GS, PA
2
+(−AB)

2−PB
2

PB
2
+AB

2−PA
2 , signed segments definition;

• 2×GS, PA
2
+(AD+DB)

2
+−PB

2

PB
2
+(AD

2
+DB)

2
−PA

2
, collinearity of points A,B and D;

• 2×AS, PA
2
+AD

2
+DB

2
+2ADDB−PB

2

PB
2
+AD

2
+DB

2
+2ADDB−PA

2 , square of sum;

• 2×GS, AD
2
+PD

2
+AD

2
+DB

2
+2ADDB−(DB

2
+PD

2
)

DB
2
+PD

2
+AD

2
+DB

2
+2ADDB−(AD

2
+PD

2
)
, AB ⊥ DP so PA

2
= AD

2
+PD

2

and PB
2

= DB
2

+ PD
2;
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• 20×AS, 2AD
2
+2ADDB

2DB
2
+2ADDB

, algebraic simplifications;

• 3×AS, 2AD(AD+DB)

2DB(AD+DB)
, algebraic simplifications;

• 2×AS, AD
DB

, algebraic simplifications;

Case 2:

• AD
AB

= PPAB

2AB
2 ;

• 1×AMD3, PA
2
+BA

2−PB
2

2AB
2 , Pythagoras difference;

• 2 ×GS, AD
2
+PD

2
+BA

2−DB
2−PD

2

2AB
2 , AB ⊥ DP so PA

2
= AD

2
+ PD

2 and PB
2

=

DB
2

+ PD
2;

• 4×AS, AD
2
+BA

2−DB
2

2AB
2 , algebraic simplifications;

• 1×GS, AD
2
+(−(AD+DB))2−DB

2

2AB
2 , A,B and D are collinear, so AB = AD + DB;

• 1×AS, AD
2
+AD

2
+DB

2
+2ADDB−DB

2

2AB
2 , algebraic simplification;

• 4×AS, 2AD+ADDB

2AB
2 , algebraic simplifications;

• 1×AS, 2AD(AD+DB)

2AB
2 , algebraic simplification;

• 1×GS, 2ADAB

2AB
2 , A,B and D are collinear, so AB = AD + DB;

• 2×AS, AD
AB

, algebraic simplification.

Case 3: The proof of the third equality is similar to this last one.

Geometrography for the demonstration:

1st 3D + 4C + 6GS + 27AS + 2AMD3;

2nd 3D + 4C + 4GS + 12AS + 1AMD3;

3rd 3D + 4C + 4GS + 12AS + 1AMD3.

AML24


CSproof = 58 = 7 + 6 + 27 + 18, case 1
CSproof = 32 = 7 + 4 + 12 + 9, case 2
CSproof = 32 = 7 + 4 + 12 + 9, case 3

CSgcl = 7

.
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Lemma 25: Let AB and PQ be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY

QY
=
PPAB

PQAB
,

PY

PQ
=
PPAB

PPAQB
,

QY

PQ
=
PQAB

PPAQB
.

Proof of Lemma 25 (Geometrography Coefficient of Simplicity)
Initial Construction

A B

P

Q

Y

P1 Q1

CSgcl = 20 = 4D + 16C

CFgcl = 8

Case 1:

• PY
QY

= PPAB
PQAB

• 2 × AML23,
PP1AB

PQ1AB
, by lemma 23 with A := Q1;B := Q;C := A;D := B, PQAB =

PQ1AB and with A := P1;B := P ;C := A;D := B,PPAB = PP1AB;

• 1×AML20, 2AP1 AB
2AQ1 AB

, by lemma 20;

• 2×AS, AP1

AQ1
, by algebraic simplification;

• 2×GS, −P1A
−Q1A

, by definition of oriented segments;

• 1×AS, P1A
Q1A

, by algebraic simplification;

• 1 × AML1,
SP1AY

SQ1AY
, by the co-side theorem, with P := P1;Q := Q1;M := A;A :=

A;B := Y ;

• 1×AML3,
SAY P1
SAY Q1

, by lemma 3, given the fact that AY ‖ P1P and AY ‖ Q1Q;

• 1×AML1, PY
QY

by the co-side theorem, with P := P ;Q := Q;M := Y ;A := Y ;B := A,
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Case 2:

• PY
PQ

= PPAB
PPAQB

• 1×GS, PY+Y Q

PY
, P , Y and Q are collinear;

• 1×GS, PY−QY

PY
, by definition of oriented segments;

• 2×AS, 1− QY

PY
, by algebraic simplification;

• 1×AML25, 1 +
PQAB

PPAB
, by the first equality;

• 2×AS, PPAB−PQAB

PPAB
, by algebraic simplification;

• 1×AML5,
PPAQB

PPAB
, by lemma 5.

Case 3: The proof of the third equality is similar to this last proof.

Geometrography for the demonstration:

1st 4D + 16C + 2GS + 3AS + 1AMD3 + 2AML1 + 1AML20 + 2AML23;

2nd 4D + 16C + 2GS + 4AS + AML5 + AML25a;

3rd 4D + 16C + 2GS + 4AS + AML5 + AML25a.

AML25,case 1

{
CSproof = 326 = 20 + 2 + 3 + 18 + 2× 84 + 23 + 2× 46

CSgcl = 20

AML25,case 2

{
CSproof = 370 = 20 + 2 + 4 + 18 + 326

CSgcl = 20

AML25,case 3

{
CSproof = 370 = 20 + 2 + 4 + 18 + 326

CSgcl = 20

.

Lemma 26: Let R be a point on the line PQ such that r1 = PR
PQ

, r2 = RQ

PQ
. Then, for points

A, B, it holds that

PRAB = r1PQAB + r2PPAB

PARB = r1PAQB + r2PAPB − r1r2PPQP .

Proof of Lemma 26 (Geometrography Coefficient of Simplicity)
Initial Construction
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❆ ❇

P

◗

❳✶❳✷

❘
❤✶

❤✷

❤✸

CSgcl = 36 = 6D + 30C

CFgcl = 13

Case 1:

• PRAB = r1PQAB + r2PPAB

• 1×AML7, CRAB = r1CQAB + r2CPAB, by lemma 7 (co-areas).

• 3×GS, 5ARX2 = r1 5AQX2 + r2 5APX2, co-area definition.

• 3×GS, AX2h1
2 = PR

PQ
AX2h2

2 + RQ

PQ
AX2h3

2 , triangle area definition.

• 2×AS, AX2h1 = PR
PQ

AX2h2 + RQ

PQ
AX2h3, algebraic simplifications.

• 4×AS, h1 = PR
PQ

h2 + RQ

PQ
h3, algebraic simplifications.

• 2×AML25, h1 = h1−h3
h2−h3

h2 + h2−h1
h2−h3

h3, by lemma 25 (twice).

• 2×AS, h1h2 − h1h3 = h1h2 − h3h2 + h2h3 − h1h3, algebraic simplifications.

• 2×AS, h1h2 − h1h3 = h1h2 − h1h3, by algebraic simplifications.

Case 2:

• PARB = r1PAQB + r2PAPB − r1r2PPQP

• 3×AMD3, AR
2

+ BR
2 − AB

2
= r1(AQ

2
+ BQ

2 − AB
2
) + r2(AP

2
+ BP

2 − AB
2
)−

r1r2PPQP , by definition of Pythagoras difference.

• 8×AS, (AR
2
+AB

2−BR
2
)+2BR

2−2AB
2

= r1((AQ
2
+AB

2−BQ
2
)+2BQ

2−2AB
2
)+

r2((AP
2

+ AB
2 −BP

2
) + 2BP

2 − 2AB
2
)− r1r2PPQP , by algebraic simplifications.

