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Abstract

The Area Method for Euclidean constructive geometry was proposed by Chou et al. in early
1990’s. The method produces human-readable proofs and can efficiently prove many non-
trivial theorems. It can be considered as one of the most interesting and most successful
methods in geometry theorem proving and probably the most successful in the domain of
automated production of readable proofs.

In this research report are the rigorous proofs of all the axioms and lemmas of the Area
Method with the geometrography coeflicients of simplicity for all the lemmas.

This text is meant as a support text for the article, Measuring the Readability of a Proof,
by Pedro Quaresma and Pierluigi Graziani.



Chapter 1

Introduction

There are two major families of methods in automated reasoning in geometry: algebraic style
and synthetic style methods [, [5] (18]

In this research report we focus on the area method, an efficient semi-algebraic method
for a fragment of Euclidean geometry, developed by Chou, Gao, and Zhang. This method
enables implementing efficient provers capable of generating human readable proofs. These
proofs often differ from the traditional, Hilbert-style, synthetic proofs, but still they are often
concise, consisting of steps that are directly related to the geometrical contents involved and
hence can be easily understood by a mathematician [2), 3] [4 [§].

This research report follows closely a previous research report, CISUC TR, 2009/006, con-
taining the rigorous proofs of all the lemmas of the area method [8, 15]. Additionally the
geometrography coefficients of simplicity for the lemmas are added [9, 111 [16} [17].

This text is meant as a support text for the article, Measuring the Readability of Geometric
Proofs, by Pedro Quaresma and Pierluigi Graziani (submitted to JAR).

In the rest of the research report, we will use capital letters to denote points in the plane.
We denote by AB the length of the oriented segment from A to B and we denote by AABC
the triangle with vertices A, B, and C.

Overview of the Research Report The research report is organised as follows: After this
introduction, we proceed, in Section [2] introducing geometrography and in Section [3] the area
method rigorous proofs of all its lemmas with the corresponding simplicity coefficients.



Chapter 2

Geometrography

Geometrography, “alias the art of geometric constructions” was proposed by Emile Lemoine
between the late 1800s and the early 1900s [, [TT][]

Geometrography consisted originally of a system to measure the complexity of ruler-and-
compass geometric constructions, capable of: designate every geometric construction by a pair
of values that manifests its simplicity and exactitude; teach the simplest way to execute an
assigned construction; allow the discussion of a known solution to a problem and eventually
replacing it with a better solution; compare different solutions for a problem, by deciding which
is the most exact and the simplest solution from the point of view of geometrography [9, [11].
Since then a few authors proposed different approaches and perspectives to the study of
geometrography [6], 10} [12] [13].

2.1 Lemoine’s Geometrography

In Lemoine’s geometrography two coefficients are defined to measure the relative difficulty
to perform some geometric constructions. The approach is applied to ruler and compass
geometry, i.e. geometric constructions made solely with the help of a ruler and a compass.

The drawing instruments—ruler and compass—can ensure a reasonable fit between the
geometric entity and its geometrical image. Without them, the discrepancy between one and
the other always exceeds the limits of tolerance. However, each time a drawing instrument is
used, two types of error can be introduced in the image, systematic error and accidental errors
due to personal operator’s actions. The first is inherent to the instrument itself, which must
be imperceptible for each operation, when taken in isolation, and the second error is about
visual acuity, visual motor coordination, manual dexterity, etc.

Considering the modifications proposed by Mackay [11], the following Ruler and Compass
constructionsﬂ and the corresponding coefficients can be considered.

To place the edge of the ruler in coincidence with one point ....................... Ry

'Emile Lemoine presented geometrography first in mathematics meetings: the Oran meeting in 1888 and
the Pau meeting 1892. The first formal publications about geometrography is from J. S. Mackay in 1893,
already citing the work of Lemoine, whose first formal publication was in 1902.

2Lemoine considers the following basic operations: L1. place the ruler through a given point; L2. draw a
line; C1. place one leg of the compass on a given point; C2. place one leg of the compass on an indeterminate
point of a given line; C3. draw a circle.



To place the edge of the ruler in coincidence with two points ..................... 2Ry

To draw a straight line ........ . Ry
To put one point of the compasses on a determinate point ......................... Ch
To put one point of the compasses on two determinate points .................... 2C1
To describe a circle ........... Cy

Then a given construction is measured against the number of those elementary steps.
For example, for the construction of a triangle, given its three vertices A, B and C, Mackay
estimate 4R1 + 3Ry: to put the ruler in contact with A and B is 2Rq; to draw AB is Ry; with
the ruler in contact with B to put it also in contact with C' is Ry; to draw BC' is Ra; repeat
that for C' and A is R; and finally to draw C'A is Re. In all, 4Ry + 3R, [11].

For a given construction expressed by the equation:

LRy + bRy + miCr + moCy

where [; and m; are coefficients denoting the number of times any particular operation is
performed. The number (I + lo + m1 + mg) is called the coefficient of simplicity of the
construction, it denotes the total number of operations. The number (1 + mq) is called the
coefficient of exactitude of the construction, it denotes the number of preparatory operations
on which the exactitude of the construction depends [I1, 12].

Example: To find the radius of a given circle, when the centre is not given.
This can be solved with the following construction (see Fig. [2.1)).

Figure 2.1: Find the Radius of a Given Circle

The following ruler and compass steps where taken to draw the figure: C4, to put one
point of the compass on point A; Cy to describe circle cAB, with centre in A and radius AB
(point B chosen at random); C1, to put one point of the compass on B; Co, to describe circle
¢BC, with centre in B and radius BC' (point C' choose at random, such that cAB and ¢BC
intersect); 2 x Cq, to put both points of the compass in D and B; C5 to describe circle ¢D B,



with centre in D and radius DB; 2 x R1, to place the ruler in coincidence with points £ and
C; R, to draw line EC; 2 X Ry, to place the ruler in coincidence with points F' and D; R,
to draw line F'D.

4R; + 2Ry + 4C1 + 305

The coefficient of simplicity will be, cs = 44+2+4+3 = 13 and the coefficient of exactitude,
ce=4+4+4=38.

Some variants of Lemoine’s geometrography can be defined, e.g. by adding rules for
other idealised tools/operations (e.g. carpenter’s square, graduated rulers, etc.), or by adding
a value for the change of the instrument/operation, or by considering different values for
different operations [6] [10].

Some variants of Lemoine’s geometrography can be defined, e.g. by adding rules for
other idealised tools/operations (e.g. carpenter’s square, graduated rulers, etc.), or by adding
a value for the change of the instrument/operation, or by considering different values for
different operations [6, [10].

2.2 Dynamic Geometry System’s Geometrography

Extrapolating (modernising) geometrography, considering the “tools” of dynamic geometry
systems (DGS), the coefficient of exactitude loose its meaning, constructions will be executed
by the DGS, so exact (minus floating point representation considerations). Regarding the
coefficient of simplicity, it can still be useful, as it can be used to classify the constructions by
levels of simplicity and, in this way, providing more meta-information on the construction [16),
17].

Dynamic geometry systems introduce the notion of “free points”, points that can be moved
freely in the plane, therefore having two degrees of freedom. Other points can be subject to
restrictions, e.g. “a point in a line” or “a point resulting from the intersection of two lines”,
having one and zero degrees of freedom, respectively. As a way to measure the dynamism of
a construction, the coefficient of freedom, can be introduced. This new coefficient sets a value
to the dynamism of the geometric construction.

2.2.1 Geometrography in GCLC

In the following, the geometrography approach to the classification of the geometric construc-
tions made using the Geometry Constructions LaTeX Converter (GCLC)E| [7] is presented.

Considering the operations, define a point anywhere in the plane, D, and define a given
object using other objects, C, the following values for the GCLC basic constructions are
obtained:

point, fix a point in the plane......... ... ... .. (D);
line, USES tWO POIMES. . o .ottt ettt e et et et e e (20);
circle, Uses tWO POINES ... ....ou it (20);

3http://poincare.matf.bg.ac.rs/~janicic/gclc/


http://poincare.matf.bg.ac.rs/~janicic/gclc/

intersec, uses two lines . ..... ... (20);
intersec, uses four points ......... ... . (40);
intersec2, uses a circle and a circle or line ............ ... ... .. oo (20);
midpoint, USES tWO POINES . ..o .vtt ittt e e e (20);
med, USES tWO POINES .ottt ettt et et et et e e e (20);
bis, uses three PoINtS .. ...ttt (3C);
perp, uses a point and a line ........... ... (20);
foot, uses a point and a line ....... ... ... (20);
parallel, uses a point and a line ......... ... ... ... . i (20);
onsegment, USES tWO POINLS . ...t .tttn ittt e (20);
online, USES tWO POINES ...ttt e e (20);
oncircle, uses two POINtS ........ ... ... (20).

The degrees of freedom are measured against the point definitions. The point construction
defines a point with two degrees of freedom. The onsegment, online and oncircle construc-
tions define points with one degree of freedom. Points obtained by other construction, e.g.
the intersection of two lines, have zero degrees of freedom.

Example: To find the radius of a given circle, when the centre is not given, using GCLC

(see Fig. [2.2).

This construction requires the use of the following construction steps:
2xpoint; 1xoncircle; 3xcircle; 3xintersec2; 2x1line.

A scrip‘ﬂ that analyses GCLC constructions, giving its coefficients of simplicity (cs) and
freedom (cf), was implemented. For this example (see Fig the calculated values are:
cs = 20 and cf=5.

2.3 Area Method’s Geometrography

Extrapolating geometrography, considering the proofs produced by the geometry automated
theorem prover (GATP) GCLC, implementing the Area Method [§].
Apart the geometric constructions used in the proof there are other steps to be considered.

Algebraic Simplification ...... ... ... (AS)
Geometric Simplification (Area Method Definitions, etc.)........................ (GS);
Application of the Area Method Definition nn................. ... ... ... .. (AMDy,).

4Available at https://github.com/GeoTiles/Geometrography.
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Figure 2.2: Find the Radius of a Given Circle Using GCLC

Application of the Area Method Lemma n............. ... ... .. (AML,,).

So the extended coefficient of simplicity for a geometric proof with n1D + nyC 4+ n3AS +
n4GS +nsAMDy,, . n, +16AMLy, . n, would be:
CSproof = 11 + N2 + n3 + ng + ns5 + ng

where n5 and ng can be seen as a compound value, each definition/lemma has a value that it
is the coefficient of simplicity for its geometric interpretation/proof.
The coefficient of freedom has no meaning on this setting.

2.3.1 Area Method’s Proof Trace Geometrography

The definition of a proof trace will be made by the trace of the geometrography value for all
the steps done by the GCLC implementation of the area method.



Chapter 3

A Description of the Area Method

The geometrical quantities used within the area method can be defined in Hilbert style geom-
etry, but they also require axioms of the theory of real numbers.

The notion of the ratio of directed parallel segments relies on the notion of orientation of
segments, (it holds that AB = —BA). The ratio of two directed segments is considered only
if they belong to two parallel lines.

Definition 1: (Ratio of Directed Parallel Segments) For four collinear points P, @), A, and

B, such that A # B, the ratio of directed parallel segments, denoted % is a real number. If
C and D are points such that ABCD is a parallelogram and P, @) are on the line C'D, then

Geometrography of Definition Ratio of Directed Parallel Segments

CSga = 17
CFgq = 8

_ CSproof = 17
AMDW‘{ CSpa = 17



The notion of signed areas relies on the notion of orientation of triangles.

Definition 2: (Signed Area) The signed area of triangle ABC, denoted S4pc, is the area of
the triangle with a sign depending on its orientation in the plane: if it is positive, then Sspc
is positive, otherwise it is negative.

Geometrography of Definition of Signed Area

CSgal
CFga =

o CSproof =9
AMD@_{ CSgal = 9

The Pythagoras Difference is a generalisation of the Pythagoras equality regarding the
three sides of a right triangle, to an expression applicable to any triangle.

Definition 3: (Pythagoras difference) For three points A, B, and C, the Pythagoras difference,
denoted Papc, is defined in the following way:

Papc = AB- +CB° — AC".

Geometrography of Definition Pythagoras Difference

CSga =
CFga



_ CSproof =9
AMDB]_{ CSpt = 9

In addition to this basic definitions, there are some others that should be introduced.
Definition 4: The signed area of a quadrilateral ABCD is defined as Sapcp = Sapo+Sacp-

Sapcp

By the definition of Sppc and Sacp, and the fact that the orientation is preserved, the
equality follow.

Geometrography of Definition Signed Area of Quadrilateral

CSeq = 14=4D+10C
CFya = 8

e 2 X GS, by the definition of Sapc and Sacp, Sapcp = Sapc + Sacp.

