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Abstract

The area method for Euclidean constructive geometry was proposed by Chou et al. in early
1990’s. The method produces human-readable proofs and can efficiently prove many non-
trivial theorems. It can be considered as one of the most interesting and most successful
methods in geometry theorem proving and probably the most successful in the domain of
automated production of readable proofs.

In this research report, we focus on the rigorous proofs of all the lemmas of the area method.
This text is meant as a support text for the article, The Area Method: a Recapitulation,
by Predrag Janičić, Julien Narboux and Pedro Quaresma, submitted for publication in the
Journal of Automated Reasoning, in October 2009.



Chapter 1

Introduction

There are two major families of methods in automated reasoning in geometry: algebraic style
and synthetic style methods.

Algebraic style has its roots in the work of Descartes and in the translation of geome-
try problems to algebraic problems. The automation of the proving process along this line
began with the quantifier elimination method of Tarski [21] and since then had many improve-
ments [8]. The characteristic set method, also known as Wu’s method [24, 2], the elimination
method [23], the Gröbner basis method [15, 16], and the Clifford algebra approach [17] are
examples of practical methods based on the algebraic approach. All these methods have in
common an algebraic style, unrelated to traditional, synthetic geometry methods, and they
do not provide human-readable proofs. Namely, they deal with polynomials that are often
extremely complex for a human to understand, and also with no direct link to the geometrical
contents.

The second approach to the automated theorem proving in geometry focuses on synthetic
proofs, with an attempt to automate the traditional proving methods. Many of these methods
add auxiliary elements to the geometric configuration considered, so that a certain postulates
could apply. This usually leads to a combinatorial explosion of the search space. The challenge
is to control the combinatorial explosion and to develop suitable heuristics in order to avoid
unnecessary construction steps. Examples of synthetic proof methods include approaches by
Gelertner [10], Nevis [19], Elcock [9], Greeno et al. [11], Coelho and Pereira [7], Chou, Gao,
and Zhang [3, 6].

In this paper we focus on the area method, an efficient semi-algebraic method for a fragment
of Euclidean geometry, developed by Chou, Gao, and Zhang [3, 4, 5]. This method enables
implementing efficient provers capable of generating human readable proofs. These proofs
often differ from the traditional, Hilbert-style, synthetic proofs, but still they are often concise,
consisting of steps that are directly related to the geometrical contents involved and hence
can be easily understood by a mathematician.

The main idea of the area method is to express the hypotheses of a theorem using a set of
starting (“free”) points and a set of constructive statements each of them introducing a new
point, and to express the conclusion by an equality between polynomials in some geometric
quantities (without considering Cartesian coordinates). The proof is developed by eliminating,
in reverse order, the points introduced before, using for that purpose a set of appropriate
lemmas. After eliminating all the introduced points, the conclusion of the theorem collapses
to an equation between two rational expressions involving only free points. This equation can
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be further simplified to involve only independent variables. If the expressions on the two sides
are equal, the statement is valid, otherwise it is invalid. All proof steps generated by the area
method are expressed in terms of applications of high-level geometry lemmas and expression
simplifications.

Although the basic idea of the method is simple, implementing it is a very challenging task
because of a number of details that has to be dealt with. To our knowledge, apart from the
original implementation by the authors who first proposed the area method, there are only
three implementations more. These three implementations were made independently and in
different contexts:

• within a tool for storing and exploring mathematical knowledge (Theorema [1]) — im-
plemented by Judite Robu [20].

• within a generic proof assistant (Coq [22]) — implemented by Julien Narboux [18];

• within a dynamic geometry tool (GCLC [12]) — implemented by Predrag Janičić and
Pedro Quaresma [14];

The implementations of the method can efficiently find proofs of a range of non-trivial
theorems, including theorems due to Ceva, Menelaus, Gauss, Pappus, and Thales.

In this research report, we focus on the rigorous proofs of all the lemmas of the area
method. This is meant as a support text for the article, The Area Method Revisited, by
Predrag Janičić, Julien Narboux and Pedro Quaresma [13].

In the rest of the research report, we will use capital letters to denote points in the plane.
We denote by AB the length of the oriented segment from A to B and we denote by △ABC
the triangle with vertices A, B, and C.

Overview of the Research Report The research report is organized as follows: After
this introduction, we proceed, in Section 2, explaining the area method in detail, presenting
the rigorous proofs of all its lemmas.
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Chapter 2

A Description of the Area Method

The geometrical quantities used within the area method can be defined in Hilbert style geom-
etry, but they also require axioms of the theory of real numbers.

The notion of the ratio of directed parallel segments relies on the notion of orientation of
segments, (it holds that AB = −BA). The ratio of two directed segments is considered only
if they belong to two parallel lines.

DEFINITION 1: (Ratio of directed parallel segments) For four collinear points P , Q, A, and

B, such that A 6= B, the ratio of directed parallel segments, denoted PQ

AB
is a real number. If

C and D are points such that ABCD is a parallelogram and P , Q are on the line CD, then

PQ

AB
=

PQ

DC
.

The notion of signed areas relies on the notion of orientation of triangles.

DEFINITION 2: (Signed Area) The signed area of triangle ABC, denoted SABC , is the area
of the triangle with a sign depending on its orientation in the plane: if it is positive, then
SABC is positive, otherwise it is negative.

The Pythagoras difference is a generalization of the Pythagoras equality regarding the
three sides of a right triangle, to an expression applicable to any triangle.

DEFINITION 3: (Pythagoras difference) For three points A, B, and C, the Pythagoras
difference, denoted PABC , is defined in the following way:

PABC = AB
2
+ CB

2
− AC

2
.

In addition to this basic definitions, there are some others that should be introduced.

DEFINITION 4: The signed area of a quadrilateral ABCD is defined as SABCD = SABC +
SACD.

Note that, more generally, we can define the signed area of an oriented n-polygon A1A2 . . . An,
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(n ≥ 3) to be:

SA1A2...An =
n

∑

i=3

SA1Ai−1Ai
.

DEFINITION 5: For a quadrilateral ABCD, PABCD, is defined as follows:

PABCD = PABD − PCBD = AB
2
+ CD

2
− BC

2
− DA

2
.

2.1 Geometric Constructions

The area method is used for proving constructive geometric conjectures: statements about
properties of objects constructed by some fixed set of elementary constructions. In this section
we first describe the set of available construction steps and then the set of conjectures that
can be expressed.

All constructions supported by the area method are expressed in terms of the involved
points. Therefore, only lines and circles determined by specific points can be used (rather then
arbitrarily chosen lines and circles). Then, the key constructions steps are those introducing
new points. For a construction steps to be well-defined, certain conditions may be required.
These conditions are called non-degeneracy condition (ndg-conditions). The degree of freedom
tells us if a point is free (degree bigger than 0), or not.

In the following text, we will denote by (Line U V) a line such that the points U and V
belong to it and we will denote by (Cir O U) a circle such that its center is point O and such
that the point U belongs to it.

Given below is the list of elementary constructions in the area methods, along with the
corresponding ndg-conditions and the degrees of freedom of the constructed points.

ECS1 construction of an arbitrary point U; we denote this construction step by (Point U).

ndg-condition: –

degree of freedom for U: 2

ECS2 construction of a point Y such that it is the intersection of two lines (Line U V) and
(Line P Q); we denote this construction step by (Inter Y (Line U V) (Line P Q))

ndg-condition: UV ∦ PQ; U 6= V ; P 6= Q.

degree of freedom for Y: 0

ECS3 construction of a point Y such that it is a foot from a given point P to (Line U V);
we denote this construction step by (Foot Y P (Line U V)).

ndg-condition: U 6= V

degree of freedom for Y: 0

ECS4 construction of a point Y on the line passing through point W and parallel to (Line

U V), such that WY = rUV , where r can be a rational number, a rational expression
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in geometric quantities, or a variable; we denote this construction step by (Pratio Y
W (Line U V) r).

ndg-condition: U 6= V ; if r is a rational expression in geometric quantities then the
denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a variable.

ECS5 construction of a point Y on the line passing through point U and perpendicular
to (Line U V), such that r = 4SUV Y

PUV U
, where r can be a rational number, a rational

expression in geometric quantities, or a variable; we denote this construction step by
(Tratio Y (Line U V) r).

ndg-condition: U 6= V ; if r is a rational expression in geometric quantities then the
denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a variable.