• 3×AMD3, PRAB+2BR
2−2AB

2
= r1PQAB+r1(2BQ

2−2AB
2
)+r2PPAB+r2(2BP

2−
2AB

2
)− r1r2PPQP , by definition of Pythagoras difference.

• 1 × AML261 , r1PQAB + r2PPAB + 2BR
2 − 2AB

2
= r1PQAB + r1(2BQ

2 − 2AB
2
) +

r2PPAB + r2(2BP
2 − 2AB

2
)− r1r2PPQP , by the first equality.

• 4×AS, 2BR
2−2AB

2
= r1(2BQ

2−2AB
2
)+r2(2BP

2−2AB
2
)−r1r2PPQP , by algebraic

simplifications.
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• 1 ×AML19, 2BR
2 − 2AB

2
= r1(2BQ

2 − 2AB
2
) + r2(2BP

2 − 2AB
2
) − 2r1r2AB

2, by
lemma 19.

• 6×AS, BR
2−AB

2
= r1BQ

2
+ r2BP

2− (r1 + r2)AB
2− r1r2PQ

2, by algebraic simpli-
fications.

• 1×AMD13, BR
2 −AB

2
= r1BQ

2
+ r2BP

2 −AB
2 − r1r2PQ

2, by lemma 13.

• 3×AS, BR
2

= PR
PQ

BQ
2

+ RQ

PQ
BP

2 − PRRQ

PQ
2 PQ

2, by algebraic simplifications.

• 5×AS, PRBQ
2

+ RQBP
2 − PQBR

2
= PRRQPQ, by algebraic simplifications.

• 3 ×AML22, PR(BZ
2

+ QZ
2
) + RQ(BZ

2
+ PZ

2
) − PQ(BZ

2
+ RZ

2
) = PRRQPQ,

by lemma 22 we have BQ
2

= BZ
2

+ QZ
2, BR

2
= BZ

2
+ RZ

2, BP
2

= BZ
2

+ PZ
2.

• 5 × AS, (PR + RQ − PQ)BZ
2

+ PRQZ
2

+ RQPZ
2 − PQRZ

2
= PRRQPQ, by

algebraic simplification.

• 1×AMD13, PRQZ
2

+ RQPZ
2 − PQRZ

2
= PRRQPQ, by lemma 13.

• 3×AMD13, PRZQ
2

+
(
RZ + ZQ

) (
PR + RZ

)2 − (PR + RZ + ZQ
)
RZ

2
=

= PR
(
RZ + ZQ

) (
PR + RZ + QZ

)
, by lemma 13 we have: RQ = RZ + ZQ; PZ =

PR + RZ; PQ = PR + RZ + ZQ.

• 11×AS, PRZQ
2

+PR
2
RZ + 2PRRZ

2
+RZ

3
+PR

2
ZQ+ 2PRRZ ZQ+RZ

2
ZQ−

PRRZ
2−RZ

3−RZ
2
ZQ = PR

2
RZ+PRRZ

2
+PRRZ ZQ+PR

2
ZQ+PRRZ ZQ+

PRZQ
2, by algebraic simplification.

• 13×AS, 2PRRZ ZQ = 2PRRZ ZQ, by algebraic simplifications.

Geometrography for the demonstration:

1st: 6D + 30C + 6GS + 10AS + 1AML72AML25;

2nd: 6D + 30C + 55AS + 6AMD3 + 3AML13 + 1AML19 + 3AML22 + 1AML261

AML26case 1

{
CSproof = 745 = 36 + 6 + 10 + 41 + 652

CSgcl = 36

AML26case 2

{
CSproof = 1646 = 36 + 55 + 54 + 63 + 45 + 684 + 745

CSgcl = 36

.

Lemma 27: Let ABCD be a parallelogram. Then for any points P and Q, it holds that:

PAPQ + PCPQ = PBPQ + PDPQ ⇔ PAPBQ = PDPCQ case 1
PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD case 2

Before presenting the proof of this lemma we present the following lemma.
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Auxiliary Lemma 1 Let P and Q be the feet of the perpendiculars from point A and C to
BD. Then PABCD = 2QP BD.

Geometrography of Auxiliary Lemma Aux1
Initial Construction

A B

CD

P

Q

CSgcl = 19 = 3D + 16C

CFgcl = 6

• 1×AMD5, PABCD = PABD − PCBD, by definition 5

• 2×AML23, PABCD = PPBD − PQBD, by lemma 23

• 2×AML20, PABCD = 2BP BD − 2BQBD, by lemma 20

• 1×AS, PABCD = 2BD
(
BP −BQ

)
• 1×GS, PABCD = 2BDQP

Geometrography for the demonstration: 3D+16C+1AS+1GS+1AMD5 +2AML20 +
2AML23

Auxiliary Lemma 1
{

CSproof = 179 = 19 + 1 + 1 + 20 + 46 + 92
CSgcl = 19

.

Proof of Lemma 27 (Geometrography Coefficient of Simplicity)

Case 1 PAPQ + PCPQ = PBPQ + PDPQ ⇔ PAPBQ = PDPCQ

Initial Construction
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A B

CD

P
Q

PDPC

PAPQ

PBPQ

PCPQ

CSgcl = 19 = 9×D + 10×C

CFgcl = 18

Proof of the equivalence PAPQ + PCPQ = PBPQ + PDPQ ⇔ PAPBQ = PDPCQ

• PAPQ + PCPQ = PBPQ + PDPQ ⇔ PAPBQ = PDPCQ

• 2×AMD5, PAPQ +PCPQ = PBPQ +PDPQ ⇔ PAPQ−PBPQ = PDPQ−PCPQ, by
definition 5

• 3×AS, PAPQ + PCPQ = PBPQ + PDPQ ⇔ PAPQ + PCPQ = PBPQ + PDPQ

Proof of the equality PAPBQ = PDPCQ

• 1×AML21, PAPBQ = PPAQB, by lemma 21

• 1× auxiliary lemma 1, PAPBQ = 2QP DC, by auxiliary lemma 1

• 1×AS, PAPBQ = 2QP AB, by hypothesis ABCD is a parallelogram, so AB = DC

• 1× auxiliary lemma 1, PAPBQ = PPDQC , by auxiliary lemma 1

• 1×AML21, PAPBQ = PDPCQ, by lemma 21

Geometrography for the demonstration: 9D+10C+4AS+2Auxiliary Lemma 1+2AMD5+
2AML21

AML27, case 1

{
CSproof = 539 = 19 + 4 + 358 + 40 + 118

CSgcl = 19

Case 2 PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD

Initial Construction

A B

CD

P
Q

PDPC

PAPQ

PBPQ

PCPQ
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CSgcl = 19 = 9×D + 10×C

CFgcl = 18

• PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD, the equality to be proved

