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Abstract

The area method for Euclidean constructive geometry was proposed by Chou et al. in early
1990’s. The method produces human-readable proofs and can efficiently prove many non-
trivial theorems. It can be considered as one of the most interesting and most successful
methods in geometry theorem proving and probably the most successful in the domain of
automated production of readable proofs.

In this research report, we focus on the rigorous proofs of all the lemmas of the area method.
This text is meant as a support text for the article, The Area Method: a Recapitulation,
by Predrag Janici¢, Julien Narboux and Pedro Quaresma, submitted for publication in the
Journal of Automated Reasoning, in October 2009.



Chapter 1

Introduction

There are two major families of methods in automated reasoning in geometry: algebraic style
and synthetic style methods.

Algebraic style has its roots in the work of Descartes and in the translation of geome-
try problems to algebraic problems. The automation of the proving process along this line
began with the quantifier elimination method of Tarski [21| and since then had many improve-
ments [8]. The characteristic set method, also known as Wu’s method [24, 2], the elimination
method [23], the Grobner basis method [15, 16|, and the Clifford algebra approach [17| are
examples of practical methods based on the algebraic approach. All these methods have in
common an algebraic style, unrelated to traditional, synthetic geometry methods, and they
do not provide human-readable proofs. Namely, they deal with polynomials that are often
extremely complex for a human to understand, and also with no direct link to the geometrical
contents.

The second approach to the automated theorem proving in geometry focuses on synthetic
proofs, with an attempt to automate the traditional proving methods. Many of these methods
add auxiliary elements to the geometric configuration considered, so that a certain postulates
could apply. This usually leads to a combinatorial explosion of the search space. The challenge
is to control the combinatorial explosion and to develop suitable heuristics in order to avoid
unnecessary construction steps. Examples of synthetic proof methods include approaches by
Gelertner [10], Nevis [19], Elcock [9], Greeno et al. [11]|, Coelho and Pereira |7], Chou, Gao,
and Zhang (3, 6].

In this paper we focus on the area method, an efficient semi-algebraic method for a fragment
of Euclidean geometry, developed by Chou, Gao, and Zhang [3, 4, 5|. This method enables
implementing efficient provers capable of generating human readable proofs. These proofs
often differ from the traditional, Hilbert-style, synthetic proofs, but still they are often concise,
consisting of steps that are directly related to the geometrical contents involved and hence
can be easily understood by a mathematician.

The main idea of the area method is to express the hypotheses of a theorem using a set of
starting (“free”) points and a set of constructive statements each of them introducing a new
point, and to express the conclusion by an equality between polynomials in some geometric
quantities (without considering Cartesian coordinates). The proof is developed by eliminating,
in reverse order, the points introduced before, using for that purpose a set of appropriate
lemmas. After eliminating all the introduced points, the conclusion of the theorem collapses
to an equation between two rational expressions involving only free points. This equation can



be further simplified to involve only independent variables. If the expressions on the two sides
are equal, the statement is valid, otherwise it is invalid. All proof steps generated by the area
method are expressed in terms of applications of high-level geometry lemmas and expression
simplifications.

Although the basic idea of the method is simple, implementing it is a very challenging task
because of a number of details that has to be dealt with. To our knowledge, apart from the
original implementation by the authors who first proposed the area method, there are only
three implementations more. These three implementations were made independently and in
different contexts:

e within a tool for storing and exploring mathematical knowledge (Theorema [1]) — im-
plemented by Judite Robu [20].

e within a generic proof assistant (Coq [22]) — implemented by Julien Narboux [18];

e within a dynamic geometry tool (GCLC [12]) — implemented by Predrag Janic¢i¢ and
Pedro Quaresma [14];

The implementations of the method can efficiently find proofs of a range of non-trivial
theorems, including theorems due to Ceva, Menelaus, Gauss, Pappus, and Thales.

In this research report, we focus on the rigorous proofs of all the lemmas of the area
method. This is meant as a support text for the article, The Area Method Revisited, by
Predrag Janici¢, Julien Narboux and Pedro Quaresma [13].

In the rest of the research report, we will use capital letters to denote points in the plane.
We denote by AB the length of the oriented segment from A to B and we denote by AABC
the triangle with vertices A, B, and C.

Overview of the Research Report The research report is organized as follows: After
this introduction, we proceed, in Section 2, explaining the area method in detail, presenting
the rigorous proofs of all its lemmas.



Chapter 2

A Description of the Area Method

The geometrical quantities used within the area method can be defined in Hilbert style geom-
etry, but they also require axioms of the theory of real numbers.

The notion of the ratio of directed parallel segments relies on the notion of orientation of
segments, (it holds that AB = —BA). The ratio of two directed segments is considered only
if they belong to two parallel lines.

DEFINITION 1: (Ratio of directed parallel segments) For four collinear points P, @, A, and

B, such that A # B, the ratio of directed parallel segments, denoted % is a real number. If
C and D are points such that ABCD is a parallelogram and P, Q) are on the line C'D, then

The notion of signed areas relies on the notion of orientation of triangles.

DEFINITION 2: (Signed Area) The signed area of triangle ABC, denoted Sapc, is the area
of the triangle with a sign depending on its orientation in the plane: if it is positive, then
Sapc is positive, otherwise it is negative.

The Pythagoras difference is a generalization of the Pythagoras equality regarding the
three sides of a right triangle, to an expression applicable to any triangle.

DEFINITION 3: (Pythagoras difference) For three points A, B, and C, the Pythagoras
difference, denoted Papc, is defined in the following way:

Papc = AB- +CB° — AC".

In addition to this basic definitions, there are some others that should be introduced.

DEFINITION 4: The signed area of a quadrilateral ABCD is defined as Sapcp = Sac +
Sacp.

Note that, more generally, we can define the signed area of an oriented n-polygon A1 As ... A,,



(n > 3) to be:

n
SayAsen =Y Saia A,
i=3

DEFINITION 5: For a quadrilateral ABCD, Papcp, is defined as follows:

Papcp = Papp — Popp = AB- +CD° — BC® — DA".

2.1 Geometric Constructions

The area method is used for proving constructive geometric conjectures: statements about
properties of objects constructed by some fixed set of elementary constructions. In this section
we first describe the set of available construction steps and then the set of conjectures that
can be expressed.

All constructions supported by the area method are expressed in terms of the involved
points. Therefore, only lines and circles determined by specific points can be used (rather then
arbitrarily chosen lines and circles). Then, the key constructions steps are those introducing
new points. For a construction steps to be well-defined, certain conditions may be required.
These conditions are called non-degeneracy condition (ndg-conditions). The degree of freedom
tells us if a point is free (degree bigger than 0), or not.

In the following text, we will denote by (LINE U V) a line such that the points U and V'
belong to it and we will denote by (CIrR O U) a circle such that its center is point O and such
that the point U belongs to it.

Given below is the list of elementary constructions in the area methods, along with the
corresponding ndg-conditions and the degrees of freedom of the constructed points.

ECS1 construction of an arbitrary point U; we denote this construction step by (POINT U).
ndg-condition: —
degree of freedom for U: 2

ECS2 construction of a point Y such that it is the intersection of two lines (LINE U V) and
(LINE P Q); we denote this construction step by (INTER Y (LINE U V) (LINE P Q))
ndg-condition: UV }f PQ; U #V; P # Q.
degree of freedom for Y: 0

ECS3 construction of a point Y such that it is a foot from a given point P to (LINE U V);
we denote this construction step by (Footr Y P (LINE U V)).
ndg-condition: U # V
degree of freedom for Y: 0

ECS4 construction of a point Y on the line passing through point W and parallel to (LINE
U V), such that WY = rUV, where r can be a rational number, a rational expression



in geometric quantities, or a variable; we denote this construction step by (PRATIO Y
W (LINE U V) 1).
ndg-condition: U # V; if r is a rational expression in geometric quantities then the

denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a variable.