The above set of constructions is sufficient for expressing many constructions based on ruler
and compass, but not all of them. For instance, an arbitrary line cannot be constructed by
the above construction steps. Still, we can construct two arbitrary points and then implicitly
the line going through these points.

2.1.1 Constructive Geometric Statements

In the area method, geometric statement have a specific form.

DEFINITION 6: (Constructive Geometric Statement) A constructive geometric statement, is
a list S = (C1, C2, . . . , Cn, G) where Ci, for 1 ≤ i ≤ n, are elementary construction steps, and
the conclusion of the statement, G, is of the form E1 = E2, where E1 and E2 are polynomials
in geometric quantities of the points introduced by the steps Ci.

We denote the class of all constructive geometric statement by C.

For a statement S = (C1, C2, . . . , Cn, (E1 = E2)) from C, the ndg-condition is the set of
ndg-conditions of the steps Ci plus the condition that the denominators of the length ratios
in E1 and E2 are not equal to zero.

Note that the area method cannot deal with inequalities in its conclusion statement, G.

2.2 Properties of Geometric Quantities & Elimination Lemmas

We present here the properties of geometric quantities, required by the area method. We
follow the material from [3, 4, 5, 25], but in a reorganized, more methodological form.

Properties of the Ratio of Directed Parallel Segments

For any points A, B, P , and Q we have the following properties.

Lemma 1: PQ

AB
= −QP

AB
= QP

BA
= −PQ

BA
.

Lemma 2: PQ

AB
= 0 iff P = Q.
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Lemma 3: PQ

AB

AB

PQ
= 1.

Lemma 4: AP

AB
+ PB

AB
= 1.

Lemma 5: For any real number there is a unique point P which is collinear with A and B,

and satisfies AP

AB
= r.

Lemma 6: If points C and D are on line AB, A 6= B and P is any point not on line AB

then, SPCD

SPAB
= CD

AB
.

Lemma 7: (EL1) (The Co-side Theorem) Let M be the intersection of two non-parallel lines

AB and PQ and Q 6= M . Then it holds that PM

QM
= SPAB

SQAB
; PM

PQ
= SPAB

SPAQB
; QM

PQ
=

SQAB

SPAQB
.

Since SPAB and SQAB cannot both be zero, we always assume that the nonzero one is the
denominator. Also note that PQ 6= 0 since AB ∦ PQ.

The lemma EL1 is the first of a set of important lemmas for the area method, called
elimination lemmas (EL). The proofs of any conjecture in C will be based in this lemmas.
Notice that the point M , which was introduced by a given construction, can be eliminated by
the substitution from the ratio of directed parallel segments by a ratio of two signed areas,
not involving M .

Properties of the Signed Area

For any points A, B, C and D, we have the following properties.

Lemma 8: SABC = SCAB = SBCA = −SACB = −SBAC = −SCBA.

Lemma 9: SABC = 0 iff A, B, and C are collinear.

Lemma 10: SABC = SABD + SADC + SDBC .

Lemma 11: PQ ‖ AB iff SPAB = SQAB, i.e., iff SPAQB = 0.

Lemma 12: SABCD = SABD + SBCD.

Lemma 13: SABCD = SBCDA = SCDAB = SDABC = −SADCB = −SDCBA = −SCBAD =
−SBADC .

Lemma 14: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
SABC = SPAB + SPCD, SPAB = SPDAC = SPDBC , and SPAB = SPCD − SACD =
SPDAC .

Lemma 15: Let ABCD be a parallelogram, P and Q be two arbitrary points. Then it holds
that SAPQ + SCPQ = SBPQ + SDPQ or SPAQB = SPDQC .

Lemma 16: Let R be a point on the line PQ. Then for any two points A and B it holds

that SRAB = PR

PQ
SQAB + RQ

PQ
SPAB.
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Properties of the Pythagoras Difference

For any points A, B, C and D we have the following properties.

Lemma 17: PAAB = 0.

Lemma 18: PABC = PCBA.

Lemma 19: PABA = 2AB
2
.

Lemma 20: If A, B, and C are collinear then, PABC = 2BA BC.

Lemma 21: PABCD = −PADCB = PBADC = −PBCDA = PCDAB = −PCBAD = PDCBA =
−PDABC .

Lemma 22: AB ⊥ BC iff PABC = 0.

Lemma 23: AB ⊥ CD iff PACD = PBCD or PACBD = 0.

Lemma 24: Let D be the foot of the perpendicular from a point P to a line AB. Then, it
holds that

AD

DB
=

PPAB

PPBA

,
AD

AB
=

PPAB

2AB
2 ,

DB

AB
=

PPBA

2AB
2 .

Lemma 25: Let AB and PQ be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY

QY
=

PPAB

PQAB

,
PY

PQ
=

PPAB

PPAQB

,
QY

PQ
=

PQAB

PPAQB

.

Lemma 26: Let R be a point on the line PQ such that r1 = PR

PQ
, r2 = RQ

PQ
. Then, for points

A, B, it holds that

PRAB = r1PQAB + r2PPAB

PARB = r1PAQB + r2PAPB − r1r2PPQP .

Lemma 27: Let ABCD be a parallelogram. Then for any points P and Q, it holds that

PAPQ + PCPQ = PBPQ + PDPQ or PAPBQ = PDPCQ

PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD .

Elimination Lemmas

Considering the constructions steps we need only to eliminate points introduced by four con-
structions (ECS2 to ECS5), from three kinds of geometric quantities.
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Lemma 28: Let G(Y ) be one of the following geometric quantities: SABY , SABCY , PABY ,
or PABCY for distinct points A, B, C, and Y . For three collinear points Y , U , and V it
holds

G(Y ) =
UY

UV
G(V ) +

Y V

UV
G(U). (2.1)

The above result follows from lemmas 16 and 25. Note that, given lemmas 8, 13, 18, 21, all
signed areas and Pythagoras differences (not of the form PAY B) involving Y can be reduced
to quantities of the form SABY , SABCY , PABY , or PABCY .

We call G(Y ) a linear geometric quantity for the variable Y . Elimination procedures for
all linear geometric quantities are similar for constructions ECS2 to ECS4.

We now present the set of elimination lemmas that in conjunction with the already pre-
sented lemma EL1 are the base for the area method’s algorithm.

Lemma 29: (EL2) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Pratio Y W (Line U V) r). Then it holds

G(Y ) = G(W ) + r(G(V ) − G(U)).

Lemma 30: (EL3) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Inter Y (Line U V) (Line P Q). Then it holds

G(Y ) =
SUPQG(V ) − SV PQG(U)

SUPV Q

.

Lemma 31: (EL4) Let G(Y ) be a linear geometric quantity ( 6= PAY B) and point Y is in-
troduced by the construction (Foot Y P (Line U V)). Then it holds

G(Y ) =
PPUV G(V ) + PPV UG(U)

PUV U

.

Lemma 32: (EL5) Let G(Y ) = PAY B and point Y is introduced by the construction (Foot

Y P (Line U V)). Then it holds

G(Y ) =
PPUV

PUV U

G(V ) +
PPV U

PUV U

G(U) −
PPUV × PPV U

PUV U

.

Lemma 33: (EL6) Let G(Y ) = PAY B and point Y is introduced by the construction (Inter

Y (Line U V) (Line P Q)). Then it holds

G(Y ) =
SUPQ

SUPV Q

G(V ) +
SV PQ

SUPV Q

G(U) −
SUPQ × SV PQ × PUV U

S2
UPV Q

.

Lemma 34: (EL7) Let point Y be introduced by (Pratio Y W (Line U V) r). Then it
holds:

PAY B = PAWB + r(PAV B − PAUB + 2PWUV ) − r(1 − r)PUV U .
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Lemma 35: (EL8) Let point Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

SABY = SABP −
r

4
PPAQB.

Lemma 36: (EL9) Let point Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

PABY = PABP − 4rSPAQB.

Lemma 37: (EL10) Let point Y be introduced by (Tratio Y (Line P Q) r). Then it holds

PAY B = PAPB + r2PPQP − 4r(SAPQ + SBPQ).

Now we consider how to eliminate points from the ratio of directed parallel segments.