• 3×AS, 0 = PPAQ + PPCQ − PPBQ − PPDQ − 2PBAD

• 4 ×AMD3, 0 = PA
2

+ QA
2 − PQ

2
+ PC

2
+ QC

2 − PQ
2 − PB

2 − QB
2

+ PQ
2 −

PD
2 −QD

2
+ PQ

2 − 2PBAD, by application of definition 3

• 9×AS, 0 = PA
2

+ QA
2

+ PC
2

+ QC
2 − PB

2 −QB
2 − PD

2 −QD
2 − 2PBAD

• 8×AS, 0 = AP
2

+ AQ
2

+ CP
2

+ CQ
2 −BP

2 −BQ
2 −DP

2 −DQ
2 − 2PBAD

• 8×AS, 0 = AP
2 −AQ

2
+AQ

2
+AQ

2
+CP

2 −CQ
2

+CQ
2

+CQ
2 −BP

2
+BQ

2 −
BQ

2 −BQ
2

+ DP
2

+ DQ
2 −DQ

2 −DQ
2 − 2PBAD

• 6 ×AS, 0 = AP
2 − AQ

2
+ 2AQ

2
+ CP

2 − CQ
2

+ 2CQ
2 − BP

2
+ BQ

2 − 2BQ
2

+

DP
2

+ DQ
2 − 2DQ

2 − 2PBAD

• 8×AS, 0 = AP
2−AQ

2
+CP

2−CQ
2−BP

2
+BQ

2−DP
2

+DQ
2

+2AQ
2

+2CQ
2−

2BQ
2 − 2DQ

2 − 2PBAD

• 8×AS, 0 = AP
2

+QP
2−AQ

2
+CP

2
+QP

2−CQ
2−BP

2−QP
2

+BQ
2−DP

2−
QP

2
+ DQ

2
+ 2AQ

2
+ 2CQ

2 − 2BQ
2 − 2DQ

2 − 2PBAD

• 4×AMD3, 0 = PAPQ +PCPQ −PBPQ −PDPQ + 2AQ
2

+ 2CQ
2 − 2BQ

2 − 2DQ
2 −

2PBAD, by definition 3

• 1 ×AML27 case 1, 0 = 2AQ
2

+ 2CQ
2 − 2BQ

2 − 2DQ
2 − 2PBAD, by lemma 27,

case 1

• 2×AS, 0 = AQ
2

+ CQ
2 −BQ

2 −DQ
2 − PBAD

• 2×AS, 0 = AQ
2

+ AB
2 −BQ

2 − (DQ
2

+ AB
2 − CQ

2
)− PBAD

• 5 ×AS, 0 = BA
2

+ QA
2 − BQ

2 − (CD
2

+ QD
2 − CQ

2
) − PBAD, given the fact

that ABCD is a parallelogram, AB2
= CD

2

• 2×AMD3, 0 = PBAQ − PCDQ − PBAD, by definition 3

• 3×GS, 0 = CBAQ − CCDQ − CBAD, considering the co-areas [3]

• 3×GS, 0 = 5AQX2 −5AQ1X2 −5BAD

• 7×D + 18×C, 0 = AX2((h1 − h2)− h3), considering the square ABX1X2
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A B

CD

P

Q

X1X2

h1

h2

h3

with CSgcl = 25 = 7D + 18C; CFgcl = 14

• 1×GS, 0 = AX2 × 0

• 1×AS, 0 = 0

Geometrography for the demonstration: 16 × D + 28 × C + 59 × AS + 8 ×GS + 10 ×
AMD3 + 1×AML27 case 1

AML27, case 2

{
CSproof = 740 = 44 + 59 + 8 + 90 + 539

CSgcl = 44

.

3.3.4 Proofs of the Elimination Lemmas

Lemma 28: Let G(Y ) be one of the following geometric quantities: SABY , SABCY , PABY ,
or PABCY for distinct points A, B, C, and Y . For three collinear points Y , U , and V it
holds

(3.2) G(Y ) =
UY

UV
G(V ) +

Y V

UV
G(U).

Proof of Lemma 28 (Geometrography Coefficient of Simplicity)

Case 1, G(Y ) = SABY :

Initial Construction

A B

UV

Y

CSgcl = 14 = 4D + 9C

CFgcl = 9
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• G(Y ) = SABY

• 1×AML1, SABY = SYAB, by lemma 1

• 1×AML9, SABY = UY
UV
SVAB+ Y V

UV
SUAB, by lemma 9; U , V , and Y are collinear

• 2×AML1, SABY = UY
UV
SABV + Y V

UV
SABU by lemma 1

• G(Y ) = UY
UV

G(V ) + Y V
UV

G(U)

Geometrography for the demonstration:

5D + 10C + 3AML1 + 1AML9

AML28case 1

{
CSproof = 118 (= 14 + 30 + 74)

CSgcl = 14

Case 2, G(Y ) = PABY :

A B

UV

Y

CSgcl = 14 = 4D + 10C

CFgcl = 9

• G(Y ) = PABY

• 1×AML18, PABY = PYBA by 18

• 1×AML26, PABY = UY
UV
PVBA+ Y V

UV
PUBA by lemma 26; U , V , and Y are collinear

• 2×AML18, PABY = UY
UV
PABV + Y V

UV
PABU by lemmas 18

• G(Y ) = UY
UV

G(V ) + Y V
UV

G(U)

Geometrography for the demonstration: 4D + 10C + 3AML18 + 1AML26

AML28case 2

{
CSproof = 852 (= 14 + 93 + 745)

CSgcl = 14

Case 3, G(Y ) = SABCY :

A B

C

U

V

Y
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CSgcl = 15 = 5D + 10C

CFgcl = 11

• G(Y ) = SABCY

• 1×AMD4, SABCY = SABC + SACY , by definition 4
• 2×AS, SABCY = SABC + 0 + 0 + SACY

• 2×AS, SABCY = SABC + UY
UV
SABC − UY

UV
SABC + Y V

UV
SABC − Y V

UV
SABC + SACY

• 3×AS, SABCY = SABC − UY
UV
SABC − Y V

UV
SABC + UY

UV
SABC + Y V

UV
SABC + SACY

• 2×AS, SABCY = (1− (UY
UV

+ Y V
UV

))SABC + UY
UV
SABC + Y V

UV
SABC + SACY

• 1×AS, SABCY = (1− UY+Y V
UV

)Y V
UV

))SABC + UY
UV
SABC + Y V

UV
SABC + SACY

• 1 ×GS, SABCY = (1 − 1)Y V
UV

))SABC + UY
UV
SABC + Y V

UV
SABC + SACY , points U ,

V e Y are collinear
• 2×AS, SABCY = UY

UV
SABC + Y V

UV
SABC + SACY

• 1×AML1, SABCY = UY
UV
SABC + Y V

UV
SABC + SYAC , by lemma 1

• 1 × AML28 case 1, SABCY = UY
UV
SABC + Y V

UV
SABC + UY

UV
SACV + Y V

UV
SACU , by

lemma 28, case 1, U , V , and Y are collinear

• 1×AS, SABCY = UY
UV
SABC + UY

UV
SACV + Y V

UV
SABC + Y V

UV
SACU

• 2×AS, SABCY = UY
UV

(SABC + SACV ) + Y V
UV

(SABC + SACU )

• 2×AMD4, SABCY = UY
UV
SABCV + Y V

UV
SABCU , by definition 4

• G(Y ) = UY
UV

G(V ) + Y V
UV

G(U)

Geometrography for the demonstration: 5D+10C+15AS+1GS+3AMD4+1AML1+
1AML28(case 1)

AML28case 3

{
CSproof = 206 (= 14 + 15 + 1 + 48 + 10 + 118)

CSgcl = 14

Case 4, G(Y ) = PABCY :

A B

C

U

V

Y

CSgcl = 15 = 5D + 10C

CFgcl = 11
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• G(Y ) = PABCY

• 1×AMD5, PABCY = PABY − PCBY , by definition 5

• 2×AML28 case 2, PABCY = UY
UV
PABV + Y V

UV
PABU − (UY

UV
PCBV + Y V

UV
PCBU ), by

lemma 28 case 2

• 3×AS, PABCY = UY
UV

(PABV − PCBV ) + Y V
UV

(PABU − PCBU )

• 2×AMD5, PABCY = UY
UV
PABCV + Y V

UV
PABCU by definition 5

• G(Y ) = UY
UV

G(V ) + Y V
UV

G(U)

Geometrography for the demonstration: 5D+ 10C+ 3AS+ 3AMD5 + 2AML28(case 2)

AML28case 4

{
CSproof = 1781 (= 14 + 3 + 60 + 1074)

CSgcl = 14

.

