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Recent results on the Markov and Lagrange spectra

Diophantine approximations: the Markov and Lagrange spectra

Let α ∈ R \Q.

Legendre, Dirichlet: The inequality |α− p
q | <

1
q2 has infinitely

many rational solutions p
q .

Hurwitz, Markov: |α− p
q | <

1√
5q2 also has infinitely many

rational solutions p
q for any irrational α. Moreover,

√
5 is the

largest constant for which such a result is true for any α ∈ R \Q.
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However, for particular values of α we can improve this
constant:

|α− p
q
| < 1

q2

More precisely, we define k(α) := sup{k > 0 | |α− p
q | <

1
kq2 has

infinitely many rational solutions p
q} =

= lim supq→+∞ (q|qα− p|)−1.

We have k(α) ≥
√

5, ∀α ∈ R \Q and k
(

1+
√

5
2

)
=

√
5.
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We will consider the set

L = {k(α) | α ∈ R \Q, k(α) < +∞}.

This set is called the Lagrange spectrum.

Hurwitz-Markov theorem determines the smallest element of L,
which is

√
5. This set L encodes many diophantine properties

of real numbers. It is a classical subject the study of the
geometric structure of L.
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Markov (1879)

L ∩ (−∞,3) = {k1 =
√

5 < k2 = 2
√

2 < k3 =

√
221
5

< . . . }

where kn is a sequence (of irrational numbers whose squares
are rational) converging to 3

This means that the “beginning” of the set L is discrete. As we
will see, this is not true for the whole set L.
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The elements of the Lagrange spectrum which are smaller than

3 are exactly the numbers of the form
√

9 − 4
z2 where z is a

positive integer for which there are other positive integers x , y
such that 1 ≤ x ≤ y ≤ z and (x , y , z) is a solution of the
Markov equation x2 + y2 + z2 = 3xyz.

•(x , y , z) solution =⇒ (y , z,3yz − x), (x , z,3xz − y) solutions.

(1,1,1)

(1,1,2)

(1,2,5)

(1,5,13)

(1,13,34) (5,13,194)

(2,5,29)

(2,29,169) (5,29,433)
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M. Hall proved in 1947 that if C(4) is the regular Cantor set
formed by the numbers in [0,1] whose coefficients in the
continued fractions expansion are bounded by 4, then one has

C(4) + C(4) = {x + y ; x , y ∈ C(4)} = [
√

2 − 1,4(
√

2 − 1)].

This implies that L contains a whole half line (for instance
[6,+∞)).
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G. Freiman determined in 1975 the biggest half line that is
contained in L, which is [c,+∞), with

c =
2221564096 + 283748

√
462

491993569
∼= 4,52782956616 . . . .

These last two results are based on the study of sums of
regular Cantor sets, whose relationship with the Lagrange
spectrum will be explained below.
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Regular Cantor sets
Regular Cantor sets on the line are one-dimensional hyperbolic
sets, defined by expanding maps and have some kind of
self-similarity property: small parts of them are diffeomorphic to
big parts with uniformly bounded distortion.

Sets of real numbers whose continued fraction representation
has bounded coefficients with some combinatorial constraints
are often regular Cantor sets, which we call Gauss-Cantor sets
(since they are defined by the Gauss map
g(x) = {1/x} = 1/x − ⌊1/x⌋ from (0,1) to [0,1)).
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We represent below the graphics of the Gauss map
g(x) = { 1

x } = 1/x − ⌊1/x⌋.

y = g(x) =
{ 1

x

}
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Remark:
In general, we say that a set X ⊂ R is a Cantor set if X is
compact, without isolated points and with empty interior. Cantor
sets in R are homeomorphic to the classical ternary Cantor set
K1/3 of the elements of [0,1] which can be written in base 3
using only digits 0 and 2. The set K1/3 is itself a regular Cantor
set, defined by the map ψ : [0,1/3] ∪ [2/3,1] → R given by
ψ(x) = 3x for x ∈ [0,1/3] and ψ(x) = 3x − 2 for x ∈ [2/3,1].