Lemma 38: (EL11) Let Y be introduced by (Inter Y (Line U V) (Line P Q)). Then it
holds

AY

CD
=

{

SAPQ

SCPDQ
if A is on UV

SAUV

SCUDV
otherwise

Lemma 39: (EL12) Let Y be introduced by (Foot Y P (Line U V)). We assume D 6= U ;
otherwise interchange U and V . Then it holds

AY

CD
=

{

PPCAD

PCDC
if A is on UV

SAUV

SCUDV
otherwise

Lemma 40: (EL13) Let Y be introduced by (Pratio Y R (Line P Q) r). Then it holds

AY

CD
=











AR

PQ
+r

CD

PQ

if A is on RY

SAPRQ

SCPDQ
otherwise

Lemma 41: (EL14) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds

AY

CD
=

{

SAPQ−
r
4
PPQP

SCPDQ
if A is on PY

PAPQ

PCPDQ
otherwise

The information on the elimination lemmas is summarized on table 2.1.
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Geometric Quantities

PAY B PABY PABCY SABY SABCY
AY

CD

AY

BY

ECS2 EL5 EL3 EL11 EL1

ECS3 EL6 EL4 EL12

ECS4 EL7 EL2 EL13

C
on

st
ru

ct
iv

e
S
te

p
s

ECS5 EL10 EL9 EL8 EL14

Elimination Lemmas

Table 2.1: Elimination Lemmas

Free Points and Area Coordinates

The elementary construction step ECS1 introduces arbitrary points on the geometric construc-
tion, these points are the free points on which all other objects are based. For a geometric
statement S = (C1, C2, . . . , Cm, (E1 = E2)), after eliminating all the non-free points intro-
duced by Ci from E1 and E2 using the lemmas of the preceding subsections, we obtain two
rational expressions E′

1 and E′
2 in signed areas and Pythagoras differences of free points, and

numerical constants.
Most often this simply lead to equations that are trivially true. However, if the remaining

geometric quantities are, in a generic case, not independent, e.g. for any four points A, B, C,
and D we have

SABC = SABD + SADC + SDBC

We thus need to reduce E′
1 and E′

2 to expressions in independent variables. To do that,
we sometimes need to use area coordinates.

DEFINITION 7: Let A, O, U , and V be four points such that O, U , and V are not collinear.
The area coordinates of A with respect to OUV are

xA =
SOUA

SOUV

, yA =
SOAV

SOUV

, zA =
SAUV

SOUV

.

It is clear that xA + yA + zA = 1.

It is clear that the points in the plane are in a one to one correspondence with their
area coordinates. To represent E1 and E2 as expressions in independent variables, we first

introduce three new points O, U , and V , such that, UO ⊥ OV , and OU

OV
= 1. We will reduce

E1 and E2 to expressions in the area coordinates of the free points with respect to OUV .
For any free points A, B, and C, the following lemmas hold.

Lemma 42: SABC = (SOV B−SOV C)SOUA+(SOV C−SOV A)SOUB+(SOV A−SOV B)SOUC

SOUV
.

Lemma 43: AB
2

= OU
2
(SOV A−SOV B)2

S2

OUV

+ OV
2
(SOUA−SOUB)2

S2

OUV

.

Lemma 44: S2
OUV = OU

2
× OV

2

4 .

Using lemmas 42 to 44, expressions E1 and E2 can be written as expressions in OU , OV ,
and the area coordinates of the free points. Since the area coordinates of free points are
independent, E1 = E2 iff E1 and E2 are identical.
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2.3 Rigorous Proofs

2.3.1 Proof of the Properties of the Ratio of Directed Parallel Segments

In the following we will present all the proofs of the lemmas presented above. To a better
reading, the statements of the lemmas will be repeated.

We assume A 6= B whenever needed.

Lemma 1: PQ

AB
= −QP

AB
= QP

BA
= −PQ

BA
.

Proof of Lemma 1 By definition of length of an oriented segment, we have that AB = −BA,
then it holds

PQ

AB
=

−QP

AB
= −

QP

AB
= −

QP

−BA
=

QP

BA
=

−PQ

BA
= −

PQ

BA
.

Q.E.D.

Lemma 2: PQ

AB
= 0 iff P = Q.

Proof of Lemma 2 By definition of length of a segment we have that PQ = 0 iff P = Q,

then it holds PQ

AB
= 0 iff P = Q.

Q.E.D.

Lemma 3: PQ

AB

AB

PQ
= 1.

Proof of Lemma 3 By the definition of ratio of directed segments, and given the fact that we

are considering the same segments (without changing orientations), we can consider PQ

AB
= r,

then it holds PQ

AB

AB

PQ
= r · 1

r
= 1.

Q.E.D.

Lemma 4: AP

AB
+ PB

AB
= 1.

Proof of Lemma 4 By the definition of ratio of directed segments, the points A, B and P
are collinear.

Then we have, AP + PB = AB and

AP

AB
+

PB

AB
=

AP + PB

AB
=

AB

AB
= 1.

Q.E.D.
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b

A

b

B

b

P

b

A

b

B

b

P

b

A

b

B

b

P

Figure 2.1:

Lemma 5: For any real number there is a unique point P which is collinear with A and B,

and satisfies AP

AB
= r.

Proof of Lemma 5 By the definition of ratio of directed segments, the points A, B and P
are collinear, them the conclusion is a direct consequence of the bijection between the set of
real numbers and the real line (any straight line).

Q.E.D.

Lemma 6: If points C and D are on line AB, A 6= B and P is any point not on line AB

then, SPCD

SPAB
= CD

AB
.

Proof of Lemma 6

b b bb

b

b

A B CD

P

S

Figure 2.2: Areas, Ratios relationship

Let S is the point on AB such that PS is perpendicular to AB (PS is the height of both
triangles) then it holds

|SPCD| = DC PS
2 and |SPAB| = AB PS

2 so

|SPCD|

|SPAB|
=

DC PS

2

2

AB PS
=

DC

AB
.

Since ∆PCD and ∆PAB have different orientations, and CD and AB have opposite
directions, then

SPCD

−SPAB

=
−CD

AB
.

Q.E.D.

Lemma 7: (EL1) (The Co-side Theorem) Let M be the intersection of two non-parallel lines

AB and PQ and Q 6= M . Then it holds that PM

QM
= SPAB

SQAB
; PM

PQ
= SPAB

SPAQB
; QM

PQ
=

SQAB

SPAQB
.
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b b

b

b

b

A B

P

Q

M

b b

b

b

b

A B

P

Q

M

b b

b

b

b

A

B

P

Q

M b b

b

b

b

A B

P

Q

M

Figure 2.3: Co-side Theorem

Proof of Lemma 7

The figure 2.3 gives several possible cases (in ordered geometries). The proof here pre-
sented, which is essentially for unordered geometry, is valid for all cases [25]. For the first
formula, take a point R on AB such that AB = MR; them, by lemma 6, we have SPMR

SPAB
=

MR

AB
= 1 ⇔ SPMR = SPAB, the same applies for the point Q, SQMR = SQAB. So:

b bb b

b

b

A BM R

P

Q

b b

b

b

M

R

P

Q

Figure 2.4:

SPAB

SQAB

=
SPMR

SQMR

Now by a direct application of lemma 6, making A = Q, B = D = M , and C = P we
have:

SPMR

SQMR

=
SRPM

SRQM

=
PM

QM

in conclusion
SPAB

SQAB

=
SPMR

SQMR

=
PM

QM

The others formulas are a consequence of this first one.

Q.E.D.

2.3.2 Proofs of the Properties of the Signed Area

Lemma 8: For any points A, B, C, and D, it holds that SABC = SCAB = SBCA = −SACB =
−SBAC = −SCBA.
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Figure 2.5:

Proof of Lemma 8 It is a direct consequence of the definition of signed area. The ∆ABC,
∆CAB and ∆BCA all have the same orientation.

The ∆ACB, ∆BAC and ∆CBA have the opposite orientation (from ∆ABC).

Q.E.D.

Lemma 9: For any points A, B, C, and D, it holds that SABC = 0 iff A, B, and C are
collinear.

Proof of Lemma 9

b

A

b

B

b

C

h

b

Figure 2.6: Lemma 9

SABC = 0 ⇔ |SABC | = 0 ⇔ b·h
2 = 0 ⇔ b = 0 or h = 0 ⇔ A = B or C belongs to line

AB ⇔ A, B, C are collinear.

Q.E.D.

Lemma 10: SABC = SABD + SADC + SDBC .