Lemma 29: (EL2) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Pratio Y W (Line U V) r). Then it holds

G(Y ) = G(W ) + r(G(V )−G(U)).

Proof of Lemma 29 (EL2) (Geometrography Coefficient of Simplicity)
Initial Construction

W Y

U V

S

WY

UV
= r

CSgcl = 14 = 4D + 10C

CFgcl = 8

• G(Y ) = G(W ) + r(G(V )−G(U))

• 1×AML28, G(Y ) = WY
WS

G(S) + Y S
WS

G(W ), (with U := A; V := B; W := U ; S := V )

• 1AS, G(Y ) = rG(S) + Y S
WS

G(W ), WY
WS

= r, by hypothesis

• 1GS, G(Y ) = rG(S) +
(
WS−WY

WS

)
G(W ), W , Y , S are collinear

• 2AS, G(Y ) = rG(S) + (1− r)G(W )

•
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Case 1, G(Y ) = SABY : By lemmas 16 (SAPQ = SBPQ + SDPQ − SCPQ)

Case 2, G(Y ) = PABY : By lemma 27 (case 1), (PAPQ = PBPQ + PDPQ − PCPQ)

considering the parallelogram UVSW and the points W and Y we have G(S) = G(W )+
G(V )−G(U).

• 1×AML16, Case 1 or 1×AML
27(case 1), Case 2 +1×AS, G(Y ) = r(G(W )+G(V )−

G(U)) + (1− r)G(W ), by lemma 16 or lemma 27, plus one algebraic operation.

• 2×AS, G(Y ) = rG(W ) + rG(V )− rG(U)) + G(W )− rG(W )

• 4×AS, G(Y ) = rG(W )− rG(W ) + r(G(V )− rG(U)) + G(W )

• 2×AS, G(Y ) = G(W ) + r(G(V )− rG(U))

Geometrography for the demonstration:

Case 1, G(Y ) = SABY 4D + 10C + 12AS + 1GS + 1AML16 + 1AML28 (case 1)

AML29 (EL2)

{
CSproof = 287 = 14 + 12 + 1 + 142 + 118

CSgcl = 14

Case 2, G(Y ) = SABY 4D + 10C + 12AS + 1GS + 1AML
27 (case 1) + 1AML

28 (case 2)

AML29 (EL2)

{
CSproof = 1418 = 14 + 12 + 1 + 539 + 852

CSgcl = 14

.

Lemma 30: (EL3) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Inter Y (Line U V) (Line P Q). Then it holds

G(Y ) =
SUPQG(V )− SV PQG(U)

SUPV Q
.

Proof of Lemma 30 (EL3) (Geometrography Coefficient of Simplicity)
Initial Construction

P Q

U

V

Y

CSgcl = 10 = 4×D + 6×C

CFgcl = 8
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• 1×AML28, G(Y ) = UY
UV

G(V ) + Y V
UV

G(U), by lemma AML28

• 1×GS, G(Y ) = UY
UV

G(V )− V Y
UV

G(U)

• 1×AML8, case 2, G(Y ) =
SUPQ

SUPV Q
G(V )− V Y

UV
G(U), by lemma AML8, case 2

• 1×AML8, case 3, G(Y ) =
SUPQ

SUPV Q
G(V )− SV PQ

SUPV Q
G(U), by lemma AML8, case 3

• 1×AS, G(Y ) =
SUPQG(V )−SV PQG(U)

SUPV Q

Geometrography for the demonstration: 4D+6C+1AS+1GS+1AML28+1AML8(case 2)+
1AML8(case 3)

AML30 (EL3)

{
CSproof = 321 = 10 + 1 + 1 + 118 + 94 + 97

CSgcl = 10

.

Lemma 31: (EL4) Let G(Y ) be a linear geometric quantity (6= PAY B) and point Y is in-
troduced by the construction (Foot Y P (Line U V)). Then it holds

G(Y ) =
PPUV G(V ) + PPV UG(U)

PUV U
.

Proof of Lemma 31 (EL4) (Geometrography Coefficient of Simplicity)
Initial Construction

P Q

U

V

Y

CSgcl = 10 = 4D + 6C

CFgcl = 8

• 1×AML28, G(Y ) = PPUV

2UV
2 G(V ) + Y V

UV
G(U), by lemma AML28

• 2 ×AML24, G(Y ) = PPUV

2UV
2 G(V ) + PPV U

2UV
2 G(U), by lemma AML24, case 2 with A :=

U,B := V,D := Y

• 1×AS, G(Y ) = PPUV G(V )+PPV UG(U)

2UV
2

• 1×AML19, G(Y ) = PPUV G(V )+PPV UG(U)
PUV U

, by lemma AML19
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Geometrography for the demonstration: 4D+6C+1AS+1AML19 +2AML24(case 2)+
AML28

AML31 (EL4)

{
CSproof = 942 = 10 + 1 + 15 + 64 + 852

CSgcl = 10

.

Lemma 32: (EL5) Let G(Y ) = PAYB and point Y is introduced by the construction (Foot
Y P (Line U V)) or (Inter Y (Line U V) (Line P Q)). Then it holds

Case 1

G(Y ) =
PPUV

PUV U
G(V ) +

PPV U

PUV U
G(U)− PPUV × PPV U

PUV U
.

Case 2

G(Y ) =
SUPQ

SUPVQ
G(V ) +

SVPQ

SUPVQ
G(U)−

SUPQ × SVPQ × PUV U

S2UPVQ

.

Proof of Lemma 32 (EL5) (Geometrography Coefficient of Simplicity)

Case 1 Initial Construction

P

U VY

CSgcl = 7 = 3×D + 4×C

CFgcl = 6

• 1 ×AML26, PAY B = UY
UV
PAV B + Y V

UV
PAUB − UY

UV
× Y V

UV
PUV U , by lemma 26, case 2,

with R := Y, P := U,Q := V , for three collinear points Y , U , and V , we have r1 = UY
UV

,

r2 = Y V
UV

, and PAY B = r1PAV B + r2PAUB − r1r2PUV U .

• 2 ×AML24, PAY B = PPUV

2UV
2 PAV B + PPV U

2UV
2 PAUB − PPUV

2UV
2
PPV U

2UV
2 PUV U , by hypothesis

point Y is the foot on UV of a line passing by P , then by lemma 24, cases 2 and 3, with
A := U,D := Y,B := V

• 1×AML20, PAY B = PPUV
PUV U

PAV B + PPV U
PUV U

PAUB − PPUV ×PPV U
2PUV U

PUV U , by lemma 20, we

have that PUV U = 2V UV U = 2V U
2

= 2UV
2

• 1×AS, PAY B = PPUV
PUV U

PAV B + PPV U
PUV U

PAUB − PPUV ×PPV U
PUV U
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Case 2 Initial Construction

P

Q

U VY

CSgcl = 10 = 4×D + 6×C

CFgcl = 8

• 1 ×AML26, PAY B = UY
UV
PAV B + Y V

UV
PAUB − UY

UV
× Y V

UV
PUV U , by lemma 26, case 2,

with R := Y, P := U,Q := V , for three collinear points Y , U , and V , we have r1 = UY
UV

,

r2 = Y V
UV

, and PAY B = r1PAV B + r2PAUB − r1r2PUV U

• 2×AML8, PAY B =
SUPQ

SUPV Q
PAV B +

SV PQ

SUPV Q
PAUB −

SUPQ

SUPV Q

SV PQ

SUPV Q
PUV U , by hypothesis

point Y is the intersection of UV with PQ, then by lemma 8, with A := P,B := Q,P :=
U,Q := V,M := Y cases 2 and 3

• 1×AS, PAY B =
SUPQ

SUPV Q
PAV B +

SV PQ

SUPV Q
PAUB −

SUPQ×SV PQ×PUV U

S2UPV Q

Case 1 Geometrography for the demonstration: 3D+ 4C+ 3AS+ 1AML20 + 2AML24 +

1AML26

AML32 (EL5), case 1

{
CSproof = 1743 = 7 + 3 + 23 + 64 + 1646

CSgcl = 7

Case 2

Geometrography for the demonstration: 4D+6C+1AS+1AML8, case 2+1AML8, case 3+
1AML26

AML32 (EL5), case 2

{
CSproof = 1848 = 10 + 1 + 94 + 97 + 1646

CSgcl = 10

.

