
 

ANALYSIS IN FINITE SPACES

SET UP LET X BE A FINITE SET

FMARKOV MATRIX is
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EXAMPLE EHRENFEST'S URN

TWO URNS N BANS EACH TIME PICK A BAIL AT
RANDOM AND MOVE TO OPPOSITE START All IN LEFT

0,1 2 2

K i i 1 k i ith 1
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FOR MANY MORE EXAMPLES SEE MY PAPER

THE MARKOV CHAIN MONTECARLO REVOLUTION



ANALYTIC TECHNIQUES
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THERE ARE DOZENS AND DOZENS OFEXAMPLES
WHERE WE CAN EXPLICITLY DIAGONALIZE
NATURAL MARKOV CHAINS USING
ORTHOGONAL POLYNOMIALS FROM

ASKEY WILSON TO MACDONALD

SEE DIACONIS ZHONG2023 HAHN POLYNOMIALS AND THE

BURNSIDE PROCESS FOR A SURVEY

AND DON'T FORGET REMWALKONGRUPS
SEE FOR EXAMPLE MY BOOKS

APPLICATIONS OF GROUP REPRESENTATIONS

IN PROBABILITY AND STATISTICS

THE MATHEMATICS OF SHUFFLING CARDS

WITH JASON FULMAN

ALAS MOST OPERATORS CAN'T BE EXPLICITLY

DIAGONALIZED



GEOMETRIC TECHNIQUES
POINCARÉ
CHEEGEN
NASH SOBOLEV

LOG SOBOLEV

HANDY

HARNACK
MOST DONE WITH LAURENT SALOF COSTE SEE HIS

LECTURES ON FINITE MARKOV CHAINS SPRINGER
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A 1H From X to Y is

Xo x x x2 Xe y with K Xi Xi 0

PROPOSITIONS POINCAREINEQUALITY T K REVEASIBLE

β

A ME ul TG

Qel TX K x y Fon e x y

PROE SHOW f vanf A Elf f
USE VAR f Ey la fastTx TM

f x fill f x fix f x1 far Axe fixed

Easyblett fees

VAnf Ecfx fasftxta 2GE betl flettTaTa

Ey txylElfcet fle.ttTIKI Ta
eatxy



flettflett pal
TIKI

flett flett Egeal
Tata

A Elf 1

EXAMPLE SIMPLE RANDOM WALK ON 0 1,2 M
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51 β 1

HERE B us Efs 1 0 4
NOT SO BAD

WE CAN BE MORE CAREFUL AND GET 1 8
22

REMARKS LOTS OF REAL EXAMPLES IN

Fci Strock GEOMETRIC BOUNSFUNFINITE MARKOVCHAINS

LETS US TAKE

tiiei.in fEiiittfiioummusio
THE EIGENVALUES OF A NICE CHAIN ELYN

WHERE All EIGENVAINES ARE KNOWN

51 All OUR EXACTLY SOLVAVABLE MODELS BECOME
USEFUL SEE

DiaconisP AND SALUFFCOSTEL COMPARISONTHEORY FORFINITEMARKOVCHAINS



PANTTHNET GEOMETRIC ANALYSIS

WE FURTHER MAKE EXTENSIVE USE OF IDEAS
From GEOMETRY AND PDE

Micro LOCAL ANALYSIS

JOHN AND INNER REGULAR DOMAINS

WHITNEY COVERS

REAL GRAPHS QUANTUM GRAPHS

SEE PADENS WITH HUSTON EDWARDSAND SALGFF COSTE
All MY PAPERS ARE ONMYHOME PAGE

EXAMPLE LET G X E BE A GRAPH PERHAPSWITH
WEIGHTS ON EDGES LET X X

STANT A RANDOM WALK OFF AT X G to
LET T BE FIRST TIME THE WACKEXSITSXO

T

exit

WHERE DOES IT EXIT

IF IT DOESN'T EXIT B4 t WHERE is IT

PEX X ALT



AND HOW DO THESE ANSWERS DEPEND ON X

ADENDUM A FEW REFERENCES
1 THE BEST INTRODUCTION TO MIXING RATES IS

LEVIN D AND PERES Y MARKOV CHAINS AND

MIXING TIMES AMS FREE ON DAVIDLEVINS SITE

2 AN EXCITING STEP FORWARD SPECTRALINDEPENDENCE
SEE ERIC VIGODA LECTURE NOTES ANDSPECTRAL

INDEPENCE ALSO THE ON LINE LECTURES

3 AN AMAZING DEVELOPMENT

CHEN Y AND ELDAN R LOCALIZATION SCHMES A

FRAMEWORK FOR PROVINGMIXING BOUNDS FOR

MARKOV CHAINS

4 I HAVENT TALKED ABOUT CUTOFF'S SEE

SALEZ J ANEW CUTOFF CRITERON FOR NON
NEGATIVELY CURVED CHAINS