The usual ternary Cantor set is a regular Cantor set:

ψ:

0 2/3 11/3

1
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If the continued fraction of α is

α = [a0;a1,a2, . . . ]
def
= a0 +

1

a1 +
1

a2 + . . .

.

then we have the following formula for k(α):

k(α) = lim sup
n→∞

(αn + βn),

where αn = [an;an+1,an+2, . . . ] and

βn = [0;an−1,an−2, . . . ,a1].
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The previous formula follows from the equality

|α− pn

qn
| = 1

(αn+1 + βn+1)q2
n
, ∀n ∈ N,

where pn/qn = [a0;a1,a2, . . . ,an],n ∈ N are the convergents of
the continued fraction of α.

(More precisely, we have

α− pn

qn
=

(−1)n

(αn+1 + βn+1)q2
n
, ∀n ∈ N).
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Remark:
We have the following general facts on Diophantine
approximations of real numbers, which show that the best
rational approximations of a given real number are given by
convergents of its continued fraction representation:
• For every n ∈ N,∣∣∣∣α− pn

qn

∣∣∣∣ < 1
2q2

n
or

∣∣∣∣α− pn+1

qn+1

∣∣∣∣ < 1
2q2

n+1
.

• If
∣∣α− p

q

∣∣ < 1
2q2 then p

q is a convergent of the continued
fraction of α.



Recent results on the Markov and Lagrange spectra

This formula for k(α) implies that we have the following
alternative definition of the Lagrange spectrum L, as observed
by Perron:
Let Σ = (N∗)Z be the set of all bi-infinite sequences of positive
integers. If θ = (an)n∈Z ∈ Σ, let αn = [an;an+1,an+2, . . . ] and
βn = [0;an−1,an−2, . . . ], ∀n ∈ Z. We define
f (θ) = α0 + β0 = [a0;a1,a2, . . . ] + [0;a−1,a−2, . . . ]. We have

L = {lim supn→∞ f (σnθ), θ ∈ Σ}

where σ : Σ → Σ is the shift defined by σ((an)n∈Z) = (an+1)n∈Z.
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The Markov spectrum M is the set

M = {m(θ), θ ∈ Σ},

where m(θ) := supn∈Z f (σnθ).

It also has an arithmetical interpretation, namely

M = {( inf
(x ,y)∈Z2\(0,0)

|f (x , y)|)−1,

f (x , y) = ax2 + bxy + cy2, b2 − 4ac = 1}.

It follows from the dynamical characterization above that M and
L are closed sets of the real line and L ⊂ M.
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Note:

As we have seen, the sets M and L can be defined in terms of
symbolic dynamics. Inspired by these characterizations, we
may associate to a dynamical system together with a real
function generalizations of the Markov and Lagrange spectra as
follows:

Definition

Given a flow (φt)t∈R in a manifold X , we define the associated
dynamical Markov and Lagrange spectra as
M(f , (φt)) = {supt∈Rf (φt(x)), x ∈ X} and
L(f , (φt)) = {limsupt→∞f (φt(x)), x ∈ X}, respectively. Given a
map ψ : X → X and a function f : X → R, we define the
associated dynamical Markov and Lagrange spectra as
M(f , ψ) = {supn∈Nf (ψn(x)), x ∈ X} and
L(f , ψ) = {limsupn→∞f (ψn(x)), x ∈ X}, respectively.
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We may relate the classical Markov and Lagrange spectra M
and L to dynamical Markov and Lagrange spectra associated to
horseshoes. Consider for instance
T1 : (0,1)× (0,1) → [0,1)× (0,1) given by

T1(x , y) = ({1
x
}, 1

y + ⌊1/x⌋
).

The maximal invariant set by T1 in (1/5,1)× (0,1) is
C(4)× C(4), a horseshoe. Notice that

T1([0;a0,a1,a2, . . . ], [0;b1,b2,b3, . . . ]) =

= ([0;a1,a2,a3, . . . ], [0;a0,b1,b2, . . . ]).

For the real map f (x , y) = y + 1/x , the corresponding
dynamical Markov and Lagrange spectra coincide respectively
with M ∩ (−∞,

√
32] and L ∩ (−∞,

√
32], according to a recent

result obtained in collaboration with Davi Lima.
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The most important notion of fractal dimension of a metric
space is the Hausdorff dimension.