Lemma 33: (EL6) Let Y be introduced by (Pratio Y W (Line U V) r). Then it holds:

PAY B = PAWB + r(PAV B − PAUB + 2PWUV )− r(1− r)PUV U .

Proof of Lemma 33 (EL6) (Geometrography Coefficient of Simplicity)
Initial Construction
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W Y

U V

S

A

B

WY

UV
= r

with point S such that WS = UV .

CSgcl = 16 = 6×D + 10×C

CFgcl = 12

• PAY B = PAWB + r(PAV B − PAUB + 2PWUV )− r(1− r)PUV U

• 1 × AML27 case 2, PAUB + PASB = PAV B + PAWB + 2PV UW , By lemma 27, with
A := U.B := V,C := S,D := W,P := A,Q := B

• 1×AS, PASB = −PAUB + PAV B + PAWB + 2PV UW

• 1×AML26, case 2, r1PAY B+r2PAWB−r1r2PWYW = −PAUB+PAV B+PAWB+2PV UW ,
with r1 = WS

WY
, r2 = SY

WY
, that is r1 = 1

r and r2 = WY−WS
WY

= 1 − 1
r and by lemma 26,

with R := S, P := W,Q := Y

• 2×AS, r1PAY B = −r2PAWB + r1r2PWYW − PAUB + PAV B + PAWB + 2PV UW

• 3×AS, 1
rPAY B = −(1− 1

r )PAWB + 1
r (1− 1

r )PWYW −PAUB +PAV B +PAWB + 2PV UW

• 6×AS, PAY B = −r(1− 1
r )PAWB +(1− 1

r )PWYW−rPAUB +rPAV B +rPAWB +2rPV UW

• 5×AS, PAY B = −rPAWB+rPAWB+PAWB+(1− 1
r )PWYW−rPAUB+rPAV B+2rPV UW

• 4×AS, PAY B = PAWB + r(PAV B − PAUB + 2PV UW ) + (1− 1
r )PWYW

• 2×AML19 + 2×AS, PAY B = PAWB + r(PAV B −PAUB + 2PV UW ) + (1− 1
r )PWYW .

by lemma 19, and the hypothesis WY
UV

= r

• 3×AS, PAY B = PAWB + r(PAV B − PAUB + 2PV UW ) + (1− 1
r )r2PUV U

• 1×AML18, PAY B = PAWB +r(PAV B−PAUB +2PWUV )−r(1−r)PUV U , by lemma 18

Geometrography for the demonstration: 6D + 10C + 24AS + AML18 + 2AML19 +
AML26 + AML27 case 2

AML33 (EL6)

{
CSproof = 2807 = 16 + 24 + 31 + 3S0 + 1646 + 740

CSgcl = 16

.
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Lemma 34: (EL7) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

SABY = SABP −
r

4
PPAQB.

Proof of Lemma 34 (EL7) (Geometrography Coefficient of Simplicity)
Initial Construction

P Q

A

B

A1 B1

Y

CSgcl = 13 = 5×D + 8×C

CFgcl = 10

• SABY = SABP − r
4PPAQB

• 1×AML4, SABY = SABP + SAPY + SPBY , by lemma 4

• 1×AML1 + 1×AS, SABY = SABP + SPBY − SPAY , by lemma 1

Auxiliary equality 1

• 1×AML3, SPAY
SPQY

=
SPA1Y

SPQY
, by lemma 3, AA1‖PY

• 2×AML1, SPAY
SPQY

=
SY PA1
SY PQ

, by lemma 1

• 1×AML5, SPAY
SPQY

= PA1

PQ
, by lemma 5

• 1×AML24b, SPAY
SPQY

=
PA1PQ

2PQ
2 , by lemma 24b

• 1×AML19, SPAY
SPQY

=
PA1PQ

PQPQ
, by lemma 19

• 1×AML23, SPAY
SPQY

=
PAPQ

PQPQ
, by lemma 23

• 2×AS, SPAY =
SPQY

PQPQ
PAPQ

• 1×AS, SPAY = r
4PAPQ, by construction 4SPQY

PQPQ
= r

Auxiliary equality 2

• 1×AML3, SPBY
SPQY

=
SPB1Y

SPQY
, by lemma 3, BB1‖PY

• 2×AML1, SPBY
SPQY

=
SY PB1
SY PQ

, by lemma 1
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• 1×AML5, SPBY
SPQY

= PB1

PQ
, by lemma 5

• 1×AML24b, SPBY
SPQY

=
PB1PQ

2PQ
2 , by lemma 24b

• 1×AML19, SPBY
SPQY

=
PB1PQ

PQPQ
, by lemma 19

• 1×AML23, SPBY
SPQY

=
PAPQ

PQPQ
, by lemma 23

• 2×AS, SPBY =
SPQY

PQPQ
PAPQ

• 1×AS, SPBY = r
4PBPQ, by construction 4SPQY

PQPQ
= r

Resuming the main equation

• SABY = SABP + SPBY − SPAY

• 1×AS, SABY = SABP + SPBY − r
4PAPQ, by auxiliary equality 1

• 1×AS, SABY = SABP + r
4PBPQ − r

4PAPQ, by auxiliary equality 2

• 1×AS, SABY = SABP + r
4(PBPQ − PAPQ)

• 1×AS, SABY = SABP − r
4(PAPQ − PBPQ)

• 1×AMD5, SABY = SABP − r
4PAPBQ, by lemma 5

• 1×AML21, SABY = SABP − r
4PPAQB, by lemma 21

Geometrography for the demonstration: 5D+8C+11AS+1AMD5+3AML1+2AML3a+
1AML4 + 1AML5 + 2AML19 + 1AML21 + 2AML23 + 2AML24b

AML34 (EL7)

{
CSproof = 404 = 13 + 11 + 30 + 42 + 25 + 18 + 30 + 59 + 92 + 20 + 64

CSgcl = 13

.

Lemma 35: (EL8) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

PABY = PABP − 4rSPAQB.