[ CSproot = 16=14+2
AMD@]_{ CSp = 14

Note that, more generally, we can define the signed area of an oriented n-polygon A1 As ... A,,
(n > 3) to be:

n
Savdshn = D Sa1 A1 A,
i=3

Definition 5: For a quadrilateral ABCD, Papcp, is defined as follows:

Pascp = Papp — Pepp = AB- +CD° — BC® — DA’

10



Papcp = Pasp — Pcsp, by the definition
— 4B’ + DB’ - 4D’ — (0732 + DB — CTQ), by the definition of P4app and Pcpp
- 4B’ + DB -AD-CB - DB + C’iDQ, by algebraic simplification
- AB*+CD'+DB -DB -CB" - @2, by algebraic simplification
- 4B’ + D’ -CB - @2, by algebraic simplification
- 4B’ + D’ - BC° - mz, by algebraic simplification

Geometrography of Definition Pythagoras Difference of Quadrilateral

CSga = 14 =4D +10C
CFga = 8

Following the demonstration above: 2GS + 4AS.

CSproot = 20=4+10+2+4
AMDE]{ CSpq = 14

3.1 Geometric Constructions

The area method is used for proving constructive geometric conjectures: statements about
properties of objects constructed by some fixed set of elementary constructions. In this section
we first describe the set of available construction steps and then the set of conjectures that
can be expressed.

All constructions supported by the area method are expressed in terms of the involved
points. Therefore, only lines and circles determined by specific points can be used (rather then
arbitrarily chosen lines and circles). Then, the key constructions steps are those introducing
new points. For a construction steps to be well-defined, certain conditions may be required.
These conditions are called non-degeneracy condition (ndg-conditions). The degree of freedom
tells us if a point is free (degree bigger than 0), or not.

In the following text, we will denote by (LINE U V) a line such that the points U and V
belong to it and we will denote by (CIRCLE O U) a circle such that its center is point O and
such that the point U belongs to it.

Given below is the list of elementary constructions in the area methods, along with the
corresponding ndg-conditions and the degrees of freedom of the constructed points.

ECS1 construction of an arbitrary point U; we denote this construction step by (PoiNT U).
ndg-condition: —

degree of freedom for U: 2

11



ECS2 construction of a point Y such that it is the intersection of two lines (LINE U V) and
(LINE P Q); we denote this construction step by (INTER Y (LINE U V) (LINE P Q))

ndg-condition: UV }y PQ; U # V; P # Q.
degree of freedom for Y: 0

ECS3 construction of a point Y such that it is a foot from a given point P to (LINE U V);
we denote this construction step by (Foor Y P (LINE U V)).

ndg-condition: U # V
degree of freedom for Y: 0

ECS4 construction of a point Y on the line passing through point W and parallel to (LINE
U V), such that WY = rUV, where r can be a rational number, a rational expression
in geometric quantities, or a variable; we denote this construction step by (PRATIO Y
W (LINE U V) 1).

ndg-condition: U # V; if r is a rational expression in geometric quantities then the
denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a variable.

ECS5 construction of a point Y on the line passing through point U and perpendicular
to (LINE U V), such that r = 47;5‘5“/’5, where r can be a rational number, a rational
expression in geometric quantities, or a variable; we denote this construction step by

(TraTIO Y (LINE U V) 1).

ndg-condition: U # V; if r is a rational expression in geometric quantities then the
denominator of r should not be zero.

degree of freedom for Y: 0, if  is a fixed quantity; 1, if r is a variable.

The above set of constructions is sufficient for expressing many constructions based on ruler
and compass, but not all of them. For instance, an arbitrary line cannot be constructed by
the above construction steps. Still, we can construct two arbitrary points and then implicitly
the line going through these points.

3.1.1 Constructive Geometric Statements

In the area method, geometric statement have a specific form.

Definition 6: (Constructive Geometric Statement) A constructive geometric statement, is a
list S = (C1,Cy,...,Cy,G) where C;, for 1 < i < n, are elementary construction steps, and
the conclusion of the statement, G, is of the form Fy = Fs, where E; and E5 are polynomials
in geometric quantities of the points introduced by the steps C;.

We denote the class of all constructive geometric statement by C.

For a statement S = (C1,Co,...,Cy, (E] = E3)) from C, the ndg-condition is the set of
ndg-conditions of the steps C; plus the condition that the denominators of the length ratios
in 1 and Es are not equal to zero.

Note that the area method cannot deal with inequalities in its conclusion statement, G.

12



3.2 Properties of Geometric Quantities & Elimination Lemmas

We present here the properties of geometric quantities, required by the area method. We
follow the material from [2] [3 4], [19], but in a reorganised, more methodological form.
Properties of the Signed Area

For any points A, B, C and D, we have the following properties.

Lemma 1: Sapc = Scap = Spca = —Sacs = —Spac = —ScBa-
Lemma 2: Sypc =0iff A, B, and C are collinear.

Lemma 3: PQ || AB iff Spap = Sgag. i.e., ifft Spagr = 0.
Lemma 4: Sapc = Sapp + Sapc + Sppc-

Lemma 5: If points C' and D are on line AB, A # B and P is any point not on line AB

Spcp _ CD
then, e = S5

Lemma 6: Sypcp = Sapp + Spebp-

Lemma 7: Spupcp = Spepa = ScpaB = Spapc = —SapcB = —SpcBa = —ScBAD =
—SBapc-

Lemma 8: (EL1) (The Co-side Theorem) Let M be the intersection of two non-parallel lines

. PM _ S . PM _ S . QM _ SgaB
AB and PQ and Q # M. ThenltholdsthatQ:M—Sg’:?ﬁ—ﬁ,ﬁ—m.

Lemma 9: Let R be a point on the line PQ. Then for any two points A and B it holds that

SRAB = %SQAB + %SPAB-

Properties of the Ratio of Directed Parallel Segments

For any points A, B, P, and () we have the following properties.

.PQ _ QP _ QP _ PQ
Lemmalo.ﬁ— AB  BA  BA
. PQ _ _

Lemma 11: E—()1HP—Q
. PQ AB _
Lemma 12: a5 70 = 1.
. AP | PB
Lemma 13: St+E=1

Lemma 14: For any real number there is a unique point P which is collinear with A and B,

: AP _
and satisfies E=r

Since Spap and Sgap cannot both be zero, we always assume that the non-zero one is
the denominator. Also note that PQ # 0 since AB }f PQ.

The lemma EI]I] is the first of a set of important lemmas for the area method, called
elimination lemmas (EL). The proofs of any conjecture in C will be based in this lemmas.

13



Notice that the point M, which was introduced by a given construction, can be eliminated by
the substitution from the ratio of directed parallel segments by a ratio of two signed areas,
not involving M.

Lemma 15: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
Sapc = Spap + Spcp, Spap = Sppac = Spppc, and Spap = Spcp — Sacp =
Sppac-

Lemma 16: Let ABCD be a parallelogram, P and ) be two arbitrary points. Then it holds
that Sapg + Scrg = Sprg + Spprg or Spags = Sppgc-

Properties of the Pythagoras Difference

For any points A, B, C and D we have the following properties.

Lemma 17: Pyap = 0.

Lemma 18: Papc = PcBa.

Lemma 19: Pspa = 2@2.

Lemma 20: If A, B, and C are collinear then, Papc = 2BA BC.

Lemma 21: Papcp = —Papcs = Peapc = —Ppcpa = PcpaB = —PcBap = Ppcpa =
—PpABC-

Lemma 22: (Pythagorean Theorem) AB | BC iff Popc = 0.
Lemma 23: AB | CD iff Pacp = Pacp or Pacsp = 0.

Lemma 24: Let D be the foot of the perpendicular from a point P to a line AB. Then, it

holds that . _ _
AD  Ppap AD  Ppap DB  Pppa

DB Pppa’ AB 94B2 AB 94ARB

Lemma 25: Let AB and P(Q be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY _Ppap  PY _ Ppap QY _ Poas
QY Poa’ PQ Prags’ PQ Prags

Lemma 26: Let R be a point on the line PQ such that r; = llj;g, ro =
A, B, it holds that

3

. Then, for points

Prap = m1PgaB +1m2PpaB
Parp = m1PagB +1m2Papp —m1m2PpoP -

Lemma 27: Let ABCD be a parallelogram. Then for any points P and @), it holds that

Parg +Pcpg = Parg+ Pprg <& Pareg = Pprcq case 1
Prag +Prcq = Prpq+Pprpq+2PpaD case 2

14



Elimination Lemmas

Considering the constructions steps we need only to eliminate points introduced by four con-
structions (ECS2 to ECS5), from three kinds of geometric quantities.

Lemma 28: Let G(Y') be one of the following geometric quantities: Sapy, Sapcy, PaBy,
or Papcy for distinct points A, B, C', and Y. For three collinear points Y, U, and V it
holds

(3.1) GY) = ?V/G(V) + ?‘;G(U).

The above result follows from lemmas [0] and 25] Note that, given lemmas [T} [7] [I8] 21] all
signed areas and Pythagoras differences (not of the form P4y p) involving Y can be reduced
to quantities of the form Sapy, Sapcy, Pay, or Papcy -

We call G(Y) a linear geometric quantity for the variable Y. Elimination procedures for
all linear geometric quantities are similar for constructions ECS2 to ECS4.

We now present the set of elimination lemmas that in conjunction with the already pre-
sented lemma EI[T] are the base for the area method’s algorithm.

Lemma 29: (EL2) Let G(Y) be a linear geometric quantity and point Y is introduced by
the construction (PRATIO Y W (LINE U V) r). Then it holds

GY)=GW)+r(GV)—-GU)).

Lemma 30: (EL3) Let G(Y) be a linear geometric quantity and point Y is introduced by
the construction (INTER Y (LINE U V) (LINE P Q). Then it holds

_ SUPQG(V) — SVPQG(U)
Supvq

G(Y)

Lemma 31: (EL4) Let G(Y) be a linear geometric quantity (# Payp) and point Y is in-
troduced by the construction (FooT Y P (LINE U V)). Then it holds

GY) = PPUVG(V%;/Z]’PVUG(U)_

Lemma 32: (EL5) Let G(Y) = Payp and point Y is introduced by the construction (FooT
Y P (LINE U V)) or (INTER Y (LINE U V) (LINE P Q)). Then it holds

G(Y) = ZgZZG(V) n Zj UG(U) - PPU;;VZ]DPVU.

Lemma 33: (EL6) Let point Y be introduced by (PrRATIO Y W (LINE U V) r). Then it
holds:

Payp = Pawp + r(Pave — Pavs + 2Pwuv) — (1 — r)Puvu.

15



Lemma 34: (ELT7) Let point Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:

,
SaBy = Sapp — ZPPAQB.

Lemma 35: (EL8) Let point Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:

Papy = Papp —4rSpags-

Lemma 36: (EL9) Let point Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds

Pays = Papp + r*Ppop — 47(Sapq + Sppg)-
Now we consider how to eliminate points from the ratio of directed parallel segments.

Lemma 37: (EL10) Let Y be introduced by (INTER Y (LINE U V) (LINE P Q)). Then it
holds

i ScprpQ
CD

éigf‘& otherwise
CUDV

AY{ SAPQif As on UV

Lemma 38: (EL11) Let Y be introduced by (Foot Y P (LINE U V)). We assume D # U;
otherwise interchange U and V. Then it holds

2An otherwise

Ay | Lpean if Aison UV
CD

Lemma 39: (EL12) Let Y be introduced by (PRATIO Y R (LINE P Q) r). Then it holds

AY P9 if Aison RY

otherwise

Lemma 40: (EL13) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds

Va W if Aison PY
CD | Parq

5 otherwise
CPDQ

The information on the elimination lemmas is summarized on table [3.11

3.3 Rigorous Proofs

3.3.1 Proof of the Properties of the Ratio of Directed Parallel Segments

In the following we will present all the proofs of the lemmas presented above. To a better
reading, the statements of the lemmas will be repeated.
We assume A # B whenever needed.

16



Geometric Quantities
Pavye | PaBy Papcy SaBy SaBcy Ay | AV
CD BY
£ | ECcs2| ELs EL3 EI1f10| | ELI
= 2/ ECS3 | EL5 B4 Elf11
§5 ECS4 | EL6 Bl Erf12
© | ECS5 | EL9 ELS EL7 EIj13
Elimination Lemmas

Table 3.1: Elimination Lemmas

3.3.2 Proofs of the Properties of the Signed Area
For any points A, B, C, and D, it holds that

Lemma 1: Sppc = Scap = Spca = —SacB = —SBac = —ScBA-

Proof of Lemma (1| (Geometrography Coefficient of Simplicity)
Initial Constcruction

N

A B

CSeq = 9=3D+6C
CFgq = 6

SaBc = Scap = SBca

e 1 x GS, application of a definition for the area method quantities, Sapc = Scap =
Spcoa, the triangles have the same orientation.

Sapc = —SacB = —Scpa = —Spac
e 1 x GS, application of a definition for the area method quantities, Sapc = —Sacp =
—ScBa = —SBac, the triangles AACB, ACBA and ABAC have different orientation
from AABC.

Geometrography for the demonstration: 3D + 6C + 1GS.