ECS5 construction of a point Y on the line passing through point U and perpendicular
to (LINE U V), such that r = 47385“/’;, where 7 can be a rational number, a rational
expression in geometric quantities, or a variable; we denote this construction step by
(TraTIO Y (LINE U V) 1).

ndg-condition: U # V; if r is a rational expression in geometric quantities then the
denominator of r should not be zero.

degree of freedom for Y: 0, if  is a fixed quantity; 1, if r is a variable.

The above set of constructions is sufficient for expressing many constructions based on ruler
and compass, but not all of them. For instance, an arbitrary line cannot be constructed by
the above construction steps. Still, we can construct two arbitrary points and then implicitly
the line going through these points.

2.1.1 Constructive Geometric Statements

In the area method, geometric statement have a specific form.

DEFINITION 6: (Constructive Geometric Statement) A constructive geometric statement, is
alist S = (C1,Ca,...,Cp, G) where Cj, for 1 < i < n, are elementary construction steps, and
the conclusion of the statement, G, is of the form Fy = Fs, where E; and E5 are polynomials
in geometric quantities of the points introduced by the steps C;.

We denote the class of all constructive geometric statement by C.

For a statement S = (C1,Cs,...,Cy, (E1 = E3)) from C, the ndg-condition is the set of
ndg-conditions of the steps C; plus the condition that the denominators of the length ratios
in F1 and F5 are not equal to zero.

Note that the area method cannot deal with inequalities in its conclusion statement, G.

2.2 Properties of Geometric Quantities & Elimination Lemmas

We present here the properties of geometric quantities, required by the area method. We
follow the material from [3, 4, 5, 25|, but in a reorganized, more methodological form.

Properties of the Ratio of Directed Parallel Segments

For any points A, B, P, and ) we have the following properties.
Lemma 1:

Lemma 2: == =0iff P = Q.



Lemma 3: = £2 = 1.

Lemma 4:

SIS
+
3
I
—_

Lemma 5: For any real number there is a unique point P which is collinear with A and B,

aticfiae AP _
and satisfies S==T

Lemma 6: If points C and D are on line AB, A # B and P is any point not on line AB

Spcp _ CD
then, Spap = AB’

Lemma 7: (EL1) (The Co-side Theorem) Let M be the intersection of two non-parallel lines

: PM _ Spap. PM _ Spap . QM __ Sgas
AB and PQ and @ # M. Then it holds that OM = Soan’ PQ = Sraos’ PO — Srags”

Since Spap and Sgap cannot both be zero, we always assume that the nonzero one is the
denominator. Also note that PQ # 0 since AB }f PQ.

The lemma EL1 is the first of a set of important lemmas for the area method, called
elimination lemmas (EL). The proofs of any conjecture in C will be based in this lemmas.
Notice that the point M, which was introduced by a given construction, can be eliminated by
the substitution from the ratio of directed parallel segments by a ratio of two signed areas,
not involving M.

Properties of the Signed Area

For any points A, B, C and D, we have the following properties.

Lemma 8: Sapc = Scap = Spca = —SacB = —Spac = —ScBa.
Lemma 9: Sppc =0iff A, B, and C are collinear.

Lemma 10: Sapc = Sapp +Sapc + Spac-

Lemma 11: PQ || AB iff Spap = Sqas, i-e., iff Spagp = 0.
Lemma 12: Sispcp = Sapp + Sebp.

Lemma 13: Sapcp = Spepa = ScpaB = Spapc = —Sapcs = —SpcBa = —ScBAD =
—SBapc-

Lemma 14: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
Sapc = Spap + Spcp, Spap = Sppac = Spppc, and Spap = Spcp — Sacp =
SppAac-

Lemma 15: Let ABCD be a parallelogram, P and ) be two arbitrary points. Then it holds
that Sapg + Scrg = Seprg + Sppg or Spags = Sppgc-

Lemma 16: Let R be a point on the line PQ. Then for any two points A and B it holds
_ PR RQ
that Spap = P—QSQAB + mSpAB.



Properties of the Pythagoras Difference

For any points A, B, C and D we have the following properties.
Lemma 17: Paap = 0.

Lemma 18: Papc = PcBa-

Lemma 19: Pypa = 2@2.

Lemma 20: If A, B, and C are collinear then, Papc = 2BA BC.

Lemma 21: Papcp = —Papc = Peapc = —Ppcpa = PcpaB = —Pcap = Ppcpa =
—PpABC-

Lemma 22: AB | BC iff P4ygc = 0.
Lemma 23: AB 1L CD iff Pacp = Pecp or Pacsp = 0.

Lemma 24: Let D be the foot of the perpendicular from a point P to a line AB. Then, it
holds that L L -
AD  Ppap AD  Ppap DB _ Pppa

DB Pppa’ AB 94> AB 94B°

Lemma 25: Let AB and P(Q be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY _Ppap  PY _ Ppap QY _ Poas
QY Poa’ PQ Prags’ PQ Prags

Lemma 26: Let R be a point on the line PQ such that vy = i;g, ro =
A, B, it holds that

3

. Then, for points

Prap = 11PgaB +1m2PpaB
Parp = 711PagB +12Papp — r11m2Ppqp -

Lemma 27: Let ABCD be a parallelogram. Then for any points P and @), it holds that

Papq+Pcrq = Pspqg+Pprq or Parpq =Pprcq
Praqg +Prcq = Pprpqg+ Pprpg+2PpaD -

Elimination Lemmas

Considering the constructions steps we need only to eliminate points introduced by four con-
structions (ECS2 to ECS5), from three kinds of geometric quantities.



Lemma 28: Let G(Y) be one of the following geometric quantities: Sapy, Sapcy, PaBy,
or Papcy for distinct points A, B, C', and Y. For three collinear points Y, U, and V it
holds

Uy YV
——G(V) + ==G(U) 2.1

c) uv

The above result follows from lemmas 16 and 25. Note that, given lemmas 8, 13, 18, 21, all
signed areas and Pythagoras differences (not of the form P4y p) involving Y can be reduced
to quantities of the form Sapy, SaBcy, PaBy, or PaBcy.

We call G(Y') a linear geometric quantity for the variable Y. Elimination procedures for
all linear geometric quantities are similar for constructions ECS2 to ECS4.

We now present the set of elimination lemmas that in conjunction with the already pre-
sented lemma EL1 are the base for the area method’s algorithm.

Lemma 29: (EL2) Let G(Y') be a linear geometric quantity and point Y is introduced by
the construction (PRATIO Y W (LINE U V) r). Then it holds

GY)=GW)+r(GV)-GU)).

Lemma 30: (EL3) Let G(Y) be a linear geometric quantity and point Y is introduced by
the construction (INTER Y (LINE U V) (LINE P Q). Then it holds

Y
G¥) Supvo

Lemma 31: (EL4) Let G(Y) be a linear geometric quantity (# Payp) and point Y is in-
troduced by the construction (Footr Y P (LINE U V)). Then it holds

_ PruvG(V) + PrvuG(U)
Puvu '

G(Y)

Lemma 32: (EL5) Let G(Y) = Payp and point Y is introduced by the construction (FooT
Y P (LINE U V)). Then it holds

G(Y) = zgggc(x/) 4 zf; UG(U) - PPU;;VZ]DPVU.

Lemma 33: (EL6) Let G(Y) = Payp and point Y is introduced by the construction (INTER
Y (LiNe U V) (LINE P Q)). Then it holds

GY) = P2 gy 4 VP ) Sure X Svre X Puvy,
2
Supvo Supvg Sirpvg

Lemma 34: (EL7) Let point Y be introduced by (PrRATIO Y W (LINE U V) r). Then it
holds:

Payp = Pawp + r(Pave — Pavs + 2Pwuv) — (1 — r)Puvu.