The Hausdorff dimension of a metric space X is

HD(X ) = inf{s > 0; inf
X⊂∪B(xn,rn)

∑
r s
n = 0}.

It is a natural tool to measure fractal sets (as regular Cantor
sets), and to compare subsets of zero Lebesgue measure of
the real line.
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We have the following result about the (fractal) geometric
properties of the Markov and Lagrange spectra:

Theorem
Given t ∈ R we have

HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t)) =: d(t)

and d(t) is a continuous surjective function from R to [0,1].

Moreover:
i) d(t) = min{1,2D(t)}, where
D(t) := HD(k−1(−∞, t)) = HD(k−1(−∞, t ]) is a continuous
function from R onto [0,1).
ii) max{t ∈ R | d(t) = 0} = 3.
iii) There is δ > 0 such that d(

√
12 − δ) = 1.
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In this work we also proved that:

• limt→+∞ HD(k−1(t)) = 1

• L′ is a perfect set, i.e., L′ = L′′.

More recently, in collaboration with Christian Silva Villamil, we
proved that, if T =int(L) then, for every t ∈ T ,
HD(k−1(t)) = D(t) and D : T → [0,1) is strictly increasing.
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Below we have some “real" pictures of (approximations of parts
of) the spectra, produced in collaboration with Carlos Matheus
and Vincent Delecroix:

2.9 3.0 3.1 3.2 3.3 3.4

Lagrange spectrum L2 at precision Q2 = 150000

3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5

Lagrange spectrum L3 at precision Q3 = 3000
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In a recent work in collaboration with H. Erazo, R.
Gutiérrez-Romo and S. Romaña, we gave a precise asymptotic
expansion for d(3 + ε) for ε > 0 small:

d(3 + ε) = 2W (| log ε|/ log(3 +
√

5
2

))/| log ε|+ O(
log | log ε|
| log ε|2

),

where W : [e−1,+∞) → [−1,+∞) is the Lambert function,
which is the inverse function of
f : [−1,+∞) → [e−1,+∞), f (x) = xex .
In particular, we have the (less precise) estimate

d(3 + ε) = 2 ·
log | log ε| − log log | log ε| − log log(3+

√
5

2 ) + o(1)
| log ε|

.
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Below we have some pictures of (approximations of) the graph
of the function d(t), together with its comparison with the above
asymptotic estimate near 3, produced in collaboration with
Carlos Matheus and Polina Vytnova:

0.4

0.5

0.6

0.7

0.8

0.9

1

d
M
(t
)

3 3.125 3.25

t

0.54
0.57

0.71

0.75

d
(t
)

3 3.035 3.07 3.1

tP11 P7 P12 P3
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Let t1 = inf{t ∈ R;d(t) = 1}. Motivated by a corresponding
result for generic dynamical Markov and Lagrange spectra, we
conjectured together with D. Lima that int(L∩ (t1, t1 + δ)) ̸= ∅ for
every δ > 0.

In a recent work in collaboration with C. Matheus, M. Pollicott
and P. Vytnova, which improves estimates by Bumby, we
proved that t1 = 3.334384... (in the sense that
3.334384 < t1 < 3.334385). This implies that
HD(L ∩ (−∞,3.334384]) < 1, and, if the above conjecture is
true, then int(L ∩ (3.334384,3.334385)) ̸= ∅.
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A fundamental tool in the proof of this results is related to the
techniques of the proof, in collaboration with Jean-Christophe
Yoccoz, of a conjecture by J. Palis on arithmetic sums and
differences of regular Cantor sets.

Jean-Christophe Yoccoz
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Given two subsets K ,K ′ of the real line, we define
K + K ′ = {x + y | x ∈ K , y ∈ K ′} and
K − K ′ = {x − y | x ∈ K , y ∈ K ′} = {t ∈ R|K ∩ (K ′ + t) ̸= ∅}
(the arithmetic sum and difference between K and K ′).

The conjecture by J. Palis, stated in 1983, is the following:

Conjecture (Palis)
For typical pairs of regular Cantor sets (K ,K ′),
HD(K ) + HD(K ′) > 1 ⇒ int(K − K ′) ̸= ∅.