CSproot = 10=3+6+1
AMI‘II{ CSgel = 9

Lemma 2: Sypc =0iff A, B, and C are collinear.
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Proof of Lemma [2| (Geometrography Coefficient of Simplicity)

Required constructions:
C

CSgq = 11=3D+8C
CFya 6

1 x AS, the application of absolute value;

1 x GS, the definition of the signed area;
e 1 x AS, multiplication property (ab=0=a=0Vb=0);

e 2 X S, a line as a degenerate triangle;

Geometrography for the demonstration: 3D 4+ 8C + 2AS + 3GS

CSproof = 16=3+8+2+3
AML‘Z{ CSga = 11

Lemma 3: PQ || AB iff Spap = Sqas, i.e., iff Spagr = 0.

Proof of Lemma (3| (Geometrography Coefficient of Simplicity)
Initial Construction

P Q

I
I
I
I
I
I
I
I
I
I
1
H

CSgq = 15=3D+12C
7

Q

&3
®
=2

Il
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Case 1: P | Q iff Spap=3Sgan
e sc=15,cf =7, initial construction.
e 1 x GS, the definition of the signed area, APAB and AQAB have the same orientation.

e 1 x GS, geometric definition, parallel lines (Euclidean Geometry).

e 1 x GS, the definition of the signed area, APAB and AQAB have the same orientation
and [APAB|= AB-PH' = PH" - AB = |AQAB|.

e 1 x GS, the definition of the signed area, APAB = %Eh’ and AQAB = %Eh”.
e 1 x AS, property of multiplication %Eh’ = %Eh”.

e 1 x GS, geometric definition, parallel lines (Euclidean Geometry).

Geometrography for the demonstration: 3D + 12C + 5GS + 1AS

CSproot = 21=15+5+1
AMI@casel { ngcl — 15

Case 2: P | Q iff Spagp=0
e sc=15,cf =7, initial construction.
e 1 x GS, definition of the area method, Spagp = Spag + SpgB-

e 1 x GS, geometric definition, parallel lines (Euclidean Geometry), PQ || AB, implies
n =n".

2 x GS, definition of the area method, |Spag|= 3 PQR = $PQN = |Spqp| and opposite
direction Spag + Spgp = 0.

1 x GS, definition of the area method, Spagr = Spag + SpgB-

1 x AS, addition elementary property, Spag + Spor = 0= Spag = —SpP@B-

e 1 x AML;y, application of lemma 1, —-Spga = —SpgB-

1 x AS, definition of signed area of a triangle, —%mh’ = —%TQh” .

1 x GS, geometric definition, parallel lines (Euclidean Geometry), h’ = h” implies
PQ | AB.

Geometrography for the demonstration: 3D + 12C + 6GS + 2AS + 1AML4

CSproof = 33=15+6-+2+ 10
A.MI@(_‘,aSe2 { CSgcl — 15

Lemma 4: Spspc = Sapp + Sapc + Spse-
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Proof of Lemma 4] (Geometrography Coefficient of Simplicity)
Initial C%nstruction

17

CSga 10
CFy 8

e 4 x =S, the definition of the signed area, Sagp = a, .. .;

4 x GS, the definition of the signed area, Sapc =a +0b,..;

1 x AS, distributive property of multiplication over addition —(d + ¢) = —d — ¢;
e 2 x AS, the associative property of addition (a +d) —d =a+ (d —d),. . ;
e 2 x AS, the property of simetric elements, d —d =0, .. .;

e 2 x AS, the property of neutral element of addition, a +0 = a,.. ..

Geometrography for the demonstration: 4D + 6C + 8GS + 7TAS

CSproot = 25=10+8+7
AMI@{ CSpr = 10

Lemma 5: If points C' and D are on line AB, A # B and P is any point not on line AB

Spcp _ CD
then, Spap ~ AB’

Proof of Lemma [5| (Geometrography Coefficient of Simplicity)
InitiaLConstruction

CSger = 11=3D+8C
CFega = 10

|DC|x|PS|
2

e 2 x GS, the definition of the area of a triangle, |Spcp|= and |Spap|=

|AB|x|PS].
2 I
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|DC| x| PS| N
L . ISpep|  PXIESL 55 P52
[ ] = — —_— = — N
1 x AS, the division of fractional numbers, Spap] AP [AB|x[PS|x2’
. : ISpcp| _ |DC|x|PS|x2 DC
[ ) = — — = |=|:
1 x AS, arithmetic elementary property, Spas] — [AB|x|PS|x2 5

2 x GS, the definition of signed area and signed segments, APCD and APAB have
different orientations, and CD and AB have opposite directions (for any C' and D in

: _Spcp _ _CD.
line AB), el = —==;
e 1 x AS, application of an arithmetic elementary properties, g}’j ig = %

Geometrography for the demonstration: 3D 4 8C + 4GS + 3AS
CSproof = 18=3+8+4+43

AMI{S]{ CSpa = 11
Lemma 6: Sapcp = Sagp + Sgep.

Proof of Lemma @] (Geometrography Coefficient of Simplicity)
Initial Construction

(Sga = 10=4D +6C
CFgq = 8

e Sapcp = a+ b+ c+d, definition of area of triangles, 1 x GS

o Sapcp = (a+0b) + (¢ + d), associativity of addition, 1 x AS

e Sapcp = Sapp + Spop, definition of signed area of triangles, 2 x GS
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Geometrography for the demonstration: 4D + 6C 4+ 1AS + 3GS.

CSproof = 14=10+1+3
AMI@{ CSga = 10

Lemma 7: Sypcp = Specpa = ScpaB = Spapc = —SapcB = —SpcBa = —ScBAD =
—SBADC-

Proof of Lemma [7] (Geometrography Coefficient of Simplicity)
Initial Construction (definition 4)

CSgq = 16=4D+12C
CFg = 8

e Sapcp = Sapc + Sacp, definition 4] 2 x GS

e Sapc+Sacp = Spep+SBpa, area of triangles with the same orientation (definition ,
2 x GS

e Sgcp +SBpaA =SBCDA, deﬁnition@, 2 x GS

Geometrography for the demonstration: 4D + 12C + 6GS

CSproof = 22=16+6
AMIm{ CSgt = 16

Lemma 8: (EL1) (The Co-side Theorem) Let M be the intersection of two non-parallel lines

: PM _ Spap. PM _ Spap . QM _ Sgas
AB and PQ and Q # M. Then it holds that OM — Soap’ PQ — Sraos’ PQ — Sraos’

Proof of Lemma |8 (Geometrography Coefficient of Simplicity)
Initial Construction
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CSegar = 14
CFga = 8

PM __ Spasp

Case 1 Equality: oM = Soan

1 x AMLy4, application of lemmathere exist a unique point such that, % =1,

2 x AMLs, application of lemma [5, the points A, B, M and R are collinear and

: Spvr _ MR SomMRrR __ MR
P and Q are not on line AB so, ZZAE = = and Soan — AB

2 x AS, application of an arithmetic elementary properties, ‘?;% =1 Spyr =

SpaB _ SPMR

SoMR
» SgaB T SQMR’

SpAB

o SpPMR _— SRPM.
2 x AML,, application of lemma Sorr — Sro’

SpaB, =14 Somr = Spag, that is

e 1 x AMLs5, application of lemma ggigx = g;%;

B — DM
B QM "’

e 1 x AS, application of associativity of equality, gg ‘:

Geometrography for the demonstration: 4D+10C+3AS+2AML1+3AML5+1AML14

AMLs case1 { CSproof = 84=14+3+(10+9) + (18 +11+11) +8

CSga = 14
v, PM _ Spap
Case 2 Equality: 70 — Sraos
o CSproof = 84, first part of the proof, g:% = gg;‘g;
e 2 X (AS 4+ GS), application of a definition for the area method quantities and
i ; PM — SpaB .
properties of equality, “FG DI — “SraontSran’

2 x AS, properties of equality, PM(—Spagp + Spap) = Spap(—PQ + PM);

2x AS, application of an arithmetic elementary properties, —PMSp AQ B+PMSpap =
~SpaPQ + SpapPM

1 x AS, properties of equality, *WSPAQB = —SpapPQ;

PN _ Spap.
PQ SPAQB

1 x AS, properties of equality,

Geometrography for the demonstration: 1x previous demonstration + 2GS + 8AS.

CSproof = 94 =84+2+8
AMLS,caseZ { ngcl - 14
Case 3 Equality: % = siQAZBB
o CSproof = 84, first part of the proof, g;% = ggﬁg;
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e 2 x (AS + GS), application of a definition for the area method quantities and

properties of equality, Spagp=Sagp _ PQ_MQ.

SqgaB QM
e 2 x GS, application of a definition for the area method quantities, W =
PQ+QM
QM

e 2 x AS, properties of equality, QM (Spags + Sgar) = (PQ + QM)Sgas;

e 2x AS, application of an arithmetic elementary properties, QMSpagp+QMSgas =
PQSgap + QMSgas;

e 1 x AS, properties of equality, QM Spagr = PQSoaB;

SpaQB PQ

e 1 x AS, properties of equality,

)

SqgaB QM
e 1 x AS, properties of equality, Si QA“;BB = %.

Geometrography for the demonstration: 1x previous demonstration + 4GS + 9AS.

CSproof = 97=84+4+9

AMLS,caSe3 { ngcl = 10

Lemma 9: Let R be a point on the line P@Q. Then for any two points A and B it holds that
_ PR RQ
SraB = 555QaB + F5SPAB-

Proof of Lemma @] (Geometrography Coefficient of Simplicity)
Initial Construction:

CS,q = 22=4D +18C
CFpa = 8

e s = SAppQ, initial construction;
o 1 x GS, areas of triangles with the same orientation, Srap = s — SarQ — SBPER;

e 1 Xx AMLqy4, lemma IFD);S =7
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SarqQ _ RQ.
e 1 x AMLs, lemma Sane _ AQ,
. . . RQ _ PQ-PR.
o 1 x GS, segments with the same orientation, 76 = o
e 1 x AS, algebraic simplification, WP;Q}TR =(1-r);

1 x AS, algebraic simplification, Sarg = (1 — r)SapQ;

1 x AMLs, lemma ggiig = g;g;

1 x AS, algebraic simplification, Sppr = rSpPQ;
e 1 x AS, algebraic simplification, Spap = s — (1 — r)Sapg — rSBPQ;

e 2 x GS, areas of triangles with the same orientation, Spap = s — (1 — r)(s — Spap) —
r(s — SQaB);

e 2 x AS, algebraic simplification, Sgap = s — s +1rs +Spap — rSpap — rs +r8gaB;

3 x AS, algebraic simplification, Sgpap = rSgap + (1 — )SpaB;

e 2 x AS, algebraic simplification, , Spap = %S@AE + %SPAB;

Geometrography for the demonstration: 4D 4+ 18C +4GS +11AS + 1AML14 + 2AML5

AMLg CSproof = T4=224+4+11+8+ (18 +11)
CSgar = 22
.PQ_ QP _ QP _ _PQ
Lemmalo.ﬁ— = = e = — k.

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

/C\
A B
CSga = 11=3D+8D
CFga = 7
e 1 x GS, the definition of ratio of parallel diagrams, % = %,
. . QP _ QP
e 1 x AS, algebraic simplification, = =%

25



The other equalities have the same coefficient of simplicity value.

Geometrography for the demonstration: 3D 4+ 8C + 1GS + 1AS

CSproof = 13=11+1+1
AML”’{ CSga = 11
Lemma 11: % =0iff P=Q.

Proof of Lemma [11] (Geometrography Coefficient of Simplicity)
Initial Construction

pPQ

CSg = 6=4D+2C
CFg = 8

=
SR

=0=>P=Q

e 1 x AS, algebraic simplification. % =0= PQ =0.

e 1 x GS, the definition of length of a segment, PQ =0 = P = Q.

=
=id

=0<P=Q
e 1 x GS, the definition of length of a segment, P = Q = PQ = 0.

e 1 x AS, arithmetic elementary property, % =0« PQ =0, it is assumed that
A # B.

Geometrography for the demonstration: 4D + 2C + 2AS + 2GS

CSproof = 10=6+2+2
AML proo
11{ CSeq = 6
. PQ AB _
Lemma 12: a5 70 = 1.

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction
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i B
CSgar = 11 =3D+8C
CFga = 7
it ; PQAB _ . . 1
e 2 x GS, the definition of ratio of parallel segment, a5ro =T

e 1 x AS, arithmetic simplification, r - % =1.

Geometrography for the demonstration: 3D 4 8C 4 2GS + 1AS.

CSproof = 14=11+2+1
AML‘E]{ CSpa = 11

Lemma 13: + PB _ 1.