Lemma 35: (EL8) Let point Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:
r
SaBy = Sapp — ZPPAQB-
Lemma 36: (EL9) Let point Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:

Papy = Papp — 4rSpagB-

Lemma 37: (EL10) Let point Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds

Pays = Papp +r*Ppgop — 47(Sapg + Seprg)-
Now we consider how to eliminate points from the ratio of directed parallel segments.

Lemma 38: (EL11) Let Y be introduced by (INTER Y (LINE U V) (LINE P Q)). Then it

holds
AY SAPQ. i s on UV
i CPDQ
CD ‘5‘4% otherwise
CUDV

Lemma 39: (EL12) Let Y be introduced by (FooT Y P (LINE U V)). We assume D # U;
otherwise interchange U and V. Then it holds

Ay { Pecap if Ais on UV

CD | Sauv otherwise

Lemma 40: (EL13) Let Y be introduced by (PrRATIO Y R (LINE P Q) r). Then it holds

Ve ‘o if Aison RY

_ = ﬁ

CcD “gﬁ’ﬂ otherwise
cPDQ

Lemma 41: (EL14) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds

- Sapqg—4PrPqP . .

AY _ 77) Scrbo if Ais on PY

CD 73“& otherwise
CPDQ

The information on the elimination lemmas is summarized on table 2.1.
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Geometric Quantities
Pave | PaBy Papcy Sapy Sapcy VIV Ve
cbh | By
,GE ECS2 EL5 EL3 EL11 | EL1
= 2/ ECS3 | EL6 EL4 EL12
%5 ECS4 | ELT EL2 EL13
© | ECS5 | EL10 EL9 ELS EL14
Elimination Lemmas

Table 2.1: Elimination Lemmas

Free Points and Area Coordinates

The elementary construction step ECS1 introduces arbitrary points on the geometric construc-
tion, these points are the free points on which all other objects are based. For a geometric
statement S = (C1,Cy, ...,Cn, (E1 = E3)), after eliminating all the non-free points intro-
duced by C; from E; and F» using the lemmas of the preceding subsections, we obtain two
rational expressions Ej] and E) in signed areas and Pythagoras differences of free points, and
numerical constants.

Most often this simply lead to equations that are trivially true. However, if the remaining
geometric quantities are, in a generic case, not independent, e.g. for any four points A, B, C,
and D we have

Sapc = SaBp + Sapc + Spsc

We thus need to reduce E} and E) to expressions in independent variables. To do that,

we sometimes need to use area coordinates.

DEFINITION 7: Let A, O, U, and V be four points such that O, U, and V are not collinear.
The area coordinates of A with respect to OUV are

_ Sova ya = Soav 24 = Savv
Sovv’ Souvv’ Souvv
It is clear that x4 +ya + 24 = 1.

xA

It is clear that the points in the plane are in a one to one correspondence with their
area coordinates. To represent Ey and Ep as expressions in independent variables, we first
introduce three new points O, U, and V, such that, UO L OV, and % = 1. We will reduce
FE4 and Es to expressions in the area coordinates of the free points with respect to OUV.

For any free points A, B, and C, the following lemmas hold.

_ (Sove—Sovc)Sovat+(Sovc—Sova)Sous+(Sova—Sove)Souc
- Souvv :

Lemma 42: S,pc

Lemma 43: E2 _ Wg(SOVA_SOVB)2 + WQ(SOUA—SOUB)2 '

- 2 2
SOUV SOUV

—2 —2
. 2 __ OU x oV
Lemma 44: S5, = =

Using lemmas 42 to 44, expressions Fq and F» can be written as expressions in OU, OV,
and the area coordinates of the free points. Since the area coordinates of free points are
independent, F; = E» iff £; and E5 are identical.

11



2.3 Rigorous Proofs

2.3.1 Proof of the Properties of the Ratio of Directed Parallel Segments

In the following we will present all the proofs of the lemmas presented above. To a better
reading, the statements of the lemmas will be repeated.
We assume A # B whenever needed.

e

=K

=0

=S
Il

B
)
O

Lemma 1:

Proof of Lemma 1 By definition of length of an oriented segment, we have that AB = —BA,
then it holds

PQ_-QP QP _ QP QP _ -PQ _ PQ
AB~ AB  AB -BA BA BA  BA

Q.ED.

Lemma 2:

e
=

—0if P=Q.

Proof of Lemma 2 By definition of length of a segment we have that PQ = 0 iff P = Q,
mmmmmww—OﬁP:Q

Q.ED.

s
=

Lemma 3: =1.

3

Proof of Lemma 3 By the definition of ratio of directed segments, and given the fact that we

are considering the same segments (without changing orientations), we can consider % =r,
PQAB _ ... 1 _
then it holds aro - 1
Q.E.D.
. AP | PB _
Lemma 4: B TaE T 1.

Proof of Lemma 4 By the definition of ratio of directed segments, the points A, B and P
are collinear.

Then we have, AP + PB = AB and

AP L PB PB AP + PB AB
AB  AB  AB  AB

Q.ED.

12



A B P
A P B
Figure 2.1:

Lemma 5: For any real number there is a unique point P which is collinear with A and B,
AP

and satisfies -

=r.
Proof of Lemma 5 By the definition of ratio of directed segments, the points A, B and P
are collinear, them the conclusion is a direct consequence of the bijection between the set of
real numbers and the real line (any straight line).

Q.ED.

Lemma 6: If points C' and D are on line AB, A # B and P is any point not on line AB

Spcp _ CD
then, Eel = ==,

Proof of Lemma 6

Figure 2.2: Areas, Ratios relationship

Let S is the point on AB such that PS is perpendicular to AB (PS is the height of both
triangles) then it holds

ISpep| = 255 and [Spap| = 4B,F8 so
Spop| DCPS 2 DO
Srapl 2 ABPS  aiB

Since APCD and APAB have different orientations, and C'D and AB have opposite
directions, then
Spcp _ —CD
~Spap  AB

Q.ED.

Lemma 7: (EL1) (The Co-side Theorem) Let M be the intersection of two non-parallel lines

: PM _ Spap. PM _ Spap . QM _ SqaB_
AB and PQ and @) # M. Then it holds that OM ~ Sgap’ PO — Sraos’ PO _ Spaos

13



Figure 2.3: Co-side Theorem

Proof of Lemma 7

The figure 2.3 gives several possible cases (in ordered geometries). The proof here pre-
sented, which is essentially for unordered geometry, is valid for all cases [25]. For the first

formula, take a point R on AB such that AB = MR; them, by lemma 6, we have ‘:’;’;% =
% = 1< Spymr = Spap, the same applies for the point Q, Somr = Sgap. So:

N M

Figure 2.4:

Spap _ SpmR
SoaB  SquR

Now by a direct application of lemma 6, making A = Q, B=D = M, and C = P we
have:

SPMR _ SrPM _ PM
Somr  Srom QM

in conclusion
Spap _ Spur _ PM
SoaB  Sour QM

The others formulas are a consequence of this first one.

Q.E.D.

2.3.2 Proofs of the Properties of the Signed Area

Lemma 8: For any points A, B, C', and D, it holds that Sapc = Scap = Spca = —Sacs =
—8pac = —ScBA-

14



Figure 2.5:

Proof of Lemma 8 It is a direct consequence of the definition of signed area. The AABC,
ACAB and ABCA all have the same orientation.
The AACB, ABAC and ACBA have the opposite orientation (from AABC).

Q.ED.

Lemma 9: For any points A, B, C, and D, it holds that Sypc = 0 iff A, B, and C are
collinear.

Proof of Lemma 9

A b B

Figure 2.6: Lemma 9

Sapc =0 |Sapc| =04 =0 b=00rh=0<+ A= B or C belongs to line
AB & A, B, C are collinear.