Proof of Lemma 35 (EL8) (Geometrography Coefficient of Simplicity)
Initial Construction

P Q

Y

A

B

A1

B1

r =
4SPQY

PPQP
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CSgcl = 13 = 5×D + 8×C

CFgcl = 10

• 1×AMD5, PY BPA = PY BA − PPBA, by definition 5

• 2×AML18, PY BPA = PABY − PABP , by lemma 18

• 2×AS, −PABY = −PY BPA − PABP , by algebraic simplification

• 2×AS, PABY = PABP + PY BPA, by algebraic simplification

• 1×AML21, PABY = PABP − PBPAY , by lemma 21

• 1×AMD5, PABY = PABP − (BP
2

+ AY
2 − PA

2 −BY
2
), by definition 5

• 4×GS, PABY = PABP − (BB1
2

+B1P
2

+AAi
2

+A1Y
2− (AA1

2
+PA1

2
)− (BB1

2
+

B1Y
2
)), by construction BP ⊥ B1P

• 2×AS, PABY = PABP−(BB1
2
+B1P

2
+AAi

2
+A1Y

2−AA1
2−PA1

2−BB1
2−B1Y

2
),

by construction BP ⊥ B1P

• 6×AS, PABY = PABP − (B1P
2

+ A1Y
2 − PA1

2 −B1Y
2
)

• 1×AMD5, PABY = PABP − PB1PA1Y , by definition 5

• 2×AS, PABY = PABP −
PB1PA1Y

PYPY
PYPY

• 1×AMD5, PABY = PABP −
PB1PY −PA1PY

PY PY
PY PY , by definition 5

• 1×AML19, PABY = PABP −
PB1PY −PA1PY

2PY
2 PYPY , by lemma 19

• 2×AML20, PABY = PABP − 2PB1 PY−2PA1 PY

2PY
2 PYPY , by lemma 20

• 2×AS, PABY = PABP − 2PY (PB1−PA1)

2PY
2 PYPY

• 2×AS, PABY = PABP − PB1−PA1

PY
PYPY

• 2×AS, PABY = PABP − 2PQ(PB1−PA1)

2PQPY
PYPY

• 3×AS, PABY = PABP − 2PB1 PQ−2PA1 PQ

2PQPY
PYPY

• 3×GS, PABY = PABP −
SPAQ+SPQB

SPQY
PYPY , given that PQ ⊥ to PA1, PB1, PY the

triangles ∆PQB1 and ∆PQA have the same base and high, so the same area (similarly
to ∆PQA1 and ∆PQA, also taking in account the orientation of the triangles

• 1×AMD4, PABY = PABP −
SPAQB

SPQY
PYPY , by definition 4

• 1×AML19, PABY = PABP −
SPAQB

SPQY
· 2PY

2, by lemma 19.
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• 1×GS + 1×AS, PABY = PABP −
SPAQB

SPQY
· 2(

4S2PQY

PQ
2 )

• 1×AS, PABY = PABP −
SPAQB

SPQY
· 2(

4SPQY

PQ
2 )SPQY

• 1×AML19, PABY = PABP −
SPAQB

SPQY
· 2(

4SPQY

1/2PPQP
)SPQY , by lemma 19.

• 3×AS, PABY = PABP − SPAQB · 4(
4SPQY

PPQP
)

• 2×AS, PABY = PABP − 4rSPAQB, by hypothesis r =
4SPQY

PPQP
.

Geometrography for the demonstration: 5D+ 8C+ 30AS+ 8GS+ 1AMD4 + 4AMD5 +
2AML18 + 3AML19 + 2AML20 + 1AML21

AML35 (EL8)

{
CSproof = 359 = 13 + 30 + 8 + 16 + 80 + 62 + 45 + 46 + 59

CSgcl = 13

.

Lemma 36: (EL9) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds

PAY B = PAPB + r2PPQP − 4r(SAPQ + SBPQ).

Proof of Lemma 36 (EL9) (Geometrography Coefficient of Simplicity)
Initial Construction

P Q

Y

A

B

r =
4SPQY

PPQP

CSgcl = 9 = 5×D + 4×C

CFgcl = 10

Auxiliary Lemma 2 PAY B = PAPB − PAPY − PBPY + PYPY

Proof of Auxiliary Lemma Aux2

• PAY B = PAPB − PAPY − PBPY + PYPY

• 5×AMD3, AY
2
+BY

2−AB
2

= AP
2
+BP

2−AB
2− (AP

2
+Y P

2−AY
2
)− (BP

2
+

Y P
2 −BY

2
) + Y P

2
+ Y P

2 − Y Y
2, by definition 3
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• 2 ×AS, AY
2

+ BY
2 − AB

2
= AP

2
+ BP

2 − AB
2 − AP

2 − Y P
2

+ AY
2 − BP

2 −
Y P

2
+ BY

2
+ Y P

2
+ Y P

2 − Y Y
2

• 24 ×AS, AY
2 − AY

2
+ BY

2 − BY
2 − AB

2
+ AB

2
= AP

2 − AP
2

+ BP
2 − BP

2 −
Y P

2
+ Y P

2 − Y P
2

+ Y P
2 − Y Y

2

• 13×AS, 0 = −Y Y
2

• 1×GS, 0 = 0

Geometrography for the demonstration: 39AS + 1GS + 5AMD3 = 39 + 1 + 45 = 85

Q.E.D.

• 1×auxiliary lemma 2 PAY B = PAPB−PAPY −PBPY +PYPY , by auxiliary lemma 2

• 1×AML35 (EL8), PAY B = PAPB−(PAPP−4rSPAQP )−PBPY +PYPY , by lemmaAML35 (EL8)

• 1×AML17, PAY B = PAPB − (0− 4rSPAQP )−PBPY + PYPY , by lemma AML17

• 1×GS, PAY B = PAPB − (0− 4rSPAQ)−PBPY +PYPY , given that the quadrilateral
PAQP . colapse in a triangle.

• 1×AML1, PAY B = PAPB − (0 + 4rSAPQ)− PBPY + PYPY , by lemma 1.

• 2×AS, PAY B = PAPB − 4rSAPQ − PBPY + PYPY ,

• 1×AML17, PAY B = PAPB−4rSAPP−(PBPP−4rSPBQP )+PYPY , by lemmaAML17

• 1×GS, PAY B = PAPB−4rSAPQ)−(0−4rSPBQ)+PYPY , given that the quadrilateral
PBQP . colapse in a triangle.

• 1×AML1, PAY B = PAPB − 4rSAPQ − (0 + 4rSBPQ) + PYPY , by lemma 1.

• 2×AS, PAY B = PAPB − 4rSAPQ − 4rSBPQ + PYPY

• 1×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + PYPY

• 1×AML19, PAY B = PAPB − 4r(SAPQ + SBPQ) + 2PY
2, by lemma 19.

• 1×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 2PY
2 22PQ

2

22PQ
2 .

• 1×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 2PY
2 22PQ

2

22PQ
2 .

• 3×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 2
(
PY PQ

2

)2
22

PQ
2 .

• 1×GS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 2S2PQY
2
2

22

PQ
2 , PQ ⊥ PY .

• 2×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 4S2PQY
22

2PQ
2 , PQ ⊥ PY .
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• 1×AML19 PAY B = PAPB − 4r(SAPQ + SBPQ) + 4S2PQY
22

PPQP

• 4×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 4 r2

r2

(
4S2PQY

PPQP

)

• 1 × AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 4 r2(
4SPQY
PPQP

)2

(
4S2PQY

PPQP

)
, by hypothesis

r =
4SPQY

PPQP

• 2×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + 4
r2P2

PQP

42S2PQY

4S2PQY

PPQP

• 4×AS, PAY B = PAPB − 4r(SAPQ + SBPQ) + r2PPQP

• 1×AS, PAY B = PAPB + r2PPQP − 4r(SAPQ + SBPQ)

Geometrography for the demonstration: 5D+4C+85+3GS+24AS+2AML1+2AML17+
2AML19 + 1AML35 (EL8)

AML36 (EL9)

{
CSproof = 566 = 9 + 85 + 3 + 24 + 20 + 36 + 30 + 359

CSgcl = 9

.