Proof of Lemma 10

b

b

bb

b

A

B

D
C

P

a

d

c

b

Figure 2.7: Lemma 10

Let P be the intersection of AC and BD, let we denote SABP = a, SBCP = b, SPCD = c,
and SPDA = d, them we have
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SABC = SABD + SADC + SDBC ⇔
a + b = (a + d) − (d + c) + (c + b) ⇔
a + b = a + d − d − c + c + b ⇔
a + b = a + b

Q.E.D.

Lemma 11: PQ ‖ AB iff SPAB = SQAB, i.e., iff SPAQB = 0.

Proof of Lemma 11

b b

b b

b b

A B

P Q

H ′ H ′′

Figure 2.8: Lemma 11

Proof of PQ ‖ AB iff SPAB = SQAB.
We must state that the two triangles, ∆PAB and ∆QAB have the same orientation.
i) PQ ‖ AB ⇒ SPAB = SQAB:
If PQ ‖ AB then the two triangles ∆PAB and ∆QAB have equal heights PH ′ = PH ′′,

given the fact that they also have a common base (AB), then we have SPAB = SQAB.
ii) PQ ‖ AB ⇐ SPAB = SQAB:
If SPAB = SQAB we have 1

2ABh′ = 1
2ABh′′, then h′ = h′′, so the points P and Q are at

the same distance from the line AB, that is, PQ ‖ AB.
Proof of PQ ‖ AB iff SPAQB = 0.
i) PQ ‖ AB ⇒ SPAQB = 0:

SPAQB
def
= SPAQ + SPQB, given the fact that this two triangles have a common base, PQ,

equal heights, h′ = h′′, but opposite orientation, we have SPAQ + SPQB = 0.
ii) PQ ‖ AB ⇐ SPAQB = 0:

SPAQB = 0
def
⇔ SPAQ + SPQB = 0 ⇔ SPAQ = −SPQB

lemma 8
⇔ SPQA = SPQB

def
⇔ 1

2PQh′ =
1
2PQh′′ ⇒ PQ ‖ AB.

Q.E.D.

Lemma 12: SABCD = SABD + SBCD.

Proof of Lemma 12
Let P be the intersection of AC and BD, let we denote SABP = a, SBCP = b, SPCD = c,

and SPDA = d, them by lemmas 8 and 10 we have:

SABC + SACD = (a + b + c + d − a − d) + (a + b + c + d − b − c)

= (a + d + b + c − d − c) + (a + d + b + c − a − b)

= SABD + SBCD
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b

b

b

b

A

D

C

B

SACD

SABC

SABCD

b

b

b

b

A

D

C

B

SABCD

SABD

SBCD

b

b

b

b

A

D

C

B

b

P

a

b

c

d

Figure 2.9: Lemma 12

Q.E.D.

Lemma 13: SABCD = SBCDA = SCDAB = SDABC = −SADCB = −SDCBA = −SCBAD =
−SBADC .

Proof of Lemma 13 This is a direct consequence of definition 4 and lemma 8.

Q.E.D.

Lemma 14: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
SABC = SPAB + SPCD, SPAB = SPDAC = SPDBC , and SPAB = SPCD − SACD =
SPDAC .

Proof of Lemma 14

b b

bb

b b

A B

CD

P S

bA

b B

b C

bD
b

P
b S

Figure 2.10: Lemma 14

Let S is a point on BC such that PS is parallel to CD. By lemma 11, it holds that
AD ‖ BC ⇔ SABC = SDBC , PS ‖ CD ⇔ SPDC = SSDC ⇔ SPCD = −SDCS , and PS ‖
AB ⇔ SPAB = SSAB, AD ‖ BS ⇔ SABS = SDBS ⇔ SPAB = SSAB = SABS = SDBS ⇔
SPAB = SDBS . Therefore, SPAB +SPDC = SDBS −SDCS . This proves the first formula. The
second formula is a consequence of the first one.

Q.E.D.

Lemma 15: Let ABCD be a parallelogram, P and Q be two arbitrary points. Then it holds
that SAPQ + SCPQ = SBPQ + SDPQ or SPAQB = SPDQC .
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Proof of Lemma 15

b

b

b

b

A

B

C

D

b

b Q
P

−SDPQ

−SCPQ

SBPQ

SAPQ

b

b

b

b

A

B

C

D

b

b Q
P

−SDPQ

−SCPQ

SBPQ

SAPQ

b

O

Figure 2.11:

Notice that ∆APQ and ∆BPQ have the same orientation, different from the orientation
of ∆CPQ and ∆DPQ. Let O be the intersection of AC and BD. Since O is the midpoint of
AC, by lemma 16, SAPQ + SCPQ = 2SOPQ. For the same reason, SBPQ + SDPQ = 2SOPQ.
We have proved the first formula, the second formula is just another form of the first one.

Q.E.D.

Lemma 16: Let R be a point on the line PQ. Then for any two points A and B it holds

that SRAB = PR

PQ
SQAB + RQ

PQ
SPAB.

Proof of Lemma 16

b

b

b

b

b

P

Q
R

A

B

Figure 2.12: Lemma 16

Let s = SABPQ, then SRAB = s − SARQ − SBPR (all these triangles have the same
orientation)

b

b

b

b

P

Q
R

A

Figure 2.13: Lemma 16a

let PR

PQ
= λ, then, by lemma 6 (with P:=A; A:=P; B:=Q; D:=Q; C:=R), we have
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SARQ

SAPQ

=
RQ

PQ
=

PQ − PR

PQ
= (1 − λ) ⇔ SARQ = (1 − λ)SAPQ

and,

b

b

b

b

P

Q
R

B

Figure 2.14: Lemma 16b

SBPR

SBPQ

=
PR

PQ
= λ ⇔ SBPR = λSBPQ

then

SRAB = s − SARQ − SBPR

= s − (1 − λ)SAPQ − λSBPQ

= s − (1 − λ)(s − SPAB) − λ(s − SQAB)

= s − s + λs + SPAB − λSPAB − λs + λSQAB

= λSQAB + (1 − λ)SPAB

=
PR

PQ
SQAB +

RQ

PQ
SPAB

Q.E.D.

2.3.3 Proofs of the Properties of the Pythagoras Difference

We begin by introducing the concept of co-area of triangles [4].

Given a triangle ABC, we construct the square ABPQ such that SABC and SABPQ have
the same sign (see figure 2.15).

b b

b

A B

C

bb PQ

Figure 2.15: Co-area of a triangle

The Co-area of a triangle ABC, CABC , is a real number such that
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CABC =

{

▽ACQ, if ∠A ≤ 90o;
−▽ ACQ, if ∠A > 90o;

where ▽ABC is the area of triangle ABC.
For a triangle ABC we have CABC + CBAC = ▽BPC + ▽ACQ = ▽ABPQ/2 = AB2/2.
Considering the different permutations of the vertices of the triangle ABC we can conclude

that, PABC = 4CABC .

Lemma 17: PAAB = 0.

Proof of Lemma 17

PAAB = AA
2
+ CA

2
− AC

2
= 0 + AC

2
− AC

2
= 0

given the fact that CA
2

= CA × CA = −AC × (−AC) = AC
2
.

Q.E.D.

Lemma 18: PABC = PCBA.

Proof of Lemma 18

PABC = AB
2
+ CB

2
− AC

2
= CB

2
+ AB

2
− CA

2
= PCBA

Q.E.D.

Lemma 19: PABA = 2AB
2
.

Proof of Lemma 19
PABA = AB

2
+ AB

2
− AA

2
= 2AB

2

Q.E.D.

Lemma 20: If A, B, and C are collinear then, PABC = 2BA BC.

Proof of Lemma 20 Since A, B, and C are collinear, we have AB+BC = AC and therefore
it holds that:

PABC = AB
2
+ CB

2
− AC

2

= AB
2
+ BC

2
+ 2AB BC − 2AB BC − AC

2

=
(

AB + BC
)2

− 2AB BC − AC
2

= −2AB BC

= 2BA BC

20



Q.E.D.

Lemma 21: PABCD = −PADCB = PBADC = −PBCDA = PCDAB = −PCBAD = PDCBA =
−PDABC .