Q.E.D.
Lemma 10: Sapc = Sapp + Sapc + Spse-

Proof of Lemma 10

¢

B

Figure 2.7: Lemma 10

Let P be the intersection of AC' and BD, let we denote Sagpp = a, Spcp = b, Spcp = ¢,
and Sppa = d, them we have

15



Sapc = Sapp+ Sapc + Spse &
a+b = (a+d)—(d+c)+(c+b) <
a+b = a+d—d—c+c+b &
a+b = a+bd

Q.E.D.
Lemma 11: PQ || AB iff Spap = Sqas, i.e., iff Spagp = 0.

Proof of Lemma 11

H A B H"
Figure 2.8: Lemma 11

Proof of PQ || AB iff Spap = Sgas.

We must state that the two triangles, APAB and AQAB have the same orientation.

i) PQ || AB = Spap = SgaB: -

If PQ || AB then the two triangles APAB and AQAB have equal heights PH' = PH",
given the fact that they also have a common base (AB), then we have Spap = SQaB.

ii) PQ H AB < Spap = SQAB:

If Spap = Sgap we have %Eh’ = %Eh”, then h' = h”, so the points P and @ are at
the same distance from the line AB, that is, PQ || AB.

Proof of PQ || AB iff Spagr = 0.

i) PQ || AB = Spagp = 0:

SpAQB def Spag +SpoB, given the fact that this two triangles have a common base, PQ),

equal heights, h' = h”, but opposite orientation, we have Spag + Spgr = 0.
ii) PQ || AB < Spagp = 0:

def lemm def
_ Spagp =0 S Spag +Spop =0 Spag = —Spgp & ’ Spoa = Spop & LPQN =
1PQh" = PQ || AB.
QE.D.

Lemma 12: Sapcp = Sasp + Sscp.

Proof of Lemma 12
Let P be the intersection of AC' and BD, let we denote Sapp = a, Spocp = b, Spcp = ¢,
and Sppa = d, them by lemmas 8 and 10 we have:

Sapc+Sacp = (a+b+c+d—a—d)+(a+b+c+d—b—c¢)
(a+d+b+c—d—c)+(a+d+b+c—a—0b)
= Sapp +Spep

16



Sascp SaBcp

A A A

B B B

Figure 2.9: Lemma 12

Q.E.D.
Lemma 13: Sapcp = Spepa = Scpap = Spapc = —Sapcs = —SpcBA = —SCBAD =
—SpADC-
Proof of Lemma 13 This is a direct consequence of definition 4 and lemma, 8.
Q.E.D.

Lemma 14: Let ABCD be a parallelogram and P be an arbitrary point. Then it holds that
Sapc = Spap + Spcp, Spap = Sppac = Spppe, and Spap = Spcp — Sacp =
Sppac-

Proof of Lemma 14

Figure 2.10: Lemma 14

Let S is a point on BC' such that PS is parallel to CD. By lemma 11, it holds that
AD || BC & Sapc = Sppce, PS || CD < Sppc = Sspc < Spcp = —Spes, and PS ||
AB < Spap = Ssap, AD || BS < Saps = Spps < Spap = Ssap = Saps = Spps &
Spap = Spps. Therefore, Spap +Sppc = Spps — Spcs. This proves the first formula. The
second formula is a consequence of the first one.

Q.ED.

Lemma 15: Let ABCD be a parallelogram, P and ) be two arbitrary points. Then it holds
that Sapg + Scprg = Sprg + Sppg or Spags = Sppgc-
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Proof of Lemma 15

Figure 2.11:

Notice that AAPQ and ABP(Q have the same orientation, different from the orientation

of ACPQ and ADPQ. Let O be the intersection of AC' and BD. Since O is the midpoint of
AC, by lemma 16, Sapg + Scpg = 2S0pq- For the same reason, Sppg + Sppg = 2Soprq-
We have proved the first formula, the second formula is just another form of the first one.

Q.E.D.

Lemma 16: Let R be a point on the line PQ). Then for any two points A and B it holds
that Spap = %SQAB + %SPAB-

Proof of Lemma 16

Figure 2.12: Lemma 16

Let s = Sappg, then Spap = s — Sarg — Sppr (all these triangles have the same
orientation)

Figure 2.13: Lemma 16a

let % = ), then, by lemma 6 (with P:=A; A:=P; B:=Q; D:=Q; C:=R), we have
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S RQ PQ-PR
ﬂ_ﬁ—QT:(l—A)@SARQZ(l_A)SAPQ

Sapg  PQ  PQ
and,
5
Figure 2.14: Lemma 16b

Sgprr PR

Spro PO BPR BPQ
then

SraB = $—S8ARrRQ — SBPR

5= (1 =X)Sapqg — ASBPq
s—(1—=X)(s —Spap) — A(s —SgaB)
S— 8+ As+Spap — ASpap — As+ )\SQAB
= ASgup+ (1 —X)Spas
PR RQ

70 QAB+PQ PAB

Q.ED.

2.3.3 Proofs of the Properties of the Pythagoras Difference

We begin by introducing the concept of co-area of triangles [4].
Given a triangle ABC, we construct the square ABP( such that Sypc and Sappg have
the same sign (see figure 2.15).

Figure 2.15: Co-area of a triangle

The Co-area of a triangle ABC, Capc, is a real number such that
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c [ VACQ, if ZA <90
ABC = { — 7 ACQ, if LA > 90°;
where \7ABC' is the area of triangle ABC.
For a triangle ABC we have Capc + Cpac = VBPC + JACQ = \JABPQ/2 = AB?/2.
Considering the different permutations of the vertices of the triangle ABC we can conclude
that, Papc = 4Capc-

Lemma 17: Pyap = 0.

Proof of Lemma 17

Pusp = AA + CA2 —AC2 =0+ AC> —AC> =0

given the fact that CA- = CA x CA = —AC x (—AC) = AC".

Q.E.D.
Lemma 18: Papc = PcBa.
Proof of Lemma 18
—2 ——92 —92 ——92 ——9 9
Papc=AB " +CB — AC" =CB " + AB" — CA” = Pcpa
Q.E.D.
Lemma 19: Pypa = 94AB°.
Proof of Lemma 19
Papa = AB + AB® — AA" = 24B°
Q.E.D.

Lemma 20: If A, B, and C are collinear then, Papc = 2BA BC.

Proof of Lemma 20 Since A, B, and C are collinear, we have AB + BC = AC and therefore
it holds that:

Pape = E2+07B2—E2

AB’ + BC® + 2ABBC — 2AB BC — AC"
(AB + BC)? — 2ABBC — AC”

—2AB BC

= 2BA BC

20



Q.E.D.

Lemma 21: Papcp = —PapcB = Peapc = —Pcpa = PepaB = —Pcpap = Ppepa =
—PpABC-

Proof of Lemma 21
Papcs = AD +CB —DC —BA®
— _AB’-CD’+BC’ + DA’
= —(Pascp)
Poipe = BA2+ DC? - AD® - B
— AB*+CD’-BC’ - DA
= PaBcp
Ppcpa = 3702 +m2 f07D2 —E2
— _AB’-CD’+BC’ + DA’
= —(Pascp)
Pcpap = 07D2 —{—EQ —ﬂ2 —3702
AB°+CD’ - BC' - DA
PaBcp
CB*+ 4D’ - BA* - DC”
—AB°-CD’+BC’ + DA’
= —(Pascp)
Ppepa = Dioz +ﬂ2 —@2 —E2
AB° +CD’ - BC® - DA
PaBcp
DA’ +BC' - 4B’ - CD’
—AB°-CD’+BC’ + DA’

= —(Pascp)

PcBap

Ppasc

Q.E.D.
Lemma 22: AB | BC iff Papc = 0.

Proof of Lemma 22

AB 1 BC = Papc =0

If AB L BC we have that A = B, or C = B, or the points A, B, and C form a right
triangle.
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If A = B we have, by lemma 17, Papc = Pppc = 0.