This conjecture was motivated by the study of homoclinic
bifurcations, in Dynamical Systems.
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Main tool from Fractal Geometry and Dynamical Systems:
We say that a C2-regular Cantor set on the real line is
essentially affine if there is a C2 change of coordinates for
which the dynamics that defines the corresponding Cantor set
has zero second derivative on all points of that Cantor set.
Typical C2-regular Cantor sets are not essentially affine.
The scale recurrence lemma, which is the main technical
lemma of the work with Yoccoz on Palis’ conjecture, can be
used in order to prove the following

Theorem: (Dimension formula)

If K and K ′ are regular Cantor sets of class C2 and K is non
essentially affine, then HD(K +K ′) = min{HD(K )+HD(K ′),1}.

Corollary: (Dimension formula for Gauss-Cantor sets)
If K and K ′ are Gauss-Cantor sets, then
HD(K + K ′) = min{HD(K ) + HD(K ′),1}.
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It took some time to determine whether M is different from L. It
was done by Freiman, in 1968, who proved that

[0;1,2,2,1,1,2,2,2,2,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,2,2]+

+[2,2,2,2,1,1,2,2,1] = 3.118120178 · · · ∈ M \ L.

In 1973, Freiman exhibited another element of M \ L:

α∞ = [2;1,1,2,2,2,1,2]+[0;1,2,2,2,1,1,2,1,2] = 3.293044265 . . . .

In 1977, Flahive exhibited a sequence of distinct elements in
ML converging to α∞. Indeed,

αn := [2;12,23,1,2] + [0;1,23,12,2,1,2n,1,2,12,23] ∈ M \ L

for all n ≥ 4.
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Cusick conjectured in 1975 that M ∩ [
√

12,∞) = L ∩ [
√

12,∞).

In collaboration with C. Matheus, we proved that
0.53 < HD(M \ L) < 0.888. More recently, in collaboration with
Matheus, Pollicott and Vytnova, we improved these estimates
to 0.537152 < HD(M \ L) < 0.796445.
In collaboration with C. Matheus, we found new elements in
M \ L, such as
[3;2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,1,2,1,1,2] +
[0;3,2,1,2,2,2,3,3] =

=
7940451225305 −

√
3

2326589591051
+
−483 +

√
330629

310
= 3.70969985975 . . . .

(disproving Cusick’s conjecture).
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In collaboration with H. Erazo and L. Jeffreys, we improved the
lower estimate to 0.594561 < HD(M \ L) and we found the
currently largest known element in M \ L, namely

[3;1,1,1,3,3,2,3,2,1,2,1,1,1,2,3,3,3,1,1,1,3,3,2,3,2,
1,2,1,1,1,1,1,2,3]+ [0;3,3,2,1,1,1,2,1,2,3,2,3,3,1,1,1,3]

=
7783937520718446343075 −

√
15

2139271632073438145038

+
−925877 +

√
1197569092229

555218

= 3.94200115991134146921437465138 . . . .
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In collaboration with D. Lima, C. Matheus and S. Vieira, we
found some elements of M \ L close to 3, as
[2;2,2,1,1,2,2,2,2,1,1,2,2,1,1,2,2,2,1,1,2,2,2,2,1,1,2]+
[0;1,1,2,2,1,1,2,2,2,2,1,1,2,2,2] = m1 =
3.00558731248699779947 . . . ,
[2;2,2,2,2,1,1,2,2,2,2,2,2,1,1,2,2,2,2,1,1,2,2,2,2,2,1,1,
2,2,2,2,2,2,1,1,2] +
[0;1,1,2,2,2,2,1,1,2,2,2,2,2,2,1,1,2,2,2,2,2] = m2 =
3.0001642312181894139255942 . . . ,
m3 = 3.0000048343047763824279744223474498428 . . . and
m4 = 3.00000014230846289515772187541301530809498 . . . .

We conjectured in this work that 3 ∈ M \ L.

The same authors proved recently that M \ L is not a closed
set: 1 + 3√

2
∈ L ∩ (M \ L).
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Definition
A semi-symmetric word is a finite word α such that
αt = . . . αtαtαt . . . belongs to the orbit of α = . . . ααα . . . by the
shift map (where αt is the transpose word of α).