Proof of Lemma 21

PADCB = AD
2
+ CB

2
− DC

2
− BA

2

= −AB
2
− CD

2
+ BC

2
+ DA

2

= −(PABCD)

PBADC = BA
2
+ DC

2
− AD

2
− CB

2

= AB
2
+ CD

2
− BC

2
− DA

2

= PABCD

PBCDA = BC
2
+ DA

2
− CD

2
− AB

2

= −AB
2
− CD

2
+ BC

2
+ DA

2

= −(PABCD)

PCDAB = CD
2
+ AB

2
− DA

2
− BC

2

= AB
2
+ CD

2
− BC

2
− DA

2

= PABCD

PCBAD = CB
2
+ AD

2
− BA

2
− DC

2

= −AB
2
− CD

2
+ BC

2
+ DA

2

= −(PABCD)

PDCBA = DC
2
+ BA

2
− CB

2
− AD

2

= AB
2
+ CD

2
− BC

2
− DA

2

= PABCD

PDABC = DA
2
+ BC

2
− AB

2
− CD

2

= −AB
2
− CD

2
+ BC

2
+ DA

2

= −(PABCD)

Q.E.D.

Lemma 22: AB ⊥ BC iff PABC = 0.

Proof of Lemma 22

AB ⊥ BC ⇒ PABC = 0

If AB ⊥ BC we have that A = B, or C = B, or the points A, B, and C form a right
triangle.
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If A = B we have, by lemma 17, PABC = PBBC = 0.

If C = B we have, by lemmas 17 and 18, PABC = PACC = PCCA = 0.

If neither the above conditions are met, we have that ∠B = 90o and PABC = 4CABC =
▽BPC = 0

AB ⊥ CD ⇐ PABC = 0

We consider that A 6= B 6= C, we already saw that whenever they are equal the two
expressions are equivalent.

Considering the co-area definition we can conclude that PABC = 0 then ∠B = 900 (if
PABC > 0 then ∠B < 900, and if PABC < 0 then ∠B > 900).

Q.E.D.

Lemma 23: AB ⊥ CD iff PACD = PBCD or PACBD = 0.

Proof of Lemma 23

b b

b

b

b

A B

C

D

P

Figure 2.16: Lemma 23

Let P be the intersection of lines AB and CD, then:

AD
2

= AP
2
+ PD

2
, AC

2
= AP

2
+ PC

2

AD
2
− PD

2
= AC

2
− PC

2

BD
2

= BP
2
+ PD

2

BC
2

= BP
2
+ PC

2

BD
2
− PD

2
= BC

2
− PC

2

AD
2
− AC

2
= PD

2
+ PC

2

BD
2
− BC

2
= PD

2
+ PC

2

AD
2
− AC

2
= BD

2
− BC

2
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AC
2
− AD

2
= BC

2
− BD

2

AC
2
+ DC

2
− AD

2
= BC

2
+ DC

2
− BD

2

PACD = PBCD

The second equality is a direct consequence of equality just proved, and of the definition 5:
PACBD = PACD − PBCD = 0

Q.E.D.

Lemma 24: Let D be the foot of the perpendicular constructed from a point P to a line AB.
Then, it holds that

AD

DB
=

PPAB

PPBA

,
AD

AB
=

PPAB

2AB
2 ,

DB

AB
=

PPBA

2AB
2 .

Proof of Lemma 24

b b

b

b

A B

P

D

Figure 2.17: Lemma 24

First equality:

AD

DB
=

PPAB

PPBA

=
PA

2
+ BA

2
− PB

2

PB
2
+ AB

2
− PA

2

A, B and D are collinear, so AB = AD + DB

=
PA

2
+ AD

2
+ DB

2
+ 2AD DB − PB

2

PB
2
+ AD

2
+ DB

2
+ 2AD DB − PA

2

AB ⊥ DP so PA
2

= AD
2
+ PD

2
and PB

2
= DB

2
+ PD

2

=
AD

2
+ PD

2
+ AD

2
+ DB

2
+ 2AD DB − (DB

2
+ PD

2
)

DB
2
+ PD

2
+ AD

2
+ DB

2
+ 2AD DB − (AD

2
+ PD

2
)

=
2AD

2
+ 2AD DB

2DB
2
+ 2AD DB

=
2AD(AD + DB)

2DB(AD + DB)
=

AD

DB

Second equality:

AD

AB
=

PPAB

2AB
2 =

PA
2
+ BA

2
− PB

2

2AB
2

AB ⊥ DP so PA
2

= AD
2
+ PD

2
and PB

2
= DB

2
+ PD

2
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=
AD

2
+ PD

2
+ BA

2
− DB

2
− PD

2

2AB
2

=
AD

2
+ BA

2
− DB

2

2AB
2

A, B and D are collinear, so AB = AD + DB

=
AD

2
+ AD

2
+ 2AD DB + DB

2
− DB

2

2AB
2

=
2AD(AD + DB)

2AB
2

A, B and D are collinear, so AB = AD + DB

=
AD AB

AB
2 =

AD

AB

The proof of the third equality is similar to this last one.

Q.E.D.

Lemma 25: Let AB and PQ be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY

QY
=

PPAB

PQAB

,
PY

PQ
=

PPAB

PPAQB

,
QY

PQ
=

PQAB

PPAQB

.

Proof of Lemma 25

b b

b

b

b

b b

A B

P

Q

Y

P1 Q1

Figure 2.18: Lemma 25

The first equality is:

PY

QY
=

PPAB

PQAB

by lemma 23 with A := Q1; B := Q; C := A; D := B, for QY and with A := P1; B := P ; C :=
A; D := B, for PY , we have:

PY

QY
=

PP1AB

PQ1AB

P1, Q1, A and B are collinear

=
2AP1 AB

2AQ1 AB
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=
AP1

AQ1

=
−P1A

−Q1A
by definition of oriented segments

=
P1A

Q1A

by the co-side theorem, with P := P1; Q := Q1; M := A; A := A; B := Y ,

=
SP1AY

SQ1AY

=
SAY P1

SAY Q1

, by lemma 8

by lemma 11, given the fact that AY ‖ P1P and AY ‖ Q1Q,

=
SP1AY

SQ1AY

=
SAY P1

SAY Q1

, by lemma 8

by the co-side theorem, with P := P ; Q := Q; M := Y ; A := Y ; B := A,

=
PY

QY

This prove the first equality.

The second equality is:

PY

PQ
=

PPAB

PPAQB

PQ

PY
=

PY + Y Q

PY
, P, Y, and Q are colinear

=
PY − QY

PY
, by definition of oriented segments

=
PY

PY
−

QY

PY

= 1 +
PQAB

PPAB

, by the previous result

=
PPAB

PPAB

−
PQAB

PPAB

=
PPAB − PQAB

PPAB

=
PPAQB

PPAB

, by definition 5

The proof of the third equality is similar to this last proof.

Q.E.D.
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Lemma 26: Let R be a point on the line PQ such that r1 = PR

PQ
, r2 = RQ

PQ
. Then, for points

A, B, it holds that

PRAB = r1PQAB + r2PPAB

PARB = r1PAQB + r2PAPB − r1r2PPQP .

Proof of Lemma 26

b b

b

b

b

A B

P

Q

R

Figure 2.19: Lemma 26

The first equality

PRAB = r1PQAB + r2PPAB

going to co-areas, considering the square ABX1X2 (see figure 2.20), we have

CRAB = r1CQAB + r2CPAB

b b

b

b

b

bb

A B

P

Q

R

X1X2

h1

h3

h2

Figure 2.20: Lemma 26, first equality

▽ARX2 = r1 ▽ AQX2 + r2 ▽ APX2

AX2h1 =
PR

PQ
AX2h2 +

RQ

PQ
AX2h3

h1 =
h1 − h3

h2 − h3
h2 −

h2 − h1

h2 − h3
h3

h1h2 − h1h3 = h1h2 − h3h2 + h2h3 − h1h3

h1h2 − h1h3 = h1h2 − h1h3
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The second equality