If C = B we have, by lemmas 17 and 18, Papc = Pacc = Pcca = 0.

If neither the above conditions are met, we have that /B = 90° and Papc = 4Capc =
vBPC =0

AB 1 CD <= Pypc =0

We consider that A £ B # C, we already saw that whenever they are equal the two
expressions are equivalent.

Considering the co-area definition we can conclude that Papc = 0 then /B = 90° (if
Papc > 0 then ZB < 90°, and if Papc < 0 then ZB > 90°).

Q.E.D.

Lemma 23: AB | CD iff Pacp = Pacp or Pacsp = 0.

Proof of Lemma 23

Figure 2.16: Lemma 23

Let P be the intersection of lines AB and C'D, then:

AD’ = AP’ + PD°, AC’ =4AP +PC
AD’ - PD° = AC’ - PC°
BD° = BP +PD
BC® = BP +PC°
BD’ - PD’ BC® — PC”
AD* - AC® = PD’+PC”
BD'-BC® = PD'+PC”
AD® — AC” BD’ - BC”

22



AC* - AD® = BC*-BD’
AC® +DC* - AD° = BC'+DC° - BD’
Pacp = Pscp
The second equality is a direct consequence of equality just proved, and of the definition 5:

Pacsp = Pacp —Pecp =0

Q.ED.

Lemma 24: Let D be the foot of the perpendicular constructed from a point P to a line AB.
Then, it holds that

@_PPAB @_PPAB DB _ Pppa
DB Prpa’ AB 94AB2 AB  94B%

Proof of Lemma 24

4 D B
Figure 2.17: Lemma 24
First equality:

AD  Ppap PA +BA - PB’

DB PPBA_ﬁ2+E2_m2
A, B and D are collinear, so AB = AD + DB
PA°+ AD* + DB’ +2ADDB — PB
PB’+AD’ + DB +2ADDB — PA°
ABJ_DPsom2:E2+ﬁ2 andﬁ2:ﬁ2+ﬁ2
AD° + PD° +AD° + DB +2ADDEB — (DB’ + PD")
DB’ +PD’ + AD” + DB’ + 2AD DB — (AD’ + PD")
94D’ +2ADDB _ 2AD(AD+DB) _AD
9DB’ + 9ADDB 2DB(AD+DB) DB

Second equality:

AD  Ppap PA'+BA - PB’
AB 9AB" 9AB"

AB L DP so PA> = AD’ + PD’ and PB’ = DB’ + PD’
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AD*+PD’+ BA* - DB* - PD’
9AB’

AD’ + BA - DB’
2AB’
A, B and D are collinear, so AB = AD + DB
AD’ + AD’ +2ADDB + DB” — DB"
2AB°
 9AD(AD + DB)
2AB’
A, B and D are collinear, so AB = AD + DB
ADAB 4D
AB° AB

The proof of the third equality is similar to this last one.

Q.E.D.

Lemma 25: Let AB and PQ be two non-perpendicular lines, and Y be the intersection of
line PQ and the line passing through A and perpendicular to AB. Then, it holds that

PY _Pras  PY _ Ppap QY _ Poan
QY Pga’ PQ Prage’ PQ Prags

Proof of Lemma 25

Figure 2.18: Lemma 25

The first equality is:

PY _ Ppan

Q:Y Poas

by lemma 23 with A := Qq; B := Q;C := A; D := B, for QY and with A := P; B := P;(C :=
A; D := B, for PY, we have:

z = Pras P1,Q1,A and B are collinear
QY PaiaB

 JAP 4B

- 24Q, AB
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AP, —P A

= = ——— by definition of oriented segments

AQr  —Q1A
P A
Q1A

by the co-side theorem, with P := P;;Q : = Q1; M := A;A:=A;B:=Y,

Sp Ay _ Sayvp
S04y Savo,

, by lemma 8

by lemma 11, given the fact that AY || PP and AY || Q1Q,

Sp Ay _ Savp,
Soay  Savo,

, by lemma 8

by the co-side theorem, with P := P;Q :=Q;M :=Y;A:=Y;B:= A,

_PY
= o7
This prove the first equality.
The second equality is:
PY  Ppag
PQ Prags
PQ PY +YQ
:Q = ;Q, P,Y, and @ are colinear
PY PY
PY — QY
= TQ, by definition of oriented segments
PY
PY Qv
~ PY PY
= 1+ PQAB, by the previous result
PraB
_ Prap _ Poan
Prap  Prap
_ Ppa — Pgan
PraB
Pragn

= , by definition 5
Ppap

The proof of the third equality is similar to this last proof.

25
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Lemma 26: Let R be a point on the line PQ such that r; = PR o = 29

50’ . Then, for points
A, B, it holds that

3

Prap = m1PgaB +1r2Ppas
Parp = 711PagB +r2PapB — rir2Ppgp -

Proof of Lemma 26

Figure 2.19: Lemma 26
The first equality

Prap = m1PgaB +r2Ppas

going to co-areas, considering the square ABX; X5 (see figure 2.20), we have

Crap = 11CQaB +12CpaB

Figure 2.20: Lemma 26, first equality

VARXy = 11V AQXy +1r2 vV APX)

P
AXohy = PSAX2h2 + f)gAXghg
hi —h ho —h
hl _ 1 3}12 2 1 h3

he —hs °  ho — hs
hihy — hihs = hihg — hahg + hohs — hihs
hihy — hihs = hihg — hihs
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The second equality

Parp = 711Pagp +1m2Papp — r1m2Ppqop
by definition of Pythagoras difference
AR’ + BR - AB’ =
= r(AQ’ + BQ’ — AB°) + ry(AP’ + BP* —AB") — riraProp
(AR’ + AB° - BR’) + 2BR’ - 24B° =
= 1 ((AQ° + AB® - BQ®) + 2BQ” — 24B°) + ry((AP" + AB” — BP") +
+2ﬁ2 — 2@2) - r1r2PPQP
PraB + 9BR’ — 24B° =
= T‘1’PQAB + 7‘1(237@2 — 2@2) + TQPPAB + T’Q(Qﬁz — 2@2) —

—r1r2Ppop
by the first equality
=52 052 =2 52 =52 52
2BR —2AB° = r1(2BQ —2A4B") +r(2BP" — 2AB") — riraPpgp
by lemma 19
=52 52 =2 52 =52 52 A2
Q(BR — AB ) = 27’1(BQ — AB )+27’2(BP — AB )—27’17’2PQ
BR —-AB° = nBQ +rBP — (r1 +r)AB" — rirPQ’

by lemma 4, r; +1r9 =1,

2 PR_- RQ—— _PRRQ—Q
BR® = T?QBQ +—PQBP = PO
PRBQ’ + ROBP° —~PQOBR° = PRRQPQ

Figure 2.21: Lemma 26, second equality

By lemma 22 (see also figure 2.21), we have:

BQ*=BZ +0QZ
BR' =BZ +RZ
BP'=BZ*+PZ°
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so, we have:
PR(BZ +QZ)+RQ(BZ' +PZ’)-PQ(BZ'+RZ’) = PRRQPQ
(PR+RQ-PQ)BZ°+ PRQZ + RQPZ' - PQRZ° = PRRQPQ
by lemma 4
PRQZ +RQPZ' -PQRZ® = PRRQPQ

by lemma 4 we can rewrite the different segments in the following form:

0z = 7Q
RQ = RZ+2Q
PZ = PR+RZ

PQ = PR+RZ+QZ
we get:
PRZQ’ + (RZ+7Q) (PR+ R’Z)’ — (PR+ RZ + ZQ) RZ" =

= PR(RZ+ZQ)(PR+RZ+QZ)

PRZQ’ + PR'RZ + 2PRRZ° + RZ° + PR°ZQ + 2PRRZ ZQ +

+RZ°ZQ-PRRZ° -RZ’ -RZ°ZQ =
— PR'RZ+PRRZ +PRRZZQ+PRZQ+PRRZZQ+PRZQ"
PRRZZQ = PRRZZQ

Q.E.D.
Lemma 27: Let ABCD be a parallelogram. Then for any points P and @), it holds that

Papq+Pcrq = Pspqg+Pprq or Parpq =Pprcq
Ppag +Prcqg = Ppag+ Prpg +2PBAD -

Before presenting the proof of this lemma we present the following lemma.