Lemma 37: (EL10) Let Y be introduced by (Inter Y (Line U V) (Line P Q)). Then it
holds

AY

CD
=

{ SAPQ

SCPDQ
if A is on UV

SAUV
SCUDV

otherwise

Proof of Lemma 37 (EL10) (Geometrography Coefficient of Simplicity)
Let B be a point such that AB = CD.

Case 1 If A is not on UV :

P QY

A

B

C

D

U

V

CSgcl = 24 = 6×D + 18×C

CFgcl = 13
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• 1 ×AMLEL1, AY
AB

= SAUV
SAUBV

, by lemma EL1, Y is the intersection of AB and UV ,
two non-parallel lines

• 1×AML21, AY
AB

= SAUV
SUAV B

, by by lemma 21

• 1×AML16, AY
AB

= SAUV
SUCV D

, by lemma 16

• 1×AML21, AY
AB

= SAUV
SCUDV

, by lemma 21

• 1×GS, AY
CD

= SAUV
SCUDV

, AY
CD

= AY
AB

, by construction

Geometrography for the demonstration: 6D + 18C + 1GS + 1AMLEL1 + 1AML16 +
2AML21

AML37 (EL10), case 1

{
CSproof = 379 = 24 + 1 + 94 + 142 + 118

CSgcl = 24

Case 2 If A is on UV :

P QY

A

B

C

D

U

V

CSgcl = 25 = 5×D + 20×C

CFgcl = 12

• 1×AMLEL3, AY
AB

=
SAPQ

AB
AB
−SBPQ

AA
AB

SAPBQ
, by lemma EL3

• 2×GS, AY
AB

=
SAPQ×1−SBPQ×0

SAPBQ

• 3×AS, AY
AB

=
SAPQ

SAPBQ

• 1×AML7, AY
AB

=
SAPQ

SCPDQ
, by lemma 7

• 1×GS, AY
CD

=
SAPQ

SCPDQ
, AY

CD
= AY

AB
, by construction

Geometrography for the demonstration: 5D+ 20C+ 3AS+ 3GS+ 1AML7 + 1AMLEL3

AML37 (EL10), case 2

{
CSproof = 284 = 25 + 3 + 3 + 22 + 231

CSgcl = 25

.
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Lemma 38: (EL11) Let Y be introduced by (Foot Y P (Line U V)). We assume D 6= U ,
otherwise interchange U and V . Then it holds:

AY

CD
=

{
PPCAD
PCDC

if A is on UV
SAUV
SCUDV

otherwise

Proof of Lemma 38 (EL11) (Geometrography Coefficient of Simplicity)

Case 1 Initial Construction

P

YA

B C

DU V

CSgcl = 23 = 9×D + 14×C

CFgcl = 18

• 1×AML24, AY
AB

= PPAB

2AB
2 , by lemma 24, case 2

• 1×AS, AY
AB

= PPAB

2CD
2 , by construction AB = CD

• 1×AML19, AY
AB

= PPAB
PCDC

, by lemma 19

• 1×AS, AY
AB

= PPAB−0
PCDC

• 1×AML17, AY
AB

= PPAB−PAAB
PCDC

, by lemma 17

• 1×AMD5, AY
AB

= PPAAB
PCDC

, by definition 5

• 1×AML27 case 1,
AY
AB

= PPCAD
PCDC

, by lemma 27, case 1

• 1×AS, AY
DC

= PPCAD
PCDC

, by construction AB = CD

Geometrography for the demonstration: 3AS+1AMD5+AML17+AML19+1AML24+
1AML27case 1

AML38 (EL11),Case 1

{
CSproof = 647 = 23 + 20 + 18 + 15 + 32 + 539

CSgcl = 23
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Case 2 Initial Construction

P

Y

A

C

D

U V

CSgcl = 15 = 7×D + 8×C

CFgcl = 16

• 1×AML8 and 1×AS, AY
CD

=
CY

SAUV
SCUV

CD
, by lemma 8, with lines CD and UV , case

1

• 1×AS, AY
CD

= CY
CD
· SAUV
SCUV

• 1×AML8, AY
CD

= SCUV
SCUDV

· SAUV
SCUV

, by lemma 8, with lines AC and UV , case 2

• 1×AS, AY
CD

= SAUV
SCUDV

Geometrography for the demonstration: 7D+8C+3AS+1AML8,case 1 +1AML8,case 2

AML38 (EL11),Case 2

{
CSproof = 196 = 15 + 3 + 84 + 94

CSgcl = 15

.

Lemma 39: (EL12) Let Y be introduced by (Pratio Y R (Line P Q) r). Then it holds

AY

CD
=


AR
PQ

+r

CD
PQ

if A is on RY

SAPRQ

SCPDQ
otherwise

Proof of Lemma 39 (EL12) (Geometrography Coefficient of Simplicity)

Case 1 Initial Construction

R Y

P Q

A

C Dr = RY

PQ
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CSgcl = 24 = 4×D + 20×C

CFgcl = 11

• 1×AS, AY
CD

=
AY
PQ

CD
PQ

• 1×AS, AY
CD

=
AY
PQ

+r−r
CD
PQ

• 1×AS, AY
CD

=
AY
PQ

+RY
PQ
−RY

PQ

CD
PQ

• 1 ×GS, AY
CD

=
AY
PQ

+RA+AY
PQ

−RA+AY
PQ

CD
PQ

, we are considering oriented segments, so there

is no loss of generality

• 1×AS, AY
CD

=
AY +RA+AY−RA−AY

PQ

CD
PQ

• 2×AS, AY
CD

=
AY +RA−RA

PQ

CD
PQ

• 2×AS, AY
CD

=
RA+AY

PQ
−RA

PQ

CD
PQ

• 1×GS, AY
CD

=
RY
PQ
−RA

PQ

CD
PQ

• 2×GS, AY
CD

=
r+AR

PQ

CD
PQ

• 1×AS, AY
CD

=
AR
PQ

+r

CD
PQ

Geometrography for the demonstration: 4D + 20C + 9AS + 4GS

AML39 (EL12),Case 1

{
CSproof = 37 = 24 + 9 + 4

CSgcl = 24

Case 2 Initial Construction

R Y

P Q

A

C

D

T
S

r = RY

PQ
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CSgcl = 24 = 4×D + 20×C

CFgcl = 17

• 1×AML8,case 2, AY
AS

= SART
SARST

, by lemma 8, case 2.

• 2×GS, AY
AS

= SART
SCPDQ

, by construction AS = CD and RT = PQ, and by definition
of SCPDQ as the area of a quadrilateral.

• 1 × AML15, AY
AS

=
SAPRQ

SCPDQ
, by lemma 15, considering parallelogram RTQP and

point A.

• 1×AS, AY
CD

=
SAPRQ

SCPDQ
, by construction AS = CD.

Geometrography for the demonstration: 4D+20C+1AS+2GS+1AML8,case 2+1AML15

AML39 (EL12),Case 2

{
CSproof = 259 = 24 + 1 + 2 + 94 + 138

CSgcl = 24

.

Lemma 40: (EL13) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds

AY

CD
=

{ SAPQ− r
4
PPQP

SCPDQ
if A is on PY

PAPQ

PCPDQ
otherwise

Proof of Lemma 40 (EL13) (Geometrography Coefficient of Simplicity)

Case 1 Let A be a point in line Y P , such that Y A = CD.
Initial Construction

P Q

Y

A C

D

CSgcl = 17 = 11×D + 6×C

CFgcl = 22

• 1×GS, AY
AY

= AP−Y P
AY

, Y , A and P are collinear and by definition of signed length
of segments.