PARB = r1PAQB + r2PAPB − r1r2PPQP

by definition of Pythagoras difference

AR
2
+ BR

2
− AB

2
=

= r1(AQ
2
+ BQ

2
− AB

2
) + r2(AP

2
+ BP

2
− AB

2
) − r1r2PPQP

(AR
2
+ AB

2
− BR

2
) + 2BR

2
− 2AB

2
=

= r1((AQ
2
+ AB

2
− BQ

2
) + 2BQ

2
− 2AB

2
) + r2((AP

2
+ AB

2
− BP

2
) +

+2BP
2
− 2AB

2
) − r1r2PPQP

PRAB + 2BR
2
− 2AB

2
=

= r1PQAB + r1(2BQ
2
− 2AB

2
) + r2PPAB + r2(2BP

2
− 2AB

2
) −

−r1r2PPQP

by the first equality

2BR
2
− 2AB

2
= r1(2BQ

2
− 2AB

2
) + r2(2BP

2
− 2AB

2
) − r1r2PPQP

by lemma 19

2(BR
2
− AB

2
) = 2r1(BQ

2
− AB

2
) + 2r2(BP

2
− AB

2
) − 2r1r2PQ

2

BR
2
− AB

2
= r1BQ

2
+ r2BP

2
− (r1 + r2)AB

2
− r1r2PQ

2

by lemma 4, r1 + r2 = 1,

BR
2

=
PR

PQ
BQ

2
+

RQ

PQ
BP

2
−

PR RQ

PQ
2 PQ

2

PR BQ
2
+ RQ BP

2
− PQ BR

2
= PR RQ PQ

b

b

b

b
b

B

P

Q

R Z

Figure 2.21: Lemma 26, second equality

By lemma 22 (see also figure 2.21), we have:

BQ
2

= BZ
2
+ QZ

2

BR
2

= BZ
2
+ RZ

2

BP
2

= BZ
2
+ PZ

2
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so, we have:

PR(BZ
2
+ QZ

2
) + RQ(BZ

2
+ PZ

2
) − PQ(BZ

2
+ RZ

2
) = PR RQ PQ

(PR + RQ − PQ)BZ
2
+ PR QZ

2
+ RQ PZ

2
− PQ RZ

2
= PR RQ PQ

by lemma 4

PR QZ
2
+ RQ PZ

2
− PQ RZ

2
= PR RQ PQ

by lemma 4 we can rewrite the different segments in the following form:

QZ = −ZQ

RQ = RZ + ZQ

PZ = PR + RZ

PQ = PR + RZ + QZ

we get:

PR ZQ
2
+

(

RZ + ZQ
) (

PR + RZ
)2

−
(

PR + RZ + ZQ
)

RZ
2

=

= PR
(

RZ + ZQ
) (

PR + RZ + QZ
)

PR ZQ
2
+ PR

2
RZ + 2PR RZ

2
+ RZ

3
+ PR

2
ZQ + 2PR RZ ZQ +

+ RZ
2
ZQ − PR RZ

2
− RZ

3
− RZ

2
ZQ =

= PR
2
RZ + PR RZ

2
+ PR RZ ZQ + PR

2
ZQ + PR RZ ZQ + PR ZQ

2

PR RZ ZQ = PR RZ ZQ

Q.E.D.

Lemma 27: Let ABCD be a parallelogram. Then for any points P and Q, it holds that

PAPQ + PCPQ = PBPQ + PDPQ or PAPBQ = PDPCQ

PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD .

Before presenting the proof of this lemma we present the following lemma.

Auxiliary Lemma 1 Let P and Q be the feet of the perpendiculars from point A and C to
BD. Then PABCD = 2QP BD.

Proof of Auxiliary Lemma 1

PABCD = PABD − PCBD, by definition
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by the lemma 23 with A := A; B := P ; C := B; D := D, we have PABD = PPBD, and with
A := C; B := Q; C := B; D := D, we have PCBD = PQBD,

= PPBD − PQBD

by the lemma 20

= 2BP BD − BQBD

= 2BD (BP − BQ)

= 2QP BD

Q.E.D.

Proof of Lemma 27

b

b

b

b

A

B

C

D

b

b Q
P

PDPQ

PCPQ

PBPQ

PAPQ

Figure 2.22: Lemma 27

PAPQ + PCPQ = PBPQ + PDPQ

First the equivalence PAPQ + PCPQ = PBPQ + PDPQ ⇔ PAPBQ = PDPCQ

PAPBQ = PDPCQ

PAPQ − PBPQ = PDPQ − PCPQ by definition 5

PAPQ + PCPQ = PDPQ + PBPQ

Now the equality PAPBQ = PDPCQ.

PAPBQ = PDPCQ, by lemma 21

PPAQB = PPDQC , by auxiliarylemma 1

2QP DC = 2QP AB
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by hypothesis ABCD is a parallelogram, so AB = DC,

2QP AB = 2QP AB

Now the last equality

PPAQ + PPCQ = PPBQ + PPDQ + 2PBAD

PPAQ + PPCQ − PPBQ − PPDQ − 2PBAD = 0

by definition of Pythagoras differences

0 = PPAQ + PPCQ − PPBQ − PPDQ − 2PBAD

= PA
2
+ QA

2
− PQ

2
+ PC

2
+ QC

2
− PQ

2
− PB

2
− QB

2
+ PQ

2
−

− PD
2
− QD

2
+ PQ

2
− 2PBAD

= PA
2
+ QA

2
+ PC

2
+ QC

2
− PB

2
− QB

2
− PD

2
− QD

2
− 2PBAD

= AP
2
− AQ

2
+ CP

2
− CQ

2
− BP

2
+ BQ

2
− DP

2
+ DQ

2
+

+ 2AQ
2
+ 2CQ

2
− 2BQ

2
− 2DQ

2
− 2PBAD

by the first equality we have that PAPQ+PCPQ−PBPQ−PDPQ = 0, applying the definition of

Pythagoras difference we have that AP
2
−AQ

2
+CP

2
−CQ

2
−BP

2
+BQ

2
−DP

2
+DQ

2
= 0

= AQ
2
+ CQ

2
− BQ

2
− DQ

2
− PBAD

= AQ
2
+ AB

2
− BQ

2
− (DQ

2
+ AB

2
− CQ

2
) − PBAD

Given the fact that ABCD is a parallelogram, we have AB
2

= CD
2

= BA
2
+ QA

2
− BQ

2
− (CD

2
+ QD

2
− CQ

2
) − PBAD

= PBAQ − PCDQ − PBAD

considering the co-areas [4], we have

= CBAQ − CCDQ − CBAD

Considering the square ABX1X2 (see figure 2.23) we have:

= ▽AQX2 −▽AQ1X2 −▽BAD

= AX2((h1 − h2) − h3)

= AX2 × 0

= 0

Q.E.D.
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h3

h2

Figure 2.23:

2.3.4 Proofs of the Elimination Lemmas

Lemma 28: Let G(Y ) be one of the following geometric quantities: SABY , SABCY , PABY ,
or PABCY for distinct points A, B, C, and Y . For three collinear points Y , U , and V it
holds

G(Y ) =
UY

UV
G(V ) +

Y V

UV
G(U). (2.2)

Proof of Lemma 28

Case G(Y ) = SABY :

SABY = SY AB by lemma 8

=
UY

UV
SV AB +

Y V

UV
SUAB by lemma 16; U , V , and Y are collinear

=
UY

UV
SABV +

Y V

UV
SABU by lemma 8

=
UY

UV
G(V ) +

Y V

UV
G(U)

Case G(Y ) = PABY :

PABY = PY BA by lemmas 17, 18

=
UY

UV
PV BA +

Y V

UV
PUBA by lemma 26; U , V , and Y are collinear

=
UY

UV
PABV +

Y V

UV
PABU by lemmas 3, 5

=
UY

UV
G(V ) +

Y V

UV
G(U)

Case G(Y ) = SABCY :

SABCY = SABC − PACY by definition 4
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= SABC +
UY

UV
SABC −

UY

UV
SABC +

Y V

UV
SABC −

Y V

UV
SABC + SACY

= (1 − (
UY

UV
+

Y V

UV
)SABC +

UY

UV
SABC +

Y V

UV
SABC + SACY

= 0 +
UY

UV
SABC +

Y V

UV
SABC + SACY U , V , and Y are collinear

=
UY

UV
SABC +

Y V

UV
SABC + SY AC by lemma 8

=
UY

UV
SABC +

UY

UV
SACV +

Y V

UV
SABC +

Y V

UV
SACU

by lemma 16; U , V ,
and Y are collinear

=
UY

UV
SABCV +

Y V

UV
SABCU by definition 4

=
UY

UV
G(V ) +

Y V

UV
G(U)

Case G(Y ) = PABCY :

PABCY = PABY − PCBY by definition 5

=
UY

UV
PABV +

Y V

UV
PABU − (

UY

UV
PCBV +

Y V

UV
PCBU )

=
UY

UV
(PABV − PCBV ) +

Y V

UV
(PABU − PCBU )

=
UY

UV
PABCV +

Y V

UV
PABCU by definition 5

=
UY

UV
G(V ) +

Y V

UV
G(U)

Q.E.D.