Auxiliary Lemma 1 Let P and QQ be the feet of the perpendiculars from point A and C to
BD. Then Papcp = 2QP BD.

Proof of Auxiliary Lemma 1

Pacp = Pasp — Pcsp, by definition
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by the lemma 23 with A := A; B := P;C := B;D := D, we have P4app = Pppp, and with
A=0C;B:=Q;C:=B;D:= D, we have Pcpp = PoBpD,

= Ppep —P@BD
by the lemma 20
= 2BPBD - BQBD
2BD (BP — BQ)
= 2QPBD

Q.ED.

Proof of Lemma 27

Figure 2.22: Lemma 27

Paprq+Pcrq = Psrqg+Pprq

First the equivalence Papg + Pcrg = Prg + Ppprg < Parg = Ppprco

ParBg = Pppcq
Parg —Perqg = Ppro— Pcepg by definition 5
Parqg +Pcprq = Ppprqg+ Prrq

Now the equality Pappg = Ppprcg-

PapBg = PbppPcg; by lemma 21
Prags = Prpoc, by auxiliarylemma 1
2QPDC = 2QPAB
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by hypothesis ABCD is a parallelogram, so AB = DC,

Now the last equality

Praqg +Prcq = Pprpqg+ Prpqg+2PBaD
Ppaq +Prcq —Ppeg — Pppg —2Ppap = 0
by definition of Pythagoras differences
0 = Ppaq +Prcq —Pprpg — Ppp@ —2PBAD
_ PA L OA _PQ*+PC+0C PO’ - PB: - QB+ PQ" -
~-PD* - @2 +P7Q2 —2PBapD
— PA'+QA°+PC°+QC'-PB - QB -PD" — QD" — 2Ppap
- AP’ -AQ°+CP°-CQ’-BP° +BQ' -DP’ +DQ" +
1+ 940° +2C0° — 2BQ” — 2DQ° — 2Pgap

by the first equality we have that Papg —|—730 pQ Ps pQ Pp pQ = 0 applymg the deﬁmtlon of
Pythagoras difference we have that AP’ AQ —I—CP C’Q _BP +BQ _DP’ —I—DQ =0

— 4Q°+CQ" - BQ* - DQ" — Prap
= AQ°+4B’-BQ" - (DQ’ +AB" - 0Q") - Ppap
Given the fact that ABCD is a parallelogram, we have AB° =CD°
= BA+QA -BQ - (CD*+QD" - CQ") — Puap
= PBag — Pcpq — PBap

considering the co-areas [4], we have

= CBag —Ccpg —CBaD

Considering the square ABX; Xs (see figure 2.23) we have:
= VAQX; - VAQ1 Xy — VBAD
= AXs((h1 — h2) — h3)

= AXQXO
= 0

Q.ED.
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2.3.4 Proofs of the Elimination Lemmas

Lemma 28: Let G(Y') be one of the following geometric quantities: Sapy, Sapcy, PaBy,
or Papcy for distinct points A, B, C', and Y. For three collinear points Y, U, and V it
holds

GY) = Z26(V) + LG(D) (2.2)

Proof of Lemma 28
Case G(Y) = Sapy:

SABY = SYAB bylemmaS

Y Y
= gVSVAB + U‘;SUAB by lemma 16; U, V, and Y are collinear
v T
= ZVSABV + U‘X;SABU by lemma 8
Uy YV
= —GV)+=G{U
v V) v )

Papy = Pypa by lemmas 17, 18

Y Y
= ZVPVBA + U‘X;PUBA by lemma 26; U, V', and Y are collinear
L, YV
v VT ov
Uy YV
= —=GV)+=G()
v v

Papy by lemmas 3, 5

Case G(Y) = Sapcy:

Sapcy = Sapc — Pacy by definition 4
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Uy Uy YV YV

= Sapc+ WSABC - WSABC + WSABC - WSABC + Sacy
= (1- (g}‘; + }[;‘;)SABC + Z}X;SABC + }[;VSABC + Sacy
= O-i-g}‘;SABc-i-}[;‘;SABC +Sacy U, V,and Y are collinear
= Z}X;SABC + }(;“;SABC +Syac by lemma 8
= ZYl;SABCV + )(?‘;SABCU by definition 4

Uy YV
= Z=G(V) + ==6)

Case G(Y) = Papcy:

Papcy = Papy —Pcpy by definition 5 o
= Z‘Y/PABV - Z:“;PABU - (S‘Y/PCBV + Z:“;PCBU)
= g}‘; (Papv — Pcav) + ?‘;(PABU Pcu)
= ZE‘ZPABCV + };PABCU by definition 5
_ g";G(V) + )[;“;G(U)

Q.ED.

Lemma 29: (EL2) Let G(Y') be a linear geometric quantity and point Y is introduced by
the construction (PRATIO Y W (LINE U V) r). Then it holds

GY)=GW)+r(G(V)—-GW)).

Proof of Lemma 29 (EL2)
Take a point S such that WS =UV.




By (2.2) (with U:=A; V:=B; W:=U; S:=V):

WY YS WY
(V) = T2G(S)+ 2GOV) T = 1by hypothesis
= rG(S)+ (W) G(W) W,Y, S are collinear

= rG(S)+ (1 —-r)G(W)

By lemmas 15 (Sapg = Sepg +Spprg —Scrqg) and 27, (Papg = Perg +Pprg —Pcprq)
considering the parallelogram UV SW and the points W and Y we have G(S) = G(W) +
G(V) — G(U). Substituting this into the above equation, we obtain the result.

GY) = rGS)+(1—-r)GW)
r(GIW)+GV)-GWU))+ (1 —r)GW)
rGW) —rGW)+GW) +r(G(V) - G(U))
= GW)+r(G(V)-G(U))

Notice that we need the ndg. condition U # V.

Q.ED.

Lemma 30: (EL3) Let G(Y) be a linear geometric quantity and point Y is introduced by
the construction (INTER Y (LINE U V) (LINE P Q). Then it holds

_ SupG(V) — SvpgG(U)
Supvg

G(Y)

Proof of Lemma 30 (EL3)

By the co-side theorem (with P:=U; Q:=V; A:=P; B:=Q; M:=Y), % = SiUpPVQQ’ % =
—% = —‘;JVP%%. Substituting these into equation (2.2), we prove the result.
Q.E.D.

Lemma 31: (EL4) Let G(Y) be a linear geometric quantity (# Payp) and point Y is in-
troduced by the construction (Footr Y P (LINE U V)). Then it holds

_ PpuvG(V) + PpyuG(U)
Puvu '

G(Y)
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Proof of Lemma 31 (EL4)

_ Ppuv

By lemma 24 (with A:=U; B:=V; D:=Y), = o = 7;5%. Substituting these

into (2.2), we prove the result.

SIS
9=
Sl=
3=

Q.ED.

Lemma 32: (EL5) Let G(Y) = Payp and point Y is introduced by the construction (FooT
Y P (LINE U V)). Then it holds

_ PPUVG(V) . PPVUG(U) _ Pruv x Ppvu.