Some non semi-symmetric words (of odd length) related to the
previous results:
• 221122122
• 1122212
• 2122233
• 11121211333
• 12111233311133232
• 22k1122k+11122k+211
• 22k−1122k122k+11



Recent results on the Markov and Lagrange spectra

Definition
A semi-symmetric word is a finite word α such that
αt = . . . αtαtαt . . . belongs to the orbit of α = . . . ααα . . . by the
shift map (where αt is the transpose word of α).

Some non semi-symmetric words (of odd length) related to the
previous results:
• 221122122
• 1122212
• 2122233
• 11121211333
• 12111233311133232
• 22k1122k+11122k+211
• 22k−1122k122k+11



Recent results on the Markov and Lagrange spectra

Vewry recently, in november of 2023, in collaboration with H.
Erazo, D. Lima, C. Matheus and S. Vieira, we proved that
inf(M \ L) = 3.

More precisely, we proved that
HD((M \ L) ∩ (−∞,3 + ε)) ≥
≥ W (| log ε|/ log(3+

√
5

2 ))/| log ε|+ O( log | log ε|| log ε|2 )

(in particular, we have HD((M \ L) ∩ (−∞,3 + ε)) ≥

≥
log | log ε| − log log | log ε| − log log(3+

√
5

2 ) + o(1)
| log ε|

).

The proof involves Erdös probabilistic method and the proof of
the “quasi-injectivity" of the arithmetic sum (up to a certain
scale) of a certain Gauss-Cantor set with itself, for which we
use results by Baker and Wüstholz on linear forms in
logarithms of algebraic numbers.
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Ideas to prove that 3 ∈ M \ L

We proved very recently in collaboration with H. Erazo, D. Lima,
C. Matheus and S. Vieira that inf(M \ L) = 3.
An important tool to understand the spectra around 3 is the
following elementary identity involving continued fractions:

[2;2, x ] + [0;1,1, x ] = 3.

For ε > 0 small, most of large finite factors (cn)n∈[−N,N]∩Z, with
N large, of bi-infinite sequences c = (cn)n∈Z ∈ Σ3+ε with
m(c) = f (c) have the form

. . . 1s−2 ,2,2, . . .1s−1 ,2,2,1s0 ,2,2,1s1 ,2,2,1s2 ,2,2, . . .

where the exponents sj are large (at least of the order of
magnitude of | log ε|).
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Ideas to prove that 3 ∈ M \ L

Let K be the regular Cantor set given by

K =
{
[0;1s1 ,2,2,1s2 ,2,2, . . . ] : 0 ≤ si − r ≤ r/

√
log r for all i ≥ 1

}
.

We want to prove that the projection of the Cartesian product of
K × K by the map T (x , y) = x − y is “essentially injective", and
use this fact to construct elements of M \ L close to 3 by the
following steps:

1 Use the identity [2;2, x ] + [0;1,1, x ] = 3 to relate
M ∩ [3,3 + ε) with the arithmetic difference K − K . We
want to show that

(M \ L) ∩ (3 + K − K ) ̸= ∅.

2 Show that most rectangles of the first step of the
construction of K × K project by T (x , y) = x − y into
disjoint intervals.
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1 By induction, inside each such rectangle of K × K , use
bounded distortion and estimates on linear forms in
logarithms of algebraic numbers (Baker–Wüstholz’s
theorem) to iterate the argument in a difference of the form
K − µK , up to (log | log ε|)2 steps of the construction of
K × K .

2 In this scale, other combinatorics can be disregarded by a
probabilistic method argument (à la Erdös).

3 Construct large non semi-symmetric words of odd length
from the (log | log ε|)2-step of the construction of K × K ,
and construct elements of M \ L by perturbing the
corresponding periodic orbits.
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Figure: Projection of the products of intervals I(1n22) by T
(notice that φ−1 =

√
5−1
2 ≈ 0.618033 . . . )
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Using these ideas, we proved that HD((M \ L) ∩ (−∞,3 + ε)) ≥
≥ W (| log ε|/ log(3+

√
5

2 ))/| log ε|+ O( log | log ε|| log ε|2 )

(in particular, we have HD((M \ L) ∩ (−∞,3 + ε)) ≥

≥
log | log ε| − log log | log ε| − log log(3+

√
5

2 ) + o(1)
| log ε|

.