==

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

Py
A1 Bl
P
As B>
Ps

Ag BB
(Sgq = 15=9D +6C
CFga = 18

1 x GS, the definition of ratio of parallel segment, P;, A1, By, are collinear;

1 x GS, the definition of signed segment, A1 P; + P,B1 = —P1A; + P, By;

e 1 x AS, arithmetic elementary property, —Py Ay + P\ By = A1, By;

e 1 x AS, arithmetic elementary property, Ao Py + PoBy = As, Bo;

1 x GS, the definition of signed segment, A3Ps; + P3Bs = A3P3 — B3 Ps;

e 1 x AS, arithmetic elementary property, A3Ps — B3P3 = As, B3.
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Geometrography for the demonstration: 9D 4 6C + 3GS + 3AS

CSproof = 21=15+3+3
AML‘B‘{ CSgel 15

Lemma 14: For any real number there is a unique point P which is collinear with A and B,

; AP _
and satisfies E=r

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

CSga = 5=3D+2C
CFgar = 6

e 1 x GS, bijection between the real numbers and the real line;

e 1 x GS, the definition of ratio of directed parallel segments, % =

e 1 x AS, arithmetic elementary property, % =r;

Geometrography for the demonstration: 3D + 2C + 2GS + 1AS

CSproof = 8=5+2+1
AMI@{ CS1 = 5

Lemma 15: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
Sapc = Spap + Spcp, Spap = Sppac = Spppc, and Spap = Spcp — Sacp =
Sppac-

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction
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CSga = 30 =4D +26C
CFga = 8

1. 1 x AMLg, by application of lemma AD || BC < Sapc = Spac;
2. 1 x AMLg, by application of 1emma PS || CD < Sppc = Sspe;

3. 1 x AMLg, by application of lemma [I] —Spcp = Spes;

4. 1 x AS, algebraic simplification, Spcp = —Spcs;

5. 1 x AMLg, by application of lemma PS || AB < Spap = Ssap;

6. 1 x AMLg, by application of lemma AD || BS & Saps = SpBs;

7. 1 x AMLg, by application of lemma[I|Ssap = Saps so, Spap = Spps;
8. 1 x AMLg, by application of lemma [l Sspc = Spcs;

9. 2 x AS, by steps 2, 7 and 8, Spap — Sppc = Spps — Spcs;
10. 1 x GS, by the definition of areas of triangles, Spap — Sppc = Spac;
11. 1 x AMLg, by application of lemma |1} —Sppc = Spcp;

12. 1 x AS, by 1 and 10, Sapc = Spap + Spcp.

Geometrography for the demonstration: 4D + 26C + 4AS + 1GS + 4AMILg+ 4AMILg

CSproof = 138=30+4+ 1+ (21 +3 x 15) + (10 + 3 x 9)
AML'EJ{ CSga = 30

Lemma 16: Let ABCD be a parallelogram, P and ) be two arbitrary points. Then it holds
that Sapg + Scprg = Serg + Sppg or Spags = Sppgc-

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction
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CSga = 39=75D +34C
CFgq = 10

—_

. 1 x AMlg, by lemma@ since O is the midpoint of AC, Spopg = %SCPQ + %SAPQ;

. 1 x AMLg, by lemma@ since O is the midpoint of BD, Sopg = %SDPQ + %SBPQ;

[\]

3. 1 x GS, given O is the midpoint of AC, Sppg = %SCPQ + %SAPQ;

4. 1 x GS, given O is the midpoint of BD, SOPQ = %SDPQ + %SBPQ;

t

. 1 x AS, by S‘ceplgl7 2Sopg = Scprg + Sap;

(@)

. 1 x AS, by step 2Sopq = SppPq + SBPQ;

7. 3 x AS, by steps 9] [f| and commutative property, Sapq + Scrq = Sppg + Sppg U

Geometrography for the demonstration: 5D + 34C + 2AMILg + 2GS + 5AS

CSproof = 142=39+4 (74+22)+2+5
AMIW{ CSga = 39

3.3.3 Proofs of the Properties of the Pythagoras Difference

We begin by introducing the concept of co-area of triangles [3].

Definition 7: (Co-area of a triangle) Given a triangle ABC, we construct the square ABPQ
such that Sapc and Sappg have the same sign (see figure .

Figure 3.1: Co-area of a triangle
The Co-area of a triangle ABC, Capc, is a real number such that

Con_ { VACQ, if ZA <00
ABC = — 7 ACQ, if LA > 90°;

where \7ABC' is the area of triangle ABC.

-2
For a triangle ABC we have Capc + Cpac = WBPC + VACQ = % = Ag , Where
OABCD is the area of the square ABC'D
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Considering the different permutations of the vertices of the triangle ABC we can conclude
that, Papc = 4CaBc.

Geometrography of Definition
Initial Construction

CSga = 31=3D+28C

CFg = 6

1. 2 x GS, application of co-area definition, Capc + Cpac = VACQ + vV BPC;

2. 2 x GS, definition of area of a triangle, EQCT + ﬁ2ﬁ;

3. 1 x GS, definition of square, AQCX +

4. 1 x AS, addition of racional,

5. 1 x AS, distribution of addition over multiplication, @;
6. 1 x GS, addition of length of segments, EQW;
7. 1 x GS, definition of square, %;

AB°.

8. 1 x GS, definition of square,

Geometrography for the demonstration:

CSproof = 41=31+8+2
AMDM{ CSp = 31

Lemma 17: Paap = 0.

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction
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. — B

A

CSga = 4=2D+2C
CFp = 4

1. 1 x AMDyg, by definition of Pythagoras Difference, Paap = A4 + A - EQ;

2. 1 x GS, a degenerate segment (a point) has zero length, Paap =0+ A — TCQ;
3. 1 x AS, definition of square of a real number, CA® = OA x CA;

4. 1 x GS, by definition of length of oriented segments, CA x CA = (—AC) x (—AC);

5. 1 x AS, definition of square of a real number, AC” = (—AC) x (-AC);

. 1 x AS, by and addition of symmetric elements, Paap =0+ TCQ — @2 =0.

(@)

Geometrography for the demonstration: 2D + 2C 4 3AS + 2GS + 1AMDy

CSproot = 18 =4+3+2+9
Amtan{ g

Lemma 18: Papc = PcBa.

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

.

A

CSger = 9=3D+6C
CFgal 6

1 x AMDyg, by definition of Pythagoras difference, Papc = AB° + OB’ - EQ;

2 x AS + 1 x GS, by definition of square of a real number and definition of length of
oriented segments.,@2 = ﬁQ;

1 x AS, by commutativity of addition, AB° + CB- — AC° = CB° + AB" — CA";

1 x AMDyg, by definition of Pythagoras difference, B’ + AB° - CA° = Pcpa-
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Geometrography for the demonstration: 3D 4 6C + 3AS + 1GS + 2AMDp
CSproot = 31=9+34+1+(9+9)

AML‘E{ CSga = 9
Lemma 19: Pypa = 2@2.

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

V/”B
A

CSga = 4=2D+2C
CFga = 4

e 1 x AMDg, by definition of Pythagoras difference, Papa = AB° + AB° - ﬂ2;

e 1 x GS, given that a degenerate segment (a point) has zero length, Paps = AB° +
——=2
AB™ —0;

e 1 x AS, addition of two equal elements, Papa = 2 X AB°.

Geometrography for the demonstration: 2D + 2C 4+ 1GS + 1AS 4+ 1AMDy

CSproof = 15=4+14+1+4+9
AML‘E]{ CSpa = 4

Lemma 20: If A, B, and C are collinear then, Papc = 2BA BC.

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

%
A
CSgl = 6=2D +4C
CFg = 5

e 1 x AMDyg, by definition of Pythagoras difference, Papc = AB’ + 0B - @2;

e 3 x AS, by addition with zero, addition with inverse element and commutativity of
addition, AB” + BC" + 2AB BC — 2AB BC — AC’;
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1 x AS, square of a sum, (E—{—Bic’)2 —2ABBC — @2;

1 x GS, points A, B and C are collinear so AB + BC = AC, AC" — 2ABBC — AC";

e 2 x AS, commutativity and inverse element, —2AB BC;

e 1 x GS, definition of length of oriented segments, 2BA BC.

Geometrography for the demonstration: 2D 4 4C 4 6AS + 2GS + 1AMDy

CSproof = 23=6+6+2+9
AMLW{ CSpr = 6

Lemma 21: Papcp = —Papc = Peapc = —Ppcpa = PcpaB = —Pcap = Ppcpa =
—PpABC-

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

CSgl = 12=4D +6C
CFya 8

1 x AMDy, generalized definition of Pythagoras difference for a quadrilateral, Papcp =
AD’ +CB’ - DC’ — BA%;

e 5 x AS, commutativity of addition, —BA> — DC- + CB- + AD";

e 4x GS+4x AS, definition of length of a segment squared, _AB’-CD’ —i—WQ +m2;

1 x AMDy, generalized definition of Pythagoras difference for a quadrilateral, —Papcp.

Geometrography for the demonstration: 4D 4 6C 4+ 9AS + 4GS + 2AMDp

CSproof = 59 =124+9+4+ (204 14)
AMLW{ CSgq = 12

Lemma 22: (Pythagoras Theorem) AB | BC iff Papc = 0.
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Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

CSeq = 9=3D+6C
CFgq = 6

AB 1 BC = Papc =0

e 1 xGS, AB 1 BC implies A= B, B=C or AABC is a right triangle;
e (A= B)1x AMILgy, by lemma[l7 A= B = Papc(= Paac) = 0;

e (B=C)1x AMLrg+ 1 x AMIgg, by lemmas[I7and[18) B = C' = Papc(= Pcpa =
Pcca) = 0;

e (AABC is aright triangle) 1 x AMDyg, by definition of co-area (definition [7)).

AB 1 BC < Papc =0

e (A= B)1x AMIgy, by lemma[l7, Papc =0= A= B;

e 1 x GS, by definition of perpendicularity (degenerate case) AB L BC;

e (B=C)1x AMLgz+ 1 x AMIgg, by lemmasand Papc =0= B =C,
e 1 x GS, by definition of perpendicularity (degenerate case) AB 1 BC,

e (AABC is aright triangle) 1 x AMDyg, by definition of co-area (definition [7)).

Geometrography for the demonstration: 3D+6C+3GS+2AMDp+4AMIgz+2AMIgg.

CSproot = 228=9+3+2x41+4x18+2x 31
AMIW{ CSgal = 9
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Lemma 23: AB L CD iff Pacp = Pecp or Pacsp = 0.

Geometrography for the demonstration: 4 x D+6x C+9x AS+4 x GS +2 x AMDp

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

N
A 7]

CSgq = 10=14D +6C
CFyq = 8

e 1 xGS, AD* = AP’ + ﬁ{ Pythagoras Theorem;
e 1 xGS, TCQ — AP’ + P702, Pythagoras Theorem;
e 1 xXAS, AD* - PD° = @2, algebraic simplification;
e 1 X AS, AC° - PC° = ﬁ{ algebraic simplification;

e 1 x AS, AD’ - PD’ = @2 — P702, algebraic simplification;

o 1 xGS, BD> = BP’ +ﬁ2, Pythagoras Theorem;

e 1 xGS, BC® = BP + P702, Pythagoras Theorem;

e 1 xAS, BD’ —PD° = WQ, algebraic simplification;

o 1 x AS, BC* - PC° = ﬁ% algebraic simplification;

e 1 X AS, BD’ - PD =BC — P702, algebraic simplification;

e 2x AS, AD’ —AC’ =PD° - P7(3’2, algebraic simplifications;
e 2 x AS, BD’ — BiC2 —PD° - P702, algebraic simplifications;
e 1 X AS, AD’ ~AC* =BD* - 3702, algebraic simplification;

e 1 xAS, AC° - AD* =BC° - ﬁ{ algebraic simplifications;
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e 2 X AS, Ac’ + DC° —AD* = BC” + DO” - ﬁz, algebraic simplifications;

e 2x AMD, "Pycp = Ppcp, Pythagoras difference definition.

Geometrography for the demonstration: 4D 4+ 6C + 4GS + 14 x AS + 2 x AMDg

CSproof = 46=10+4414+2x9
A_M proo:
I‘m{ CSga = 10

Lemma 24: Let D be the foot of the perpendicular constructed from a point P to a line AB.
Then, it holds that
AD  Ppap

DB  Prea’ AB 94B° AB 4B

AD  Ppap DB  Pppa
5

Proof of Lemma (Geometrography Coefficient of Simplicity)

Initial Construction

(Sga = 7=3D+4C
CFyal

Il
o

Case 1:

° AD _ Ppasp
DB Pppa
AM PA’+BA’-PB’  pyip Defi

o 2 X e S T o thagoras Definition;

Dy, PB4 AR _PA ythag ;
PA°+(-AB)’—PB’
e 2x GS, —F———5—, signed segments definition;
PB"+AB"—PA

[, SRR E— S —
PA“+(AD+DB) +-PB collinearity of points A, B and D;

e 2x GS, 5 3 pR—
PB°+(AD”+DB) —PA
PA’+AD’+DB +2AD DB—PB"

e 2 x AS, el wrer 0P gquare of sum;
PB°+AD +DB +2AD DB—PA

=2 572, T2 T2 T T2 B2 — —_—2 =
o 2x GS, ADAPD +AD +DB +2ADDB-(DBE +PD) = Ap | DPso PA° = AD" + PD"
DB "+PD"+AD"+DB"+2AD DB—(AD +PD )
and PB° = DB + PD’;
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P
e 20 X AS, 2AD"+2AD DB

Lo real 22 - algebraic simplifications;
2DB"+2AD DB

9AD(AD+DB) e
e 3 x AS, SDB(ADIDD)’ algebraic simplifications;
AD C .
e 2x AS, 55 algebraic simplifications;
Case 2:
e AD _ Ppap.
TR a2
AB 2AB

12 532 552
e 1 x AMDyg, %, Pythagoras difference;

—_—2 =2 =2 =2 —=2 P P R R
¢ 2x GS, ADSPDBADE_PD. AR 1 DP so PA° = AD’ + PD° and PB° =
DB’ +PD;

——2 =2 =52
e 4% AS, AD"+BA"—-DB

e algebraic simplifications;
2AB2 g p b

)

Y N — =2 e
e 1 xGS, AD +(_(AZ%2B))2_DB , A,B and D are collinear, so AB=AD + DB;

=2 =2 =2 e ——3
1x AS, ADEAD 4D fA%ZAD DB=DB_ " s]gebraic simplification;
4 x AS, %, algebraic simplifications;
e 1 x AS, %, algebraic simplification;

o 1 xGS, 25%‘4273, A, B and D are collinear, so AB = AD + DB;

e 2x AS, %, algebraic simplification.