Lemma 29: (EL2) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Pratio Y W (Line U V) r). Then it holds

G(Y ) = G(W ) + r(G(V ) − G(U)).

Proof of Lemma 29 (EL2)

Take a point S such that WS = UV .

b

U
b

V

b

W

b

Y

b

S

WY

UV
= r
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By (2.2) (with U:=A; V:=B; W:=U; S:=V):

G(Y ) =
WY

WS
G(S) +

Y S

WS
G(W )

WY

WS
= 1, by hypothesis

= rG(S) +

(

WY − WS

WS

)

G(W ) W , Y , S are collinear

= rG(S) + (1 − r)G(W )

By lemmas 15 (SAPQ = SBPQ +SDPQ −SCPQ) and 27, (PAPQ = PBPQ +PDPQ −PCPQ)
considering the parallelogram UV SW and the points W and Y we have G(S) = G(W ) +
G(V ) − G(U). Substituting this into the above equation, we obtain the result.

G(Y ) = rG(S) + (1 − r)G(W )

= r(G(W ) + G(V ) − G(U)) + (1 − r)G(W )

= rG(W ) − rG(W ) + G(W ) + r(G(V ) − G(U))

= G(W ) + r(G(V ) − G(U))

Notice that we need the ndg. condition U 6= V .

Q.E.D.

Lemma 30: (EL3) Let G(Y ) be a linear geometric quantity and point Y is introduced by
the construction (Inter Y (Line U V) (Line P Q). Then it holds

G(Y ) =
SUPQG(V ) − SV PQG(U)

SUPV Q

.

Proof of Lemma 30 (EL3)

b U

b V

b

P

b

Q

b

Y

By the co-side theorem (with P:=U; Q:=V; A:=P; B:=Q; M:=Y), UY

UV
=

SUPQ

SUPV Q
, Y V

UV
=

−V Y

UV
= −

SV PQ

SUPV Q
. Substituting these into equation (2.2), we prove the result.

Q.E.D.

Lemma 31: (EL4) Let G(Y ) be a linear geometric quantity ( 6= PAY B) and point Y is in-
troduced by the construction (Foot Y P (Line U V)). Then it holds

G(Y ) =
PPUV G(V ) + PPV UG(U)

PUV U

.
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Proof of Lemma 31 (EL4)

b

U

b

V

b P

b

Y

By lemma 24 (with A:=U; B:=V; D:=Y), UY

UV
= PPUV

2UV
2 , Y V

UV
= PPV U

2UV
2 . Substituting these

into (2.2), we prove the result.

Q.E.D.

Lemma 32: (EL5) Let G(Y ) = PAY B and point Y is introduced by the construction (Foot

Y P (Line U V)). Then it holds

G(Y ) =
PPUV

PUV U

G(V ) +
PPV U

PUV U

G(U) −
PPUV × PPV U

PUV U

.

Proof of Lemma 32 (EL5) By lemma 26 (with R:=Y; P:=U; Q:=V), for three collinear

points Y , U , and V , we have r1 = UY

UV
, r2 = Y V

UV
, and PAY B = r1PAV B +r2PAUB −r1r2PUV U .

That is,

PAY B =
UY

UV
PAV B +

Y V

UV
PAUB −

UY

UV
×

Y V

UV
PUV U .

By hypothesis point Y is the foot on UV of a line passing by P , then by lemma 24 (with
A:=U; D:=Y; B:=V) we have:

PAY B =
PPUV

2UV
2PAV B +

PPV U

2UV
2PAUB −

PPUV

2UV
2

PPV U

2UV
2PUV U

By lemma 20 we have that PUV U = 2V U
2

= 2UV
2
, then we have:

PAY B =
PPUV

PUV U

PAV B +
PPV U

PUV U

PAUB −
PPUV × PPV U

2PUV U

PUV U

PAY B =
PPUV

PUV U

PAV B +
PPV U

PUV U

PAUB −
PPUV × PPV U

PUV U

Q.E.D.

Lemma 33: (EL6) Let G(Y ) = PAY B and point Y is introduced by the construction (Inter

Y (Line U V) (Line P Q)). Then it holds

G(Y ) =
SUPQ

SUPV Q

G(V ) +
SV PQ

SUPV Q

G(U) −
SUPQ × SV PQ × PUV U

S2
UPV Q

.
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Proof of Lemma 33 (EL6)

By lemma 26 (with R:=Y; P:=U; Q:=V), for three collinear points Y , U , and V , we have

r1 = UY

UV
, r2 = Y V

UV
, and PAY B = r1PAV B + r2PAUB − r1r2PUV U . That is,

PAY B =
UY

UV
PAV B +

Y V

UV
PAUB −

UY

UV

Y V

UV
PUV U .

By hypothesis point Y is the intersection of UV with PQ, then by lemma 7 (with A:=P;
B:=Q; P:=U; Q:=V; M:=Y), we have:

PAY B =
SUPQ

SUPV Q

PAV B +
SV PQ

SUPV Q

PAUB −
SUPQ

SUPV Q

SV PQ

SUPV Q

PUV U

PAY B =
SUPQ

SUPV Q

PAV B +
SV PQ

SUPV Q

PAUB −
SUPQ × SV PQ × PUV U

S2
UPV Q

Q.E.D.

Lemma 34: (EL7) Let Y be introduced by (Pratio Y W (Line U V) r). Then it holds:

PAY B = PAWB + r(PAV B − PAUB + 2PWUV ) − r(1 − r)PUV U .

Proof of Lemma 34 (EL7)

b

U
b

V

b

W

b

Y

b

S

WY

UV
= r

with WS = UV .

By lemma 27[A:=U;B:=V;C:=S;D:=W;P:=A;Q:=B] we have

PAUB + PASB = PAV B + PAWB + 2PV UW

PASB = −PAUB + PAV B + PAWB + 2PV UW

We have to eliminate the point S.
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b b

b

b

b

A B

W

Y

S

with r1 = WS

WY
, r2 = SY

WY
, that is r1 = 1

r
and r2 = WY −WS

WY
= 1 − 1

r
.

By lemma 26[R:=S; P:=W; Q:=Y] we have:

PASB = r1PAY B + r2PAWB − r1r2PWY W

Then we have:

r1PAY B + r2PAWB − r1r2PWY W = −PAUB + PAV B + PAWB + 2PV UW

r1PAY B = −r2PAWB + r1r2PWY W − PAUB + PAV B + PAWB+
+2PV UW

1
r
PAY B = −(1 − 1

r
)PAWB + 1

r
(1 − 1

r
)PWY W − PAUB + PAV B+

+PAWB + 2PV UW

PAY B = −r(1 − 1
r
)PAWB + (1 − 1

r
)PWY W − rPAUB + rPAV B+

+rPAWB + 2rPV UW

PAY B = −rPAWB + rPAWB + PAWB + (1 − 1
r
)PWY W − rPAUB+
+rPAV B + 2rPV UW

PAY B = PAWB + r(PAV B − PAUB + 2PV UW ) + (1 − 1
r
)PWY W

By lemma 19, and the hypothesis WY

UV
= r, we have:

PWY W = 2WY
2

= 2r2UV
2

= r2PUV U

So, we can conclude

PAY B = PAWB + r(PAV B − PAUB + 2PV UW ) + (1 − 1
r
)PWY W

PAY B = PAWB + r(PAV B − PAUB + 2PV UW ) + (1 − 1
r
)r2PUV U

PAY B = PAWB + r(PAV B − PAUB + 2PV UW ) − r(1 − r)PUV U

by lemma 17
PAY B = PAWB + r(PAV B − PAUB + 2PWUV ) − r(1 − r)PUV U

Q.E.D.

Lemma 35: (EL8) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

SABY = SABP −
r

4
PPAQB.

Proof of Lemma 35 (EL8) Let A1 be the orthogonal projection from A to PQ. Then by
lemmas 11 and 24:
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SPAY

SPQY

=
SPA1Y

SPQY

=
PA1

PQ
=

PA1PQ

PQPQ

=
PAPQ

PQPQ

Thus SPAY =
PAPQ

PQPQ
SPQY = r

4PAPQ. Similarly, SPBY =
PBPQ

PQPQ
SPQY = r

4PBPQ. Now

SABY = SABP + SPBY − SPAY = SABP − r
4PPAQB.