Using some results from a work in progress in collaboration
with C. Villamil, we should be able to conclude that

HD((M \ L) ∩ (−∞,3 + ε)) =
log | log ε| − log log | log ε|+ O(1)

| log ε|
.
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An important open problem related to Markov’s equation is the
Unicity Problem, formulated by Frobenius about 100 years ago:
for any positive integers x1, x2, y1, y2, z with x1 ≤ y1 ≤ z and
x2 ≤ y2 ≤ z such that (x1, y1, z) and (x2, y2, z) are solutions of
Markov’s equation we always have (x1, y1) = (x2, y2)?

If the Unicity Problem has an affirmative answer then, for any
element t ∈ L ∩ (−∞,3), its pre-image k−1(t) by the function k
above consists of a single GL2(Z)-equivalence class (this
equivalence relation is such that

α ∼ aα+ b
cα+ d

,∀a,b, c,d ∈ Z, |ad − bc| = 1.)
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Note:

As we have seen, the sets M and L can be defined in terms of
symbolic dynamics. Inspired by these characterizations, we
may associate to a dynamical system together with a real
function generalizations of the Markov and Lagrange spectra as
follows:

Definition

Given a flow (φt)t∈R in a manifold X , we define the associated
dynamical Markov and Lagrange spectra as
M(f , (φt)) = {supt∈Rf (φt(x)), x ∈ X} and
L(f , (φt)) = {limsupt→∞f (φt(x)), x ∈ X}, respectively. Given a
map ψ : X → X and a function f : X → R, we define the
associated dynamical Markov and Lagrange spectra as
M(f , ψ) = {supn∈Nf (ψn(x)), x ∈ X} and
L(f , ψ) = {limsupn→∞f (ψn(x)), x ∈ X}, respectively.
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We may relate the classical Markov and Lagrange spectra M
and L to dynamical Markov and Lagrange spectra associated to
horseshoes. Consider for instance
T1 : (0,1)× (0,1) → [0,1)× (0,1) given by

T1(x , y) = ({1
x
}, 1

y + ⌊1/x⌋
).

The maximal invariant set by T1 in (1/5,1)× (0,1) is
C(4)× C(4), a horseshoe. Notice that

T1([0;a0,a1,a2, . . . ], [0;b1,b2,b3, . . . ]) =

= ([0;a1,a2,a3, . . . ], [0;a0,b1,b2, . . . ]).

For the real map f (x , y) = y + 1/x , the corresponding
dynamical Markov and Lagrange spectra coincide respectively
with M ∩ (−∞,

√
32] and L ∩ (−∞,

√
32], according to a recent

result obtained in collaboration with Davi Lima.
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Pierre Arnoux observed that T1 preserves a smooth measure in
a neighbourhood of the horseshoe C(4)× C(4).
Indeed, if Σ = {(x , y) ∈ R2|0 < x < 1,0 < y < 1/(1 + x)} and
T : Σ → Σ is given by

T (x , y) = ({1
x
}, x − x2y),

then T preserves the Lebesgue measure in the plane.
If h : Σ → [0,1)× (0,1) is given by h(x , y) = (x , y/(1 − xy))
then h is a conjugation between T and T1
(and thus T1 preserves the smooth measure h∗(Leb)).
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A conjecture on the geometry of M \ L

Let t1 := max{t > 0 : d(t) < 1} = 3.334384 . . . .
After extensive computations, in collaboration with H. Erazo, we
conjecture that any point in L′ ∩ (−∞, t1) must be accumulated
by points of M \ L, i.e.

L′ ∩ (−∞, t1) ⊂ (M \ L).

This conjecture implies that

dimH(M \ L) < dimB(M \ L) = dimB(M \ L) = 1.

Moreover, we also conjecture that all non semi-symmetric
words w of odd length whose corresponding periodic
sequences have Markov value m(w) < t1 produce Cantor sets
in M \ L.
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