G(Y) =
¥) Puvu Puvu Puvu

Proof of Lemma 32 (EL5) By lemma 26 (with R:=Y; P:=U; Q:=V), for three collinear

points Y, U, and V', we have r| = 7%, ro = %‘i, and Payp = r1Pave+1r2Pavs —rirePuvu.
That is,
Uy Yv vy YV
P ==P + =P — — X =P )
AYB uv AVE uv AUB vv UV vy

By hypothesis point Y is the foot on UV of a line passing by P, then by lemma 24 (with
A:=U; D:=Y; B:=V) we have:

P P Ppuy P
Payp = PU‘; Pave + LVZ Pavp — Pl‘g LVZ
2 20V 20V 20V

By lemma 20 we have that Pyyy = QWZ = 2W2, then we have:

Puvu

Pruv Prvu Pruv X Ppvu
Payp = Pavps + PavB — ——=—Puvu

Puvu Puvu 2Puvu

Pruv Ppvu Ppuv X Ppvu
Pavs = Puvu Pavs + Puvu Pavs - - Povu

Q.E.D.

Lemma 33: (EL6) Let G(Y) = Payp and point Y is introduced by the construction (INTER
Y (LINE U V) (LINE P Q)). Then it holds

GY) = Suprq GOV) + Svpg G — Supg X Sypg % PUVU.
2
Suprvg Supvg Sirpvg
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Proof of Lemma 33 (EL6)

By lemma 26 (with R:=Y; P:=U; Q:=V), for three collinear points Y, U, and V', we have
_ oY iy

L= T2 = 77}(;\/’ and Payp = riPave + roPavp — rirePyvy. That is,
Uy YV uyyvyv
P =—P + —=7P ————P .
AYB uv AVE v AUB uvuov vvu

By hypothesis point Y is the intersection of UV with PQ), then by lemma 7 (with A:=P;
B:=Q; P:=U; Q:=V; M:=Y), we have:

SupQ Svrg Svrpg SvrqQ
Payp = Pave + Pavs — Puvu
SuprvQ Suprvq Suprvg SupvQ
Sup Svp Supq X Svpg X Puvu
Payp = L Pavp+ L P — Q 3 9
Supvg SuprvQ Sirpvo

Q.E.D.

Lemma 34: (EL7) Let Y be introduced by (PRATIO Y W (LINE U V) r). Then it holds:

Pays = Pawn +r(Pave — Pavs + 2Pwuv) — (1 — r)Puvu.

Proof of Lemma 34 (ELT)

with WS =UV.
By lemma 27[A:=U;B:=V;C:=S;D:=W;P:=A;Q:=B]| we have

PavB +Pasp = Pavs+ Paws + 2Pvuw

Pasp = —Pav+Pave +Paws + 2Pvuw

We have to eliminate the point S.
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with r = :S,’I“Q = i, that is r1 = % and ro = Wﬁm = 17%.
By lemma 26|R:=S; P:=W; Q:=Y]| we have:
Pasp = r1Payp+r2Pawp — rirePwyw
Then we have:
11Pays +rePawp — mr2Pwyw = —Pavs + Pave + Paws + 2Pvuw
rPayp = —rePawp+rirePwyw — Paup + Pave + Paws+
+2Pvow
tPayp = —(1=Paws+ ;1= Pwyw — Pavp + Pavp+
+Pawn + 2Pvuw
Pave = —r(1—HPaws+ (1 - H)Pwyw —rPavs + rPavp+
+rPaws + 2rPvuw
Pave = —1Pawp+1Paws+ Paws + (1 — )Pwyw — rPavp+
+1rPave + 2rPyvuw
Pavs = Pawp+r(Pavs — Pavs + 2Pvuw) + (1 — H)Puwyw
By lemma 19, and the hypothesis % = r, we have:
Pwyw = WY~ = 22TV = r*Pyvy
So, we can conclude
Pave = Pawp+7(Pave — Pavs +2Pvow) + (1 — 1) Puyw
Pave = Paws+7(Pavs — Pavs +2Pvow) + (1 — 1)r*Puvy
Paye = Pawp+7(Pavs — Pavs +2Pvuw) —r(1 —r)Pyvu
by lemma 17
Payp = Pawp +r(Pavs —Pavs +2Pwuv) — (1 —r)Puvu

Q.ED.

Lemma 35: (EL8) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:
r
SaBy = Sapp — ZPPAQB-

Proof of Lemma 35 (EL8) Let A; be the orthogonal projection from A to PQ. Then by
lemmas 11 and 24:
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Spay _ Spay _ PA; _ Papq _ Parq
Seqv Spqv PQ  Porq  Porq

P . P
Thus Spay = pgigSpr = %Papq. Similarly, Sppy = ngg

SaBy = Sapp + Sppy — Spay = Sapp — ;PragB-

Spqv = 7Pprq. Now

Q.E.D.
Lemma 36: (EL9) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds:

Papy = Papp —4rSpags-

Proof of Lemma 36 (EL9) Let the orthogonal projections from A and B to PY be A; and
By. Then

Pepay _ Pppayy _ A1B1_ Spags, _ SpagB

Py py Py py PY Sprqy Spoy

Since PY 1 PQ, SJ%QY = imQ % PY>. Then Pypy = 9Py’ = 4rSpgy. Therefore
Papy = Papp — Peray = Papp — 4rSpagB-

QE.D.
Lemma 37: (EL10) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds
Pays = Pars + r*Ppgp — 4r(Sapo + Sprg).

Proof of Lemma 37 (EL10) By lemma 36 (EL9)

Papy =4rSapq, Pppry =4rSppq.
Then

Py py = QWZ = 4rSpgy = TQPPQP

Then

Pays = Papp — Papry — Pppy + Pypy = Papp +r*Ppop — 47(Sapg + Seprg)-

Q.ED.
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Lemma 38: (EL11) Let Y be introduced by (INTER Y (LINE U V) (LINE P Q)). Then it

holds

av
CD

S . .

T if Aison UV
CPDQ

éisf‘# otherwise
CUDV

Proof of Lemma 38 (EL11) If A is not on UV, let S be a point such that AS = CD.

If Aison UV

AY :
— by construction
AS »
SAl by lemma EL1 */
Savsv
Savv. by lemma 21
Svavs ,
S
AUV by lemma 15
Svcvp
Savv by lemma 21
Scupv
P Q
4
U
AY AY .
— = — by construction
CcD AS
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S
= APQ by lemma EL1
SAPSQ
SapPQ

Scppg

Q.ED.

Lemma 39: (EL12) Let Y be introduced by (Foor Y P (LINE U V)). We assume D # U;
otherwise interchange U and V. Then it holds

AY {PPCAD if Aison UV

i Pcpe
CD SAUV_ otherwise

Scupv

Proof of Lemma 39 (EL12) If A is on UV, let T be a point such that AT = C'D. By

AY _ AY _ Ppar _ Ppcap
lemma, 24 and 27 CD = AT =~ Para = Pcpc *

The second equation is a direct consequence of the co-side theorem.

P -
=D
//,/C
»7A
Y -
/’(]’// 4
By the co-side theorem (lemma ELT)
with line C'D and UV we have: L
Y  Scuv
CD  Scupv

and also by the co-side theorem with line AC and UV we have:

&Y _Sovv gy - C¥Savv
AY SAUV SCUV
SO: o
—— TYSs _
AY Tyt CY  Sauv  Scov | Savv | Sauvv

= X = = .
CD CD CD Scuv Scupv Scuv  Scupv

Q.ED.
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Lemma 40: (EL13) Let Y be introduced by (PRATIO Y R (LINE P Q) r). Then it holds

pv
AY 2 if Aison RY
—_— %
CD S .
o otherwise
cPDQ

Proof of Lemma 40 (EL13) The first case is obvious:

3
!

AV ARtAY AR,

AY _PQ _ _PQ _ _ PQ
Ch @@ @ @
7q 7Q 129)

The second case, take points T and S such that % =1 and g;g = 1. By the co-side

AV _ AV _ Sapr _ Sapng
> CD AS SARST Scprpqg”

theorem

Q.E.D.