Q.E.D.

Lemma 36: (EL9) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds:

PABY = PABP − 4rSPAQB.

Proof of Lemma 36 (EL9) Let the orthogonal projections from A and B to PY be A1 and
B1. Then

PBPAY

PY PY

=
PB1PA1Y

PY PY

=
A1B1

PY
=

SPA1QB1

SPQY

=
SPAQB

SPQY

.

Since PY ⊥ PQ, S2
PQY = 1

4PQ
2
× PY

2
. Then PY PY = 2PY

2
= 4rSPQY . Therefore

PABY = PABP − PBPAY = PABP − 4rSPAQB.

Q.E.D.

Lemma 37: (EL10) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds

PAY B = PAPB + r2PPQP − 4r(SAPQ + SBPQ).

Proof of Lemma 37 (EL10) By lemma 36 (EL9)

PAPY = 4rSAPQ, PBPY = 4rSBPQ.

Then

PY PY = 2PY
2

= 4rSPQY = r2PPQP

Then

PAY B = PAPB − PAPY − PBPY + PY PY = PAPB + r2PPQP − 4r(SAPQ + SBPQ).

Q.E.D.
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Lemma 38: (EL11) Let Y be introduced by (Inter Y (Line U V) (Line P Q)). Then it
holds

AY

CD
=

{

SAPQ

SCPDQ
if A is on UV

SAUV

SCUDV
otherwise

Proof of Lemma 38 (EL11) If A is not on UV , let S be a point such that AS = CD.

b

b

b bb

U

V

P QY

b b

b b

A

S

C

D

AY

CD
=

AY

AS
by construction

=
SAUV

SAUSV

by lemma EL1
b

b

b

U

V

Y

b

b

A

S

=
SAUV

SUAV S

by lemma 21

=
SAUV

SUCV D

by lemma 15
b

b

U

V

b b

b b

A

S

C

D

=
SAUV

SCUDV

by lemma 21

If A is on UV

b

b

b bb

U

V

P QY

b b

b b

A

S

C

D

AY

CD
=

AY

AS
by construction
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=
SAPQ

SAPSQ

by lemma EL1

=
SAPQ

SCPDQ

Q.E.D.

Lemma 39: (EL12) Let Y be introduced by (Foot Y P (Line U V)). We assume D 6= U ;
otherwise interchange U and V . Then it holds

AY

CD
=

{

PPCAD

PCDC
if A is on UV

SAUV

SCUDV
otherwise

Proof of Lemma 39 (EL12) If A is on UV , let T be a point such that AT = CD. By

lemma 24 and 27 AY

CD
= AY

AT
= PPAT

PATA
= PPCAD

PCDC
.

The second equation is a direct consequence of the co-side theorem.

b

U

b

V

b P

b

Y
b A

b C

b D

By the co-side theorem (lemma EL1)
with line CD and UV we have:

CY

CD
=

SCUV

SCUDV

and also by the co-side theorem with line AC and UV we have:

CY

AY
=

SCUV

SAUV

⇔ AY =
CY SAUV

SCUV

so:

AY

CD
=

CY SAUV

SCUV

CD
=

CY

CD
×

SAUV

SCUV

=
SCUV

SCUDV

×
SAUV

SCUV

=
SAUV

SCUDV

.

Q.E.D.
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Lemma 40: (EL13) Let Y be introduced by (Pratio Y R (Line P Q) r). Then it holds

AY

CD
=











AR

PQ
+r

CD

PQ

if A is on RY

SAPRQ

SCPDQ
otherwise

Proof of Lemma 40 (EL13) The first case is obvious:

b

P
b

Q

b

R

b

Y

RY

PQ
= r

b

A

b

C

b

D

AY

CD
=

AY

PQ

CD

PQ

=

AR+AY

PQ

CD

PQ

=

AR

PQ
+ r

CD

PQ

The second case, take points T and S such that RT

PQ
= 1 and AS

CD
= 1. By the co-side

theorem, AY

CD
= AY

AS
= SART

SARST
=

SAPRQ

SCPDQ
.

Q.E.D.

Lemma 41: (EL14) Let Y be introduced by (Tratio Y (Line P Q) r). Then it holds

AY

CD
=

{

SAPQ−
r
4
PPQP

SCPDQ
if A is on PY

PAPQ

PCPDQ
otherwise

Proof of Lemma 41 (EL14) The second case is a direct consequence of lemma 25

To the first equality we have, if A is on PY , then AY

CD
= AP

CD
− Y P

CD
. By the co-side theorem,

AP

CD
=

SAPQ

SCPDQ
; AY

CD
=

SY PQ

SCPDQ
=

rPPQP

4SCPDQ
. Now the desired result follows immediately.

Q.E.D.

2.3.5 Proofs of the Free Points and Area Coordinates Lemmas

Lemma 42: SABC = (SOV B−SOV C)SOUA+(SOV C−SOV A)SOUB+(SOV A−SOV B)SOUC

SOUV
.

40



b

b b

O U

V

b

b

b

A

B

C

bW

Figure 2.24: Lemma 42

Proof of Lemma 42
We have that:

SABC = SOAB + SOBC − SOAC

Let W be the intersection of UV and OC, then by lemma 30 (EL3) with the point W
being introduced by the construction (Inter W (Line U V) (Line O C). Then it holds

SOBC =
1

SOUV

(SOBV SOUC + SOBUSOCV )

Similarly, we have

SOAC =
1

SOUV

(SOAV SOUC + SOAUSOCV )

and

SOAB =
1

SOUV

(SOAV SOUB + SOAUSOBV )

Then, we have

SABC =

=
1

SOUV

(SOAV SOUB + SOAUSOBV + SOBV SOUC + SOBUSOCV −

−SOAV SOUC − SOAUSOCV )

=
1

SOUV

(SOAUSOBV − SOAUSOCV + SOAV SOUB + SOBUSOCV

+SOBV SOUC − SOAV SOUC)

=
(SOV B − SOV C)SOUA + (SOV C − SOV A)SOUB + (SOV A − SOV B)SOUC

SOUV

Q.E.D.
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Lemma 43: AB
2

= OU
2
(SOV A−SOV B)2

S2

OUV

+ OV
2
(SOUA−SOUB)2

S2

OUV

.

Proof of Lemma 43

b

b b

O U

V

b

b

b

A

B

C

b

M

Figure 2.25: Lemma 43

We begin introducing a new point M by construction (INTER M (PLINE A O U) (PLINE

B O V)). By construction we have AM ⊥ MB, then by lemma 22, AB
2

= AM
2
+ BM

2
.

We can also define an r1 such that the construction (PRATIO M B (LINE O V) r1), with
A 6∈ BM is true, then by the second case of lemma 40 (EL13) with [R:=B; C:=O; D:=U;

P:=O; Q:=V; A:=A; Y:=M], we have AM

OU
= SAOBV

SOOUV
, applying definition 4 and lemmas 8, 9,

we have AM

OU
= SOV A−SOV B

SOUV
.

We can also have an r2 such that the construction (PRATIO M A (LINE O U) r2), with
B 6∈ AM is true, then by the second case of lemma 40 (EL13) with [R:=A; C:=O; D:=V;

P:=O; Q:=U; A:=B; Y:=M], we have BM

OV
= SBOAU

SOOV U
, and applying definition 4 and lemmas 8,

9, we have BM

OV
= −

(

SOUA−SOUB

SOUV

)

.

Then :

AB
2

= AM
2
+ BM

2

AB
2

OU
2 =

AM
2

OU
2 +

BM
2

OU
2

OU = OV , by hypothesis

AB
2

OU
2 =

AM
2

OU
2 +

BM
2

OV
2

AB
2

OU
2 =

(

SOV A − SOV B

SOUV

)2

+

(

SOUA − SOUB

SOUV

)2

AB
2

=
OU

2
(SOV A − SOV B)2

S2
OUV

+
OV

2
(SOUA − SOUB)2

S2
OUV
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Q.E.D.

Lemma 44: S2
OUV = OU

2
OV

2

4 .

Proof of Lemma 44 By hypothesis UO ⊥ OV , and given the fact that the square of a signed

area is always positive, we have S2
OUV =

(

OU OV
2

)2
= OU

2
OV

2

4 .

Q.E.D.
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