Case 3: The proof of the third equality is similar to this last one.
Geometrography for the demonstration:
1st 3D +4C 4+ 6GS + 27AS + 2AMDyg;
2nd 3D +4C + 4GS + 12AS + 1AMDy;

3rd 3D + 4C + 4GS + 12AS + 1AMDg,

CSproof = 58 =7+6+27+18, casel

CSproof = 32=7+4+12+9, case?2
AMIZZY g o = 32=7T4+441249, case3
CSgel = 7
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Lemma 25: Let AB and P(Q be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY _Pras  PY _ Ppap QY _ Poan
QY Pgap’ PQ Prage’ PQ Prags

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction

CSge = 20 =4D + 16C
CFgq = 8
Case 1:
e LY _ Pras
QY Poar
P .
* 2 x AMlIgg 7242, by lemmavmth A= QuB = Q;C = A;D := B, Poup =
Pg,ap and with A := P;; B := P;C := A; D := B,Ppa = Pp,aB;

e 1 x AMIgg, 2548 by lemma

e 2x AS, 2:511, by algebraic simplification;

e 2 x GS, :%, by definition of oriented segments;

e 1 xAS, %, by algebraic simplification;

e 1 x AMLg, g;’z;, by the co-side theorem, with P := P;;Q = Q1; M := A; A :=

A;B:=Y;

1 x AMLg, gj;gll, by lemma given the fact that AY || P1P and AY | Q1Q;

1 x AMLg, % by the co-side theorem, with P := P;Q :=Q; M :=Y;A:=Y:;B := A,
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Case 2:

bY _ Ppap
PQ Prags

e 1 xGS, W%@’ P, Y and () are collinear;

e 1 xGS, %Qiy, by definition of oriented segments;

2x AS,1-— %, by algebraic simplification;

1 x AMLgg, 1+ 7;?)‘:2, by the first equality;

e 2x AS, W, by algebraic simplification;

1 x AMLg, 224z |y lemma

PraB

Case 3: The proof of the third equality is similar to this last proof.
Geometrography for the demonstration:
1st 4D + 16C 4 2GS 4 3AS + 1AMDg + 2AMLg + 1AMIgg + 2AMIzg;
2nd 4D + 16C + 2GS + 4AS + AMLz+ AMILgga;

3rd 4D + 16C + 2GS + 4AS + AMLg + AMIgg,.

CS = 326=204+2+34+18+2x844+23+2x46
AMI@case 1 { é)éOOf - 20
gcl —

CSproot = 370 =20+2+4+ 18 + 326
AMI@case 2 { ngcl - 20

CS,; = 3710=20+2+44 18+ 326
AMI@case 3 { é)SOOf — 920
gel —

Lemma 26: Let R be a point on the line PQ such that r; = ]Ij;g, ro =
A, B, it holds that

3

. Then, for points

Prap = m1PgaB +1m2PpaB
Parp = 711Pagp +12Papp — r1m2Ppqp -

Proof of Lemma (Geometrography Coefficient of Simplicity)
Initial Construction
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CSga = 36=6D + 30C
CFga 13

Case 1:
® Prap = 11PgaB +12PpaB
o 1 x AML, Crap = 11CgaB + r2CpaB, by lemma (co-areas).
e 3 X GS, VARX2 =11 vV AQ X2 + 1o 7 AP X5, co-area definition.

3 x GS, AX22h1 = %AX;’” %%, triangle area definition.

e 2x AS, AXoh; = %AXghg + %AXth, algebraic simplifications.

e 4x AS h) = %hg + i;ghg, algebraic simplifications.

o 2 X AMIgg, hy = j2=2hy + f2=fLhg, by lemma 25 (twice).
® 2 X AS, hlhg — h1h3 = h1h2 — h3h2 + h2h3 — hlhg, algebraic simpliﬁcations.

e 2 X AS, hiho — h1thg = hihy — h1hs, by algebraic simplifications.

Case 2:
® Par = 11Pagp +1m2Papp — r1m2Ppop
——2 ——2 9 ——2 =92 ——2 ——2 ——92 ——9
e 3x AMDg, AR"+ BR" — AB" =r1(AQ" + BQ" — AB") + ro(AP" + BP" — AB") —
r1r2Ppgp, by definition of Pythagoras difference.
-2 =2 =2 ——9 2 ——2 =2 —2 S, P —)
e 8XAS, (AR"+AB"—BR")+2BR —2AB" =r((AQ"+AB"—BQ")+2BQ" —2AB")+
rg((ﬁ2 + AB° - ﬁz) + 9BP” — 2@2) —r1r2Ppgop, by algebraic simplifications.

e 3x AMDy, Prap +9BR*—24B° = rPoaB~+ri (2@2 —2@2) +7roPpaB —1-7“2(2@2 -
2@2) —r1172Ppgp, by definition of Pythagoras difference.

e 1 x AMIgg,, 1Pgap + r2Ppap + 2BR° — 2AB° = 1 Pgap + 1(2BQ° — 24B°) +
roPpaB + 7“2(2@2 — 2@2) — r11m2Ppqp, by the first equality.

e 4xAS, 9BR° —24B° = 1 (2?@2 — 2@2) —1—7‘2(2@2 - 2@2) —r11m2Ppqp, by algebraic
simplifications.
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1 x AMIg, 2BR° — 24AB° = r(2BQ° — 2AB°) + ro(2BP" — 24AB°) — 2r1r2AB", by
lemma [1O

e 6 X AS, ?R2 — EQ = r1?Q2 + T2ﬁ2 —(r1+ 7"2)@2 — rlrng, by algebraic simpli-
fications.

o 1 x AMDgg, BR — AB" =1\ BQ" + rsBP — AB" — r1r5PQ", by lemma
e 3x AS, BR’ = ZEBQ BQ + i pp BP %TQQ, by algebraic simplifications.

e 5 x AS, PiRm2 + RiQﬁ2 PiQBiR2 = PR RQ PQ, by algebraic simplifications.

+ 3x AMigg, PR(BZ’ +Q7') + TQ(BZ" + PZ°) - PQ(BZ’ + RZ") = PRRQTQ.
by lemma |22 we have BQ> = BZ" + QZ°, BR- = BZ° + RZ’, BP° = BZ" + PZ".

e 5x AS, (PR+ RQ — PQ)BZ’ + PRQZ’ + RQPZ’ — PQRZ’ = PRRQPQ, by
algebraic simplification.

e 1 x AMDyy, PRQZ + RQPZ’ -~ PQRZ = PRRQPQ, by lemma

« 3 x AMDyy, PRZQ’ + (RZ + 7Q) (PR + RZ)’ — (PR + RZ + 7Q) RZ" =
—PR(RZ+ZQ) (PR+RZ+QZ) by lemmauwe have: RQ = RZ + ZQ; PZ =
PR+ RZ; PQ =PR+ RZ + ZQ.

. 11><AS TRE +P7R W—FQTRW +ﬁ + PR’ E+2ﬁﬁm+ﬁ ZQ —

PRRZ “RZ'-RZ’ 7Q = PR’ RZ+PRRZ +PRRZZQ+PR ZQ+PRRZZQ+
PRZ Q , by algebraic simplification.

e 13x AS,2PRRZ 7ZQ =2PRRZ ZQ, by algebraic simplifications.
Geometrography for the demonstration:

1st: 6D + 30C + 6GS + 10AS + 1AMIz2 AMLgs;
2nd: 6D + 30C + 55AS + 6AMDg + 3AMIg + 1 AMIg + 3AMIgg + 1AMLgg,

CSproof = 745 =36 + 6 + 10 + 41 + 652
A_M proo:
120ece 1 { CSga = 36

CSproof = 1646 = 36 + 55 4 54 + 63 + 45 + 684 + 745
A.Ml:@:ase 2 { ngcl = 36

Lemma 27: Let ABCD be a parallelogram. Then for any points P and @), it holds that:

Parg +Pcpg = Parg+ Pprg & Parg = Ppprcq case 1
Praqg +Ppcq = Praq+ Prpg+2PpaD case 2

Before presenting the proof of this lemma we present the following lemma.
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Auxiliary Lemma 1 Let P and @ be the feet of the perpendiculars from point A and C' to
BD. Then Papcp = 2QP BD.

Geometrography of Auxiliary Lemma Aux]
Initial Construction

CSga = 19=3D+16C

CFgq = 6

1 x AMDg, Papcp =Papp —Pcpp, by definition

2x AMLgzg, Pascp = Ppep —Pgop, by lemma

2 x AMLgy, Papcp =2BPBD —2BQBD, by lemma

1x AS, Papcp =2BD (BP — BQ)

1xGS, Papcp = 2@@?

Geometrography for the demonstration: 3D +16C+1AS+1GS + 1AMDpg+ 2A Mg+
2AMlz3

CSproof = 179 =19+ 141+ 20+ 46 + 92

Auxiliary Lemma { oS 19
gel =

Proof of Lemma (Geometrography Coefficient of Simplicity)

Case 1 Papg + Pcprg = Prg + Ppprg < Parsg = Pprcq
Initial Construction
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CSgd = 19=9xD+10xC
CFyq = 18

Proof of the equivalence Papq + Pcopg = Prrg + Ppprg < Parsg = Pprcg

® Papg +Pcprg = Pepg + Ppprg & Pareg = Ppprcg

e 2xAMDyg, Parg+Pcrg =Prrg+Pprg & Parg—Psprg = Pprg—"Pcrg, by
definition

¢ 3x AS, Papg+Pcrg="Psrg+ Pprg < Parg + Pcrg = Perg + Pppro
Proof of the equality Paprg = Ppprcq

e 1 x AMLgy, Pappq = Ppagp, by lemma [2]]

e 1 x auxiliary lemma Pappg = 2QP DC, by auxiliary lemma

e 1xAS, Pappg=2QPAB, by hypothesis ABCD is a parallelogram, so AB = DC

1 x auxiliary lemma |I|, Papg = Pppgc, by auxiliary lemma |I|

1 x AMLgy, Paprpg = Pppcg, by lemma 21|

Geometrography for the demonstration: 9D+10C+4AS+2 Auxiliary Lemma [TH2AMDgH+

2AMIpy
CSproof = H39=19+4+ 358 +40+ 118
AM case 1 { Cpsogc;l — 19

Case 2 Ppag + Pprcq = Ppeg + Pprpg + 2PBAD
Initial Construction
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(Sga = 19=9xD+10xC
CFga 18

Prag + Ppcg = Ppeg + Pppg + 2PBAp, the equality to be proved
3x AS, 0=7Ppaq+Prcq—Prpq — Prpq — 2PBAD

4x AMDg, 0=PA +QA -PQ +PC +QC -PQ -PB -QB +PQ" -
PD° — QiD2 + P7Q2 —2Ppap, by application of deﬁnition

9xAS, 0=PA +QA +PC°+QC* - PB - QB —PD> - QD" - 2Pgap
8xAS, 0=AP +AQ°+CP +CQ* - BP' - BQ° -~ DP>—DQ" — 2Ppap

8SxAS, 0=AP —-AQ°+AQ°+AQ°+CP - CQ°+CQ°+CQ’ -~ BP +BQ" —
BO’ - BQ’+DP° +DQ> — DO’ — DO — 2Ppap

6xAS, 0=AP —AQ° +24Q° +CP° -~ CQ° +20Q° — BP° + BQ® — 2BQ" +
DP’ +DQ° —2DQ° — 2Pgap

SxAS, 0=AP —AQ°+CP —-CQ'-BP +BQ° —-DP° +DQ" +24Q° +20Q° —
9BQ” — 2DQ° — 2Pgap

8xAS, 0=AP +QP - AQ°+CP +QP -CQ° -BP° - QP +BQ° - DP" -
QP+ DQ° +24Q° +200Q° — 2BQ° — 2DQ° — 2Ppap

4x AMDg, 0=Papq+Pcrg—Psrg—"Pprg-+ 24Q° +20Q° - 2BQ° —2DQ" —
2Ppap, by definition

1 x AMIgg case 15 0 = 24Q° +20Q° — 2BQ” — 2DQ” — 2Ppap, by lemma

case 1

——2 =92 =2 ——2
2xAS, 0=AQ +CQ —BQ —DQ —Ppap

——=2 —=2 -2 —2 —=2 ——=2
2xAS, 0=AQ " +AB —BQ — (DQ"+AB" —CQ") — Ppap

5xAS, 0=DBA +QA -BQ — (CD"+QD" —CQ") — Pgap, given the fact
that ABCD is a parallelogram, AB° =0D

2x AMDg, 0= PBAQ — PC’DQ — Ppap, by definition
3xGS, 0=Cpag—Ccpg—Cpap, considering the co-areas [3]
3 X GS, 0= VAQXQ — VAQlXQ — VBAD

TxD+18xC, 0= AX5((h1 —hg)—h3), considering the square ABX;X,
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with CSgq = 25 = 7D + 18C;  CFgq = 14
01XGS, OIAXQXO
e 1xAS, 0=0

Geometrography for the demonstration: 16 x D 4+ 28 x C + 59 x AS + 8 x GS + 10 x
AMDg + 1 x AMIg7 case 1

CSproot = 740 =44+ 59 4+ 8490 + 539
AM caseQ{ CpSOgil — 44

3.3.4 Proofs of the Elimination Lemmas

Lemma 28: Let G(Y') be one of the following geometric quantities: Sapy, Sapcy, PaBy,
or Papcy for distinct points A, B, C, and Y. For three collinear points Y, U, and V it
holds

WG(V) + ZG(U).