Lemma 41: (EL14) Let Y be introduced by (TRATIO Y (LINE P Q) r). Then it holds

— ScpPpQ
CD _TAPQ

Pcppg

AY Sarg=1Pror if A is on PY
otherwise

Proof of Lemma 41 (EL14) The second case is a direct consequence of lemma 25

To the first equality we have, if A is on PY, then % = % — %. By the co-side theorem,
@ o SAPQ . E - Spr _ 1PpgP B . s .
D = Scrpo’ ©D — Sorpg — Bcrng” Now the desired result follows immediately.

Q.E.D.

2.3.5 Proofs of the Free Points and Area Coordinates Lemmas

C,::(SOVB—SovcﬁSOUA4{Sovc—SOVA)SOUB+{SOVA—SOVB)SOUC

Lemma 42: Syp S
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Figure 2.24: Lemma 42

Proof of Lemma 42
We have that:
Sapc = Soas + Sopc — Soac
Let W be the intersection of UV and OC, then by lemma 30 (EL3) with the point W
being introduced by the construction (INTER W (LINE U V) (LINE O C). Then it holds

1
SoBc = S (SosvSouc + SosuSocv)

ouVv
Similarly, we have

Soac = S (SoavSouvc + SoauSocv)
ouUv

and

SoaAp = (SoavSous + SoauSosv)

Souv
Then, we have

Sapc =
1
= Sovv (SoavSouns + SoauSosv + SosvSouc + SouSocy —
—SoavSovc — SoauSocv)

1
= Sovv (SoavSorv — SoavSocv + SoavSous + SosuSocv

+SopvSovc — SoavSouc)
(Sove — Sove)Sova + (Sove — Sova)Sous + (Sova — Sove)Souvc
Sovv

Q.ED.
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5 .,
Lemma 43: AB2 — ou (SOVQA—SOVB)2 + oV (’SOUQA_SOUB)2 -
Souv Souv

Proof of Lemma 43

Figure 2.25: Lemma 43

We begin introducing a new point M by construction (INTER M (PLINE A O U) (PLINE
B O V)). By construction we have AM L M B, then by lemma 22, AB® =AM’ + BM".

We can also define an 7 such that the construction (PRATIO M B (LINE O V) r1), with
A ¢ BM is true, then by the second case of lemma 40 (EL13) with [R:=B; C:=0; D:=U;

P:=0; Q:=V; A:=A; Y:=M], we have % = ggggg, applying definition 4 and lemmas 8, 9,

AM _ Sova—Sovs
we have o = o

We can also have an ry such that the construction (PRATIO M A (LINE O U) rq), with
B ¢ AM is true, then by the second case of lemma 40 (EL13) with [R:=A; C:=0; D:=V;,
P:=0; Q:=U; A:=B; Y:=M], we have 2 = £804U "anq applying definition 4 and lemmas 8,

_ oV oovU
9, we have % - _ (W)
Then :
AB° o B
—_—3 T == + —
ou oU oU
OU = OV, by hypothesis
AB° A B
—_— T == + p—
ou oU oV
——2
AB- (30%4—30‘@)2 N <SOUA—SOUB>2
Wz SOUV SOUV
AB® = OU (Sova = Sovs)? n OV (Sova — Soun)?
Sbuv S0y
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Q.E.D.

—2——0
. Q2 oUu oV
Lemma 44: S5, = Y

Proof of Lemma 44 By hypothesis UO L OV, and given the fact that the square of a signed

—— 1\ 2 =2 ——2
area is always positive, we have S%UV = (%) = %.

Q.ED.

43



Bibliography

1]

2l

3]

4]

[5]

6]

7]

18]

19]

[10]

[11]

[12]

B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi,
N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema: Towards computer-
aided mathematical theory exploration. Journal of Applied Logic, 4:470-504, 2006.

Shang-Ching Chou. Proving and discovering geometry theorems using Wu’s method. PhD
thesis, The University of Texas, Austin, December 1985.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Automated production of
traditional proofs for constructive geometry theorems. In Moshe Vardi, editor, Proceedings
of the Fighth Annual IEEE Symposium on Logic in Computer Science LICS, pages 48-56.
IEEE Computer Society Press, June 1993.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Machine Proofs in Geometry.
World Scientific, Singapore, 1994.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Automated generation of
readable proofs with geometric invariants, I. multiple and shortest proof generation. Jour-
nal of Automated Reasoning, 17:325-347, 1996.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Automated generation of
readable proofs with geometric invariants, II. theorem proving with full-angles. Journal
of Automated Reasoning, 17:349-370, 1996.

H. Coelho and L. M. Pereira. Automated reasoning in geometry theorem proving with
prolog. Journal of Automated Reasoning, 2(4):329-390, 1986.

George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. volume 33 of Lecture Notes In Computer Science, pages 134—183. Springer-
Verlag, 1975.

E. W. Elcock. Representation of knowledge in geometry machine. Machine Intelligence,
8:11-29, 1977.

H. Gelernter. Realization of a geometry theorem proving machine. In Proceedings of the
International Conference Information Processing, pages 273-282, Paris, June 15-20 1959.

J.G. Greeno, M. E. Magone, and S. Chaiklin. Theory of constructions and set in problem
solving. Memory and Cognition, 7(6):445-461, 1979.

Predrag Jani¢i¢. GCLC — a tool for constructive euclidean geometry and more than
that. In Nobuki Takayama, Andres Iglesias, and Jaime Gutierrez, editors, Proceedings of

44



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

International Congress of Mathematical Software (ICMS 2006), number 4151 in Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2006.

Predrag Janici¢, Julien Narboux, and Pedro Quaresma. The Area Method: a Recapitu-
lation. Journal of Automated Reasoning. submitted.

Predrag Jani¢i¢ and Pedro Quaresma. System Description: GCLCprover + GeoThms.
In Furbach Ulrich and Shankar Natarajan, editors, Automated Reasoning, volume 4130
of Lecture Notes in Artificial Intelligence, pages 145—-150. Springer-Verlag, 2006.

D. Kapur. Using grobner bases to reason about geometry problems. Journal of Symbolic
Computation, 2(4):399-408, 1986.

Deepak Kapur. Geometry theorem proving using hilbert’s nullstellensatz. In SYMSAC
’86: Proceedings of the fifth ACM symposium on Symbolic and algebraic computation,
pages 202208, New York, NY, USA, 1986. ACM Press.

H. Li. Clifford algebra approaches to mechanical geometry theorem proving. In X.-S.
Gao and D. Wang, editors, Mathematics Mechanization and Applications, pages 205—299,
San Diego, CA, 2000. Academic Press.

Julien Narboux. A decision procedure for geometry in Coq. In Slind Konrad, Bunker
Annett, and Gopalakrishnan Ganesh, editors, Proceedings of TPHOLs 200/, volume 3223
of Lecture Notes in Computer Science. Springer-Verlag, 2004.

A.J. Nevis. Plane geometry theorem proving using forward chaining. Artificial Intelli-
gence, 6(1):1-23, 1975.

Judit Robu. Geometry Theorem Proving in the Frame of the Theorema Project. PhD
thesis, Johannes Kepler Universitéit, Linz, September 2002.

Alfred Tarski. A decision method for elementary algebra and geometry. University of
California Press, 1951.

The Coq development team. The Coq proof assistant reference manual, Version 8.2.
TypiCal Project, 2009.

D. Wang. Reasoning about geometric problems using an elimination method. In J. Pfalz-
graf and D. Wang, editors, Automated Practical Reasoning, pages 147-185, New York,
1995. Springer.

Wen-Tslin Wu. On the decision problem and the mechanization of theorem proving in
elementary geometry. volume 21, pages 157-179. Scientia Sinica, 1978.

Jing-Zhong Zhang, Shang-Ching Chou, and Xiao-Shan Gao. Automated production of
traditional proofs for theorems in euclidean geometry i. the hilbert intersection point
theorems. Annals of Mathematics and Artificial Intelligenze, 13:109-137, 1995.

45