• 1×AS, AY
AY

= AP
AY
− Y P

AY
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• 1×AML8,Case2, AY
AY

=
SAPQ

SAPY Q
− Y P

AY
, by lemma 8, Case 2

• 1×AML8,Case2, AY
AY

=
SAPQ

SAPY Q
− SY PQ

SAPY Q
, by lemma 8, Case 2

• 1×AML1, AY
AY

=
SAPQ

SAPY Q
− SPQY

SAPY Q
, by lemma 1

• 3×AS, AY
AY

=
SAPQ

SAPY Q
−

r
4
PPQP

SAPY Q
, by construction r =

4 SPQY

PPQP

• 1×AS, AY
AY

=
SAPQ− r

4
PPQP

SAPY Q

• 1×AML27 case 1,
AY
AY

=
SAPQ− r

4
PPQP

SCPDQ
, by lemma 27 case 1

• 1×AS, AY
CD

=
SAPQ− r

4
PPQP

SCPDQ
, by construction AY = CD

Geometrography for the demonstration: 11D+6C+6AS+1GS+2AML1+1AML27 case 1

AML40 (EL13)

{
CSproof = 761 = 17 + 6 + 1 + 198 + 539

CSgcl = 17

Case 2 Considere points A and B, collinear with Y such that AB = CD.
Initial Construction

P

Y

A

C

D

Q

CSgcl = 17 = 9×D + 8×C

CFgcl = 18

• 1×AML25,case 2, AY
AB

=
PAPQ

PAPBQ
, by lemma 25, case 2 (lines AB, PQ and point Y

in line AB

• 1×AML27 case 1,
AY
AB

=
PAPQ

PCPDQ
, by lemma 27 case 1

• 1×AS, AY
CD

=
PAPQ

PCPDQ
, by construction AB = CD

Geometrography for the demonstration: 9D+8C+1AS+1AML25 case 2+1AML27 case 1

AML40 (EL13)

{
CSproof = 927 = 17 + 1 + 370 + 539

CSgcl = 17

.
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Chapter 4

Examples

Using the Thousand of Geometric problems for geometric Theorem Provers (TGTP) [14]
repository some examples of different levels of difficulty can be found. GEO0001, Ceva’s theo-
rem, is a readable example (high-readability), GEO0021, the circumcenter of a triangle theorem,
a medium-readability example, GEO0020, the distance of a line containing the centroid to the
vertices theorem, is low-readability example.

TGTP TML Criteria de Brujin GRCP

GEO0001
3 < 5, deduction steps

easy
1.6 < 2

easy
564 < 8000

easy(high)

GEO0021
13 > 5 deduction steps and 5 < terms

difficult
37.63 > 2

difficult
127408 > 85421

difficult(medium)

GEO0020
13 > 5 deduction steps and 5 < terms

difficult
47.31 > 2

difficult
269790 ≥ 269790

difficult(low)

The details for the different criteria can be found in the paper Measuring the Readability of
Geometric Proofs, by the authors. Informal proofs of the theorems can be see in sections 4.1–
4.3.
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4.1 Informal Proof, GEO0001

Theorem 1 (Ceva’s Theorem). Let ∆ABC be a triangle and P be any point
in the plane. Let D = AP ∩CB, E = BP ∩AC, and F = CP ∩AB. Show
that: AF

FB
× BD

DC
× CE

EA
= 1. P should not be in the lines parallels to AC, AB

and BC and passing through B, C and A respectively

Proof
We will use the notation [ABC] to denote the area of a triangle with

vertices A,B,C.
First, suppose AD,BE,CF meet at a point X.We note that triangles

ABD,ADC have the same altitude to line BC, but bases BD and DC. It
follows that BD

DC = [ABD]
[ADC] . The same is true for triangles XBD,XDC, so

BD

DC
=

[ABD]

[ADC]
=

[XBD]

[XDC]
=

[ABD]− [XBD]

[ADC]− [XDC]
=

[ABX]

[AXC]
.

Similarly, CE
EA = [BCX]

[BXA] and AF
FB = [CAX]

[CXB] , so

BD

DC
· CE

EA
· AF
FB

=
[ABX]

[AXC]
· [BCX]

[BXA]
· [CAX]

[CXB]
= 1

Now, suppose D,E, F satisfy Ceva’s criterion, and suppose AD,BE in-
tersect at X. Suppose the line CX intersects line AB at F ′. We have proven
that F ′ must satisfy Ceva’s criterion. This means that

AF ′

F ′B
=

AF

FB
,

so
F ′ = F,

and line CF concurs with AD and BE. �
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4.2 Informal Proof, GEO0021

Theorem 1 (Centroid Theorem). The three medians of a triangle meet in
a point, and each median is trisected by this point.

Let G be the point where medians BB′ and CC ′ of ∆ABC intersect. We
shall show that G trisects the two medians in the sense that BG : GB′ = 2 : 1
and CG : GC ′ = 2 : 1. This means that any two medians meet at their point
two-thirds of the way from the vertex to the midpoint of the opposite side.
So all three do.

Prior to the place in Euclid’s Elements are theorems about similar trian-
gles and about angles made by transversals of two parallel lines. The ones
we’ll use here are

simAAA Two triangles are similar if and only if their angles are pairwise
equal.

simSAS Two triangles are similar if and only if two pairs of corresponding
sides have the same proportion and the included angles are equal.

altIA Two lines are parallel if and only if two alternate interior angles they
make with a transversal are equal.

sameSA Two lines are parallel if and only if corresponding angles on the
same side of a transversal are equal.

Step 1: Apply simSAS to ∆AC ′B′ and ∆ABC by noting that they have
∠A in common, and the adjacent sides are in the ratio of 1 : 2. So the two
triangles are similar. That, by definition of similarity, implies that ∠B′C ′A =
∠CBA and C ′B′ : BC = 1 : 2.

Step 2: Apply sameSA to the two lines C ′B′ and BC to the first conse-
quence: ∠B′C ′A = ∠CBA. Therefore C ′B′‖BC. That in turn, by sameSA,
implies that ∠GC ′B′ = ∠GCB and ∠C ′B′G = ∠CBG.

Step 3: Apply simAAA to the two triangles ∆GB′C ′ and ∆GBC. Two
pairs of their angles have already been shown to be equal. The third pair,
∠B′GC ′ and ∠BGC, are equal because they are “opposite angles”. Thus the
two triangles are similar.

Step 4: From the second conclusion in Step 1 we know the ratio of to be
2 : 1. So 1 : 2 = GB′ : GB and 1 : 2 = GC ′ : GC. So G does “trisect” two of
the medians, as predicted.

�
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4.3 Informal Proof, GEO0020

Theorem 1 (Distances to line passing through the centroid of triangle)

A B

C

G

X
E

F
D

Given a triangle ABC and a point X, the sum of the distances of the line
XG, where G is the centroid of ∆ABC, to the two vertices of the triangle
situated on the same side of the line is equal to the distance of the line from
the third vertex.

Proof of Lemma Let I the the midpoint of line segment AB. We know that
I lies on CG, because G is the centroid. Let J be the point of intersection
of GX and the perpendicular to GX through I.

The triangles with sides BI and AI, parts of the line through I parallel
to GX and the corresponding parts of the perpendicular through B and A
on GX. The two triangles you obtain are congruent, given that the inner
angles are equal (two parallel lines crossed by a non-parallel line) so the
lengths of the excess at B and the shortage at A are the same.

|IJ | = |BE|+ |AD|
2

Because G is the centroid, we know that |CG| = 2|GI|. Now, we have
that ∆CGH ∼= ∆IGJ , because of equal angles in parallel lines. It follows
that |IJ |

|CF | = |IG|
|CG| = 1

2

Combining this with the earlier found equation, we get that |AD| +
|BE| = |CF |.

2
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