(3.2) G(Y) = 7 —

Proof of Lemma (Geometrography Coefficient of Simplicity)

Case 1, G(Y) = Sapy:

Initial Construction

Ve

A B
CSgel = 14 =4D +9C
CFgr = 9
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G(Y)=3S8apy

1 x AMLy, Sapy = Syas,
1xAMLg, Sapy = %SVAB+%SUAB, by lemmaE U, V,and Y are collinear

2 x AMLy, Sapy = ZSapy + LLSapy by lemmall]
G(Y)=Z2G(V) + LLG(U)

by lemma

Geometrography for the demonstration:

5D + 10C + 3AMLg + 1AMl

CSproof
AMI@ase 1 { CSgCl

Case 2, G(Y) = Papy:

G(Y) =Papy

1 x AMLgg, Papy = Pya
1x AMLgg, Papy = %PVB/H—%PUBA by lemma U,V,andY are collinear

2 x AMIgg, Papy = %PABV + %PABU by lemmas

118 (= 14 + 30 + 74)

14
Y
W,

A B
CSge = 14 =4D +10C
CFpq = 9

by [T

Geometrography for the demonstration: 4D + 10C + 3AMILzg + 1AMlILgg

CS roof
AMI@:ase 2 { CpSgCl

Case 3, G(Y) = Sapcy:

852 (= 14 + 93 + 745)
14
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G(Y) =SaBcy

1 x AMDg, Sapcy = Sapc + Sacy,

(Sg = 15=5D +10C
CFgq = 11

e 2 X AS, Sapcy =Sapc +0+ 04+ Sacy

2x AS, Sapoy = (1 — (% + %))SABC + %SABC + XY

e 1 X AS, Supey =(1—-

by definition []

uv

_ Uy _ Y YV _ YV
2x AS, Sapcy = SaBc + 7754BC — GpSaBC + 77SaBC — FzSABC + Sacy

_ _ Y _Yv uy Yv
3 X AS, Sapcy = SABC — [754BC — 77SABC + F7S4BC + t>SABC + Sacy

Sapc + Sacy

UYLYV)%))SABC + %SABC + %SABC + Sacy

uv

e 1 xGS, Sapcy = (1 —1)XL)Sapc + %SABC + %SABC + Sacy, points U,

V e Y are collinear

2x AS, Sapcy = %SABC + %SABC + Sacy
1 x AMLg, Sapcy = %SABC + %SABC +Syac, by lemma
1 x AMlgg case 1, Sapcy =

uv

lemma case 1, U, V, and Y are collinear

e 1 x AS, Supcy =
e 2xX AS, Sapcy =
e 2 X AMDyg, Sapcy =

Yv

oy Yv oy Yv
TroaBc + 7SaBc + F7Sacv + FSacu, by

S Sanc + ESacy + 2L Sapc + 1eSacu
%(SABC +Sacv) + %(SABC + Sacu)
L 8ancv + 3-Sapcu, by deﬁnition

o G(Y) = ZG(vV) + Za)

Geometrography for the demonstration: 5D+10C+15AS+1GS+3AMDg+1AMLg+

1AMIgg(case 1)

AMI“E:ase 3 {

Case 4, G(Y) = Papcy:

CSproof
CSgal

206 (=144 15+ 1+ 48+ 10 + 118)

14
‘/
Y
C
U
A B
CSga = 15=5D+10C
CFgq = 11
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G(Y) = Papcy
1 x AMDyg, Papcy = Papy — Pcpy, by definition

2 x AMlgzg case 2, Papcy = %PABV + %PABU - (%PCBV + %PCBU% by
lemma 2§ case 2

3x AS, Papcy = i(Pasv — Pepy) + %(PABU — PcBu)

2 x AMDy, Papoy = %PABCV + %PABCU by definition

°
=

Geometrography for the demonstration: 5D + 10C + 3AS + 3AMDyg + 2AMIgg(case 2)

CSproot = 1781 (= 14+ 3 + 60 + 1074)
AMLES.... . { CSea = 14

Lemma 29: (EL2) Let G(Y) be a linear geometric quantity and point Y is introduced by
the construction (PRATIO Y W (LINE U V) r). Then it holds

GY)=GW)+r(G(V)—-GU)).

Proof of Lemma (EL2) (Geometrography Coefficient of Simplicity)
Initial Construction

U v -
W S Y
CSga = 14=4D +10C
CFga = 8

[ ]
"
>
;
Q
"
3
Q
©
+
3
Q
32
=
=
-
i
=
<
i
S
S
i
S
Wn
i
=

e 1GS, G(Y) =rG(S) + g) G(W), W,Y,S are collinear

49



Case 1, G(Y) = Sapy: By lemmas (Sapg = Srg + Sprg — Scrg)
Case 2, G(Y) = Papy: By lemma (case 1), (Papq = Perg + Pprg — Pcprq)

considering the parallelogram UVSW and the points W and Y we have G(S) = G(W) +
G(V)—-G(U).

1 x AMIgg, Case 1 or 1 x AM(case 1) Case 2 +1x AS, G(Y) =r(GIW)+G(V)—
GWU))+ (1 —=r)G(W), by lemma |16|or lemma |27, plus one algebraic operation.

e 2xAS GY)=rGW)+rG(V)—rGU))+ GW) —rG(W)
¢ 4x AS, GY)=rGW) —rGW)+r(G(V) —rGU)) + G(W)
e 2xAS, GY)=GW)+r(GV)—-rGU))

Geometrography for the demonstration:
Case 1, G(Y) = Sapy 4D +10C + 12AS + 1GS + 1AMILgg + 1AMIzg (case 1)

CSproof = 287 =14+12+41+ 142+ 118
AMIgy e { CSga = 14

Case 2, G(Y) = Sapy 4D +10C + 12AS + 1GS + 1AM (case 1) + 1A1\/I (case 2)

CSproof = 1418 =14 + 12+ 1 + 539 + 852
AMIgg (m1p) { (S = 14

Lemma 30: (EL3) Let G(Y) be a linear geometric quantity and point Y is introduced by
the construction (INTER Y (LINE U V) (LINE P Q). Then it holds

_ SupG(V) = SvpeG(U)

¢¥) Supvg

Proof of Lemma (ELJ3) (Geometrography Coefficient of Simplicity)
Initial Construction
/

P Y )
U

CSget = 10=4xD+6xC

CFgq = 8
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1 x AMIgg, G(Y) = ZZG(V) + ZLG(U), by lemma AMIgg

1xGS, G(V)=ZG(V) - Z6O)

1 x AMLg, case 2, G(Y) = SL2L G(V) — %G(U), by lemma AMlIg, case 2

~ Supvq

1 x AMLg, case 3, G(Y) = MG(V) — Svrg G(U), by lemma AMLg, case 3

~ Supvaq SupPvQ

1 x AS, G(Y) = SureG)=SvreGlU)

SupvQ

Geometrography for the demonstration: 4D4+6C+1AS+1GS+1AMIpg+1AMLg(case 2)+
1AMIg|(case 3)

CSproof = 321=10+1+1+ 118494+ 97
AM(E{ (?SC; = 10

Lemma 31: (EL4) Let G(Y) be a linear geometric quantity (# Payp) and point Y is in-
troduced by the construction (FooT Y P (LINE U V)). Then it holds

_ PruvG(V) + PrvuG(U)
Puvu

G(Y)

Proof of Lemma [31] (EIJ4) (Geometrography Coefficient of Simplicity)
Initial Construction
VL

P Y Q
"
CSgel = 10=4D +6C
CFga = 8

e 1x AMIgg, G(Y) = P25 G(V) + YLG(U), by lemma AMIgg

2 x AMlIgg, G(Y) = %G(V) + %G(U), by lemma AMlIzg, case 2 with A =
UB=V,D=Y

1 x AS, G(Y) _ PPUVG(‘;LLVZPVUG(U)

1 x AMIg, G(Y) = ZeevG0+PevuCl) - v jemma AMIg

Puvu ’
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Geometrography for the demonstration: 4D +6C + 1AS + 1AMIgg+ 2AMILgg(case 2)+
AMlgg

CSproof = 942=10+1+ 15+ 64 + 852
AM(E{ (I))SC; = 10

Lemma 32: (EL5) Let G(Y) = Payp and point Y is introduced by the construction (FooT
Y P (LiNe U V)) or (INTER Y (LINE U V) (LINE P Q)). Then it holds

Case 1
GY) = Pruv o/ n PPVUG(U _ Pruv xPrvu
Puvu Puvu Puvu

Case 2

S S S S
GY) = 2UPQ Gy SVPQ ) — SUP@ X Svpe X Puvy
Survo Supvo

S?]PVQ
Proof of Lemma [32] (ELJ5)) (Geometrography Coefficient of Simplicity)

Case 1 Initial Construction

U Y 1%
CSges = 7T=3xD+4xC
CFga = 6
-y Yv _ Uy YV
o 1 X AMIg, Payp = WPAVB + WPAUB v X WPUVU’ by lemma case 2,
with R:==Y,P :=U,(Q =V, for three collinear points Y, U, and V, we have r; = %,
_YV

r2 = 5> and Payp = rmPave + r2Pavs — rir2Puvu.

* 2x AMIgg, Payp = P2 Pavp + L LG Pavp — TP TG Pyyy, by hypothesis
point Y is the foot on UV of a line passing by P, then by lemma[24] cases 2 and 3, with

A=UD=Y,B=V

P P Ppyy xXP
o 1x AMIgy, Payp = P2 Payp + pEALPayp — PERZPEVU D,y by lemma 20, we

have that Ppyy = 2VOVU = 2VU° = 20V

P P P XP
o 1 X AS, Payp = BELLPyyp + PEVEP g — P Peve
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Case 2 Initial Construction

U / Y %
Q@

CSegs = 10=4xD+6xC
CFgar = 8
' Yv _y YV
e 1 X AMlpg, Pays = WPAVB + WPAUB v < W77UVU, by lemma case 2,
with R:=Y, P =U,Q =V, for three collinear points Y, U, and V, we have r; = %,
_YVv

9 and Payp = 11Pavp +rePavs — rir2Puvu

=

_ Supq SvrqQ Supqg Svpg .
e 2 X AMIE; PAYB = Survo PAVB + Svrva PAUB - mmPUVU, by hypothesm

point Y is the intersection of UV with PQ, then by lemmal(§ with A= P,B = Q, P =
U, Q=V,M:=Y cases 2 and 3

Svprg
SuprvQ

SuprgxSvprXPuvu
Pavp — g

s
e 1 X AS, Payp = SUUPPVQQ Paves +

2
UPVQ

Case 1 Geometrography for the demonstration: 3D +4C + 3AS + 1AMlILgg + 2AMLgg+

1AMlgg

CSproof = 1743 =7+3+ 23 + 64 + 1646
AM(E 5), casel{ Cpsogzl = 7

Case 2

Geometrography for the demonstration: 4D+6C+1AS+1AMILg, case 2+1AMIg, case 3+
1AMIgzg

CSproof = 1848 =10+14 94 + 97 + 1646
AM (EL5), case 2{ CpSgCl - 10

Lemma 33: (EL6) Let Y be introduced by (PRATIO Y W (LINE U V) r). Then it holds:
Payve = Pawn +1(Pave — Pavs + 2Pwuv) — (1 — r)Puvu.

Proof of Lemma (EL6) (Geometrography Coefficient of Simplicity)
Initial Construction
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wy __
ST
/ /
/ /
/ /
/ ‘.//
W\\\\\\ ///S\\ /////////3
\ //\\\\ N ///
\\ // /////\/::\Q”//
é/:::i——" B
A
with point S such that WS =UV.
CSgel = 16=6xD+10xC
CFgq = 12

o Payp =Pawn +r(Pave — Pavs + 2Pwuv) — r(1 — r)Puvu

o 1 x AMIg7 case 2> PauB + Pas = Pave + Pawp + 2Pyyw, By lemma [27, with
A=UB=V,C=8D=W,P=A4,Q =208

e 1 X AS, Pasp = —PavB + Pavp + Pawr + 2Pvuw

e 1xAMlgg, case 2, r1Payp+rePawp—rir2Pwyw = —Pavp+Pave+Paws+2Pvyw,

with r = W:f;,rg = %, that is 1 = % and ro = %JVS =1- % and by lemma
with R=S5,P=W,Q =Y
e 2x AS, "Payp = —12Pawp + r1r2ePwyw — Pav + Pave + Paws + 2Pyvuw

¢ 3xAS, 1Puyp=—(1-H)Pawp+ 11— 1)Pwyw — Pavs +Pave +Paws + 2Pvow
e 6xAS, Payp = —r(1—1)Pawp+(1— 1) Pwyw —rPavp+rPavs+rPaws+2rPyuw
® 5xAS, Payp = —rPawp+rPaws+Paws+(1—1)Pwyw —rPavs+rPavs+2rPvuw
o 4x AS, Payp = Paws + r(Pavs — Pavs + 2Pvow) + (1 = H)Pwyw

o 2x AMIg + 2 x AS, Payp = Paws +7(Pavs — Pavs + 2Pvow) + (1 — 1) Pwyw.
by lemma and the hypothesis % =r

e 3X AS, Payp =Pawn +7(Pave — Pavs + 2Pyuw) + (1 — %)TQ'PUVU

1x AMLgg, Pay s = Pawp+7(Pavs —Pavs+2Pwuv) —r(1—r)Pyvy, by lemmallg]

Geometrography for the demonstration: 6D + 10C + 24AS + AMIgg + 2AMIg +
AMlIgg + AMIG case 2

CSproof = 2807 = 16 + 24 + 31 + 350 + 1646 + 740
AMIgg (@19 { CSy = 16
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Lemma 34: (EL7) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:
T
Sapy = Sapp — ZPPAQB-

Proof of Lemma (EL[7) (Geometrography Coefficient of Simplicity)
Initial Construction

B

g

| |

| |

ul Jul

Al Bl Q
CSgq = 13=5xD+8xC
CFgq = 10

o Sapy = Sapp — 7PpagB
e 1 x AMLg, Sapy = Sapp + Sapry +Sppy, by lemma[d]
e 1 x AMLg+1x AS, Sapy = Sapp + Sppy — Spay, by lemmal]

Auxiliary equality 1

e 1 x AMILg, % = Sray gy lemma AA||PY

o 2% AMIy, $£4r = 274 1y lemma

o 1x AMIg, §ear = B4 bylemma

o 1x AMIgg,, $ear = Pure lemma

2PQ

e 1 x AMlgy, ‘;1;% = 7;;;17;9@, by lemma

S P
o 1x AMIgg, §24r = 7Ar 1y lemma

e 2 X AS, Spay = PQPQPAPQ

_r - 4Spgy
e 1 x AS, Spay = ;Papg, by construction Pora ="

Auxiliary equality 2

S
o 1x AMIg, £ = 20y lomma , BB, ||PY

S
e 2 x AMlI, gig)’j = S};}:Zl’ by lemma
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I x AMLg, $eor = Py lemma

o 1x AMlgg,, $£25 = 2252y lemma

P
1 x AMIg, $emv = 70 -y lemma

S P
1 x AMLgg, 22 = 2222 by lemma

2 x AS, Sppy = 22 Parq

4Spgy

e 1 x AS, Sppy = 7Pppg, by construction Porg ="

Resuming the main equation

o Sapy = SaBp +SpBy — Spay

o 1 x AS, Supy = Sapp + Spy — Papqg, by auxiliary equality 1
e 1 x AS, Sapy = Sapp + 1PBrq — 1Parg, by auxiliary equality 2
o 1 x AS, Sapy = Sapp + 1(Prg — Parq)

o 1 x AS, Sapy = Sapp — 5(Parq — PBpPQ)

e 1 x AMDg, Sapy = Sapp — §ParBg, by lemma

e 1 x AMILgy, Sapy = Sapp — 7Ppagn, by lemma

Geometrography for the demonstration: 5D+8C+11AS+1AMDg+3AML+2AMIg, +
1AMLg + 1AMLg + 2AMLgg + 1AMLgy + 2AMIgg + 2AMLgg,

CSproof = 404=13+11+4+30+42+25+18+30+59+92+ 20+ 64
AM(E{ é)sc; — 13

Lemma 35: (EL8) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:

Papy = Pap —4rSpags-

Proof of Lemma (E (Geometrography Coefficient of Simplicity)

Initial Construction
Biyq=——————- B
_ 4Spqy
/ "= Prar
Argp———- A
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CSgd = 13=5xD+8xC
CFga = 10

1 x AMDg, Pyppa=Pypa— Pppa, by definition [f

2x AMLgg, Pysrpa = Papy —Papp, by lemma

2x AS, —Papy = —Pyppa — Papp, by algebraic simplification
2x AS, Papy = Papp + Pyppa, Dby algebraic simplification

1 x AMLgy, Papy = Papp — Pppay, by lemma

1 x AMDg, Papy = Papp — (BP” +AY" — PA° —BY?), by definition [f

A% GS, Papy =Papp— (BBl +BiP +AA; + A1V’ — (AA," + PA;) — (BB; +
B1Y’)), by construction BP L B P

2xAS, Papy = Papp— (BB, +BiP + A4 +A)Y’ ~AA,"~PA,"~BB,"~BiY"),
by construction BP 1 By P

6 x AS, Papy = Papp — (B1P2 LAY -PA - B1Y2)
1 x AMDg, Papy = Papp — PB,pa,y, by definition

PpypA Y
2xAS, Papy =Papp— —p..—Prry

1 x AMDyg, Papy = Papp — LEEY PARY o by deﬁnition

Py py

1 x AMLgg, Papy = Pasp — %Pypy, by lemma

2 x AMLgy, Papy = PaBp — QPTD”?P;YZ@ LY Pypy, by lemma
2PY (PB;—PA;)

2x AS, Papy = Papp — o Pypy

PB-PA
2x AS, Papy =Papp — —5+Pvpy

2x AS, Papy =Papp - %PYPY

3x AS, Papy = Papp — L2 1;}%%141 POpy py

3x GS, Papy = Papp — 22AQTPQBp . iven that PQ L to PAy, PBy, PY the

SpQy

triangles APQB; and APQA have the same base and high, so the same area (similarly
to APQA; and APQA, also taking in account the orientation of the triangles

1x AMD@, Papy = Pagp — ‘?PAQQYB Pypy, by deﬁnition

1 x AMLgg, Papy = Papp — ‘Z‘% . QWZ, by lemma
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1hay )

Lx GS+1x AS,  Papy = Papp — 220 - 2A35

Spoy

o 1 xXAS, Papy =Papp— Spagn . 2(431%3/ )SPQy

SpqQy PO
AM _ _ Spags 4Spoy S )
o 1x 1{1__9]7 PABY - PABP SpPoy : 2(1/273PQP) PQY > by emma |19
48
* 3x AS, Papy =Papp —Spaqs - 45,0 )
. 48
e 2xAS, Puapy =Papp —4rSpagn, by hypothesis r = #{?}f'

Geometrography for the demonstration: 5D + 8C + 30AS +8GS + 1AMDg+ 4AMDg +
2AMLgg + 3SAMLgg + 2AMIgg + 1AMILgy

CSproof = 359 = 13 430 + 8 + 16 + 80 + 62 + 45 + 46 + 59
AM(E{ (?Sgd = 13

Lemma 36: (EL9) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds

Payp = Paps + r*Ppgp — 4r(Sapq + Spprq)-

Proof of Lemma (EL]9) (Geometrography Coefficient of Simplicity)
Initial Construction

Yo
B
/ =S
A
!
P Q
CSgq = 9=5xD+4xC
CFeq = 10

Auxiliary Lemma 2 Payp = Papp — Papry — Pepry + Pypy

Proof of Auxiliary Lemma Aux?2|

e PayB = Paprp — Papy — Pepy + Pypy
-2 ——9 ——9 ——9 ——9 9 9 9 9 9
e 5xAMDg, AY +BY —-AB = AP +BP - AB — (AP +YP -AY")—(BP +
YP' —BY)+YP +YP —YY", by definition3]
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e2xAS, AV +BY -AB° = AP  +BP - AB’ - AP  -YP + AV’ - BP" —
YP 4+ BY +YP +YP —-YY?

e 24xAS, AV - AV +BY' -BY - AB +AB = AP’ - AP’ + BP - BP" —
YP 4 YP - YP 4+ YP - VY
e 13xAS, 0=-YV

e I xGS, 0=0
Geometrography for the demonstration: 39AS + 1GS + 5AMDg =39+ 1+ 45 =85

Q.E.D.

1 x auxiliary lemmal2] Payp = Paps—Papry —Pppy +Pypy, by auxiliary lemmal|2]

I1xAMIgg (e1g), Pavs = Papp—(Papp—4rSpaqr)—Pppry+Pypy, by lemma AMLgg 1)
1 x AMLyz, Payp = Paprp — (0 —4rSpagr) — Pepry + Pypy, by lemma AMIgmn

¢ 1 X GS, Payp="Parp—(0—4rSpaq) — Prpry + Pypy, given that the quadrilateral
PAQP. colapse in a triangle.

1x AMLgy, Payp = Papp — (0+4r8apq) — Pry + Pypy, by lemmall]
e 2x AS, Payp=Pap—4rSaprqg — Ppy + Pypry,

IxAMLrn, Payp = Paprp—4rSapp—(Ppp—4rSppopr)+Pypy, bylemma AMIgn

e 1xGS, Payp=Papp—4rSapg)—(0—4rSppg)+Pypy, given that the quadrilateral
PBQP. colapse in a triangle.

1x AMLg, Payp = Papp —4rSapq — (0 +4rSppq) + Pypy, by lemma [}

e 2xX AS, Payp=Papp—4rSapqg — 4rSppq + Pypry

1 x AS, Payp = Paprp —4r(Sarq + Srq) + Pypry

1 x AMLgg, Pays = Parp — 4r(Sapg + Sprg) + 2PV, by lemma

7222m2
o 1 xAS, Payp=Par—4r(Sarg + Sppq) +2PY ok

P pp—t
e 1 X AS, Payp="Papp—4r(Sarq + Sprq) + 2PY 22%2'

2
e 3x AS, Payp =Parp—4r(Saprqg + Sprg) +2 (PY2PQ> pi;Q'

e 1 xGS, Payp=Parp—4r(Sarqg+Ssprq)+ QS%QY%P%% PQ L PY.

® 2x AS, Payp="Papp —4r(Sarqg + Spprq) + 48%@1/%7 PQ L PY.
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1 x AMLgg Pays = Parp — 47(Sapqg + Sprq) + 45123QY‘7>§Z,F

453
4x AS, Payp=Papp —4r(Sapg + Srg) + 4:—3 < 73'11:5;)

2 452 .
1 x AS, Pavp = Papp — 47’(SAPQ + SBPQ) + 4(43;@/)2 (7’;5:)’ by hypothesis

PpqQpP

r— 4$PQY
Prqr

22 2
r PPQP 4SPQY

e 2xX AS, Payp=Papp— 47"(5,413@ + SBPQ) + 4% Prop

4x AS, Payp="Papp — 4r(Sarq + Sprq) + r*Prqp

1xAS, Pays =Papp+ 7“277pr —4r(Sapg + SBPQ)

Geometrography for the demonstration: 5D+4C+85+3GS+24AS+2AMIg+2AMILgz+
2AMIgg + 1AMIgg (k1)

CSproot = 566 =9+ 85 + 3+ 24 + 20 + 36 + 30 + 359
AMIgg e { CSea = 9

Lemma 37: (EL10) Let Y be introduced by (INTER Y (LINE U V) (LINE P Q)). Then it
holds

2 _ ) Scppq
CD

‘g“‘i otherwise
CUDV

Ay { Sareif Ajs on UV

Proof of Lemma (ELj10) (Geometrography Coefficient of Simplicity)
Let B be a point such that AB = CD.

Casel If Aisnoton UV:

CSgar = 24=6xD+18xC
CFyq = 13
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1 x AMLEg1[], il = Savv. by lemma E Y is the intersection of AB and UV,

AB — SauBv’
two non-parallel lines

= Sauv by by lemma

Svave’

1 x AMLgy,

Svucvp

Ay
AB
1 x AMLzg, % = Sawv. | py lemma
iy
AB

Y — Savv by lemma

Scupv’

1 x AMI,

AY _ Sauv AY _ AY i
e 1 xGS, =5 = Sevnv D an by construction

Geometrography for the demonstration: 6D + 18C + 1GS + 1AMLEyq + 1AMIgg +
2AMLg1

CSproor = 379 = 2441+ 94+ 142 + 118
AMIG7 (E1fig), case 1 { CSr = 24

Case2 IfAisonUV:

CSgel = 25=5xD+20xC
CFga = 12

|« AMLpg, A7 — Siredp-Serady o E
X ELB S5 = Sar50 , by lemma

E _ SAPQX].—SBPQXO
* 2x G5, AB SaPBQ
. 3xAS, AT _ S
’ AB  SapPBQ

AY _ Sapq
1 x AMLg, 4% = Jire 1y lemma

S __
e 1 x GS, AY APQ AY _ AY

by construction

CD ~ Scppq’ CD  AB’

Geometrography for the demonstration: 5D + 20C +3AS 4+ 3GS + 1AMLg+ 1AMLE1gm

CSproof = 284 =2543+3+22+ 231
AM(E ,case2{ Cps(; — 95
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Lemma 38: (EL11) Let Y be introduced by (Foor Y P (LINE U V)). We assume D # U,
otherwise interchange U and V. Then it holds:

SAu otherwise
CUDV

AY Fpcanif Ais on UV
CD

Proof of Lemma (EL11) (Geometrography Coefficient of Simplicity)

Case 1 Initial Construction

P
B C
Y il
U A Yy D v
CSgar = 23=9xD+14xC
CFy = 18
e 1 x AMLgg, % = %, by lemma case 2

e 1 xAS, % = %, by construction AB = CD

~ Pcpc’

1 x AMIgg, 4% = Zeaz by lemmall)

e 1xAS, AV _ Ppan-0

o 1 x AMIgm, % = % , by lemma
¢ 1x AMDg, 4L = Prasn deﬁnition

4
b<

1 x AMIGA case 1 5= 7;5007;;7, by lemma case 1

AY _ Ppcap : TR
e 1 xAS, 56 = Pk, by construction AB = CD

Geometrography for the demonstration: 3AS+1AMDg+AMLrz+AMLIgg+1AMIga+
LAMIg7 a5e 1

CSproot = 647 =23 +20+ 18+ 15+ 32 + 539
AMlgg (& ,casel{ é)ngl — 93
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Case 2 Initial Construction

P
C
//°
5
U %G 1%
o’/
A
CSgq = 15=7xD+8xC
CFga = 16
__  OvSauv
e 1 x AMLgand 1 x AS, % = %, by lemma with lines CD and UV, case

1

AY _ COY  Savv
* 1xAS, 5F5=55 Soov

1 x AMLg, AY _ Scuv . Savv by lemma with lines AC and UV, case 2

CD ~— Scupv Scuv’

AY _ Sauv
o 1 X AS, CD =~ Scupv

Geometrography for the demonstration: 7D +8C+3AS +1AMIgcase 1 + IAMUIg|case 2

CSproof = 196 =15+ 3+ 84+ 94
AMIgg (ELfiT),Case 2 { CSe = 15

Lemma 39: (EL12) Let Y be introduced by (PrRATIO Y R (LINE P Q) r). Then it holds

+r
AY %5 if Aison RY

= — PiQ

CD SAPRQ

ScpPDQ

Sl

otherwise

Proof of Lemma (ELj12) (Geometrography Coefficient of Simplicity)

Case 1 Initial Construction

P Q
_ RY
"= 7q ¢ D
O O
R A Yy
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CSgq = 24=4xD+20xC

CFp = 11
- A
e 1xAS, 4L-I2
PQ
av
T ==+r—r
e 1xAS, 4X=Ie,
PQ
iy Y _RY
e 1xAS, AL _ra'rgirg
PQ
_ AY, FAAY_FAAY
e 1 xGS, % = &9~ we are considering oriented segments, so there
PQ

is no loss of generality

e 1xAS, %: e}
7o
__ AY4RA-RA
e 2xAS, 4L T8
7Q
RALAY RA
e2xAS, A -T2 79
7Q
. B _EA
¢ 1xGS, Z4L=I7
7Q
—_ r+£
¢ 2xGS, 4L- 2t
D
AR
=+r
e 1xAS, 4X=I%
<

Geometrography for the demonstration: 4D + 20C + 9AS + 4GS

CSproof = 37=24+9+4
AMlfzg) (E1[iZ),Case 1 { CSp = 24

Case 2 Initial Construction

T:Q a/ﬁ
PQ

C
T Y
S
A
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CSgal = 24=4xD+20xC
CFega = 17

AY S
1 x AMI@Case 2, 5= &fﬁ’ by lemma case 2.

e 2xGS, AY _ Sagr by construction AS = CD and RT = PQ, and by definition
of Scppg as the area of a quadrilateral.

1 x AMIgz, % = g;‘i gg, by lemma considering parallelogram RTQP and

point A.

e 1 X AS, % = ggigg, by construction AS = CD.

Geometrography for the demonstration: 4D+20C+1AS+2GS+1AMIg|case 2+ 1AMy

CSproof = 259=24+4+14+2+94+138
AM(E ,casez{ é)ngl — o4

Lemma 40: (EL13) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds

_ Scprp@
CD _Parq_

Pcrpg

AY Sarg—gPror if Aison PY
otherwise

Proof of Lemma (EL]13)) (Geometrography Coefficient of Simplicity)

Case 1 Let A be a point in line Y P, such that YA = CD.
Initial Construction

Y

CSgar = 17T=11xD+6xC
CFga 22

e 1xGS, 4 AL

Y, A and P are collinear and by definition of signed length

of segments.

e 1 xAS AY _ AP _YP

Ay — AY AY
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AY Sapr YP
1 x AMIg|case2; == SAPYQQ -5 by lemma Case 2

AY Sap Syp
o 1 X AMIgCaes, AL = 429 — 272 by lemmalg] Case 2

AY _ Sarq Spqy
1 x AMLg, W = Sarva " Sapvg’ by lemma (1

_ Sapq 7 Prgpr : _
Y = Sarvg " Sarva’ by construction r =

I

4 Spgy
Ppopr

e 3 X AS,

AY _ Sarq—7 Prqpr
1 x AS, Ay SAPYQ

[ ]
hS

AY _ Sapq—7 Prqp
1 x AMI@ case 1» ﬁ = W, by 1emma 27| case 1

Sapo—L P
e 1xAS, Sapg—j Prop

Scppq ’

by construction AY = CD

Q[
3=

Geometrography for the demonstration: 11D+6C+6AS+1GS+2AMIg+1AMIZS cq60 1

CSproof = 761 =17+6+1+ 198+ 539
AMg (5rrs) { CSp1 = 17

Case 2 Considere points A and B, collinear with Y such that AB = CD.
Initial Construction

Y \\ CC\\
A D
P Q
ngcl = 17T=9xD+8xC
CFga = 18

e 1x AMI@case 2,
in line AB

o 1 X AMIg7 case 1> %:%, bylemmacasel

AY _ Parq ion AB = CD
e 1 X AS, D = Porpg’ by construction AB = CD

R[S
==

= PAPQ by lemma case 2 (lines AB, PQ and point Y

~ PaprBQ’

Geometrography for the demonstration: 9D+8C+1AS+1AMIGH cq5e 2+ 1AMIGH case 1

CSproot = 927 =17+1+4 370+ 539
AMlg (5rrs) { CSp1 = 17
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Chapter 4

Examples

Using the Thousand of Geometric problems for geometric Theorem Provers (TGTP) [14]
repository some examples of different levels of difficulty can be found. GE00001, Ceva’s theo-
rem, is a readable example (high-readability), GE00021, the circumcenter of a triangle theorem,
a medium-readability example, GE00020, the distance of a line containing the centroid to the

vertices theorem, is low-readability example.

TGTP TML Criteria de Brujin GRCP
GEO0001 3 < 5, deduction steps 16<2 M
easy easy easy(high)

GEO0021 13 > 5 deduction steps and 5 < terms 37.63 > 2 127408 > 85421

difficult difficult difficult(medium)
3 Q ‘ . . >

GEO0020 13>5 deductlog steps and 5 < terms 47.31 > 2 269'790 > 269790

difficult difficult difficult(low)

The details for the different criteria can be found in the paper Measuring the Readability of
Geometric Proofs, by the authors. Informal proofs of the theorems can be see in sections

4.3l
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4.1 Informal Proof, GEO0001

Theorem 1 (Ceva’s Theorem). Let AABC' be a triangle and P be any point
in the plane Let D APNCB, E=BPNAC, and F = CPNAB. Show
that: AL x BD ﬁ = 1. P should not be in the lines parallels to AC, AB

FB DC
and BC and passing through B, C' and A respectively

Proof

We will use the notation [ABC] to denote the area of a triangle with
vertices A, B, C.

First, suppose AD, BE,CF meet at a point X.We note that triangles
ABD, ADC have the same altitude to line BC, but bases BD and DC. It
follows that BD %igg} The same is true for triangles X BD, X DC, so

BD [ABD] [XBD] [ABD]—-[XBD] [ABX]

DC [ADC] [XDC] [ADC]—[XDC] [AXC]

CE _ [BCcx AF CAX]
%BXA% and = %CXB%’ S0
BD CE AF _ [ABX] [BCX] [CAX]
DC EA FB [AXC] [BXA] [CXB]
Now, suppose D, E, F satisfy Ceva’s criterion, and suppose AD, BE in-
tersect at X. Suppose the line CX intersects line AB at F’. We have proven
that F’ must satisfy Ceva’s criterion. This means that

Similarly, %

=1

AF' _AF
F'B  FB’
SO
F'=F,
and line CF concurs with AD and BE. O
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4.2 Informal Proof, GE00021

Theorem 1 (Centroid Theorem). The three medians of a triangle meet in
a point, and each median is trisected by this point.

Let G be the point where medians BB’ and CC’ of AABC intersect. We
shall show that G trisects the two medians in the sense that BG : GB' =2 : 1
and CG : GC' = 2 : 1. This means that any two medians meet at their point
two-thirds of the way from the vertex to the midpoint of the opposite side.
So all three do.

Prior to the place in Euclid’s Elements are theorems about similar trian-
gles and about angles made by transversals of two parallel lines. The ones
we’ll use here are

simAAA Two triangles are similar if and only if their angles are pairwise
equal.

simSAS Two triangles are similar if and only if two pairs of corresponding
sides have the same proportion and the included angles are equal.

altIA Two lines are parallel if and only if two alternate interior angles they
make with a transversal are equal.

sameSA Two lines are parallel if and only if corresponding angles on the
same side of a transversal are equal.

Step 1: Apply simSAS to AAC'B’ and AABC by noting that they have
ZA in common, and the adjacent sides are in the ratio of 1 : 2. So the two

triangles are similar. That, by definition of similarity, implies that /B'C'A =
/CBA and C'B': BC =1:2.

Step 2: Apply sameSA to the two lines C'B’ and BC to the first conse-
quence: ZB'C'A = ZCBA. Therefore C'B’||BC. That in turn, by sameSA,
implies that /GC'B’ = /GCB and ZC'B'G = ZCBG.

Step 3: Apply simAAA to the two triangles AGB'C’ and AGBC. Two
pairs of their angles have already been shown to be equal. The third pair,
/B'GC" and ZBGC, are equal because they are “opposite angles”. Thus the
two triangles are similar.

Step 4: From the second conclusion in Step 1 we know the ratio of to be
2:1.51:2=GB':GBand 1:2=GC": GC. So G does “trisect” two of
the medians, as predicted.
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4.3 Informal Proof, GE00020

Theorem 1 (Distances to line passing through the centroid of triangle)

A B

Given a triangle ABC and a point X, the sum of the distances of the line
XG, where G is the centroid of AABC, to the two vertices of the triangle
situated on the same side of the line is equal to the distance of the line from
the third vertez.

Proof of Lemma Let I the the midpoint of line segment AB. We know that
I lies on CG, because G is the centroid. Let J be the point of intersection
of GX and the perpendicular to GX through I.

The triangles with sides BI and A, parts of the line through I parallel
to GX and the corresponding parts of the perpendicular through B and A
on GX. The two triangles you obtain are congruent, given that the inner
angles are equal (two parallel lines crossed by a non-parallel line) so the
lengths of the excess at B and the shortage at A are the same.

|BE| + |AD|
2

Because G is the centroid, we know that |CG| = 2|GI|. Now, we have

that ACGH = AIGJ, because of equal angles in parallel lines. It follows

[1J] _ iG] _ 1
that ICF] = ]CG] — 2

Combining this with the earlier found equation, we get that |AD| +
|BE| = |CF|.

(] =
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