On the torsion ideal of a homomorphism

Oghenetega Ighedo*

Chapman University ighedo@chapman.edu

In their study of what they call "straight rings", Dobbs and Picavet [1] define the torsion ideal of a ring homomorphism $\varphi \colon A \to B$, denoted $T(\varphi)$, by the requirement

 $b \in T(\varphi) \iff b\varphi(a) = 0$, for some non-zerodivisor $a \in A$.

Motivated by this definition, we define another torsion-like ideal of a ring homomorphism as follows. Recall that an element a of a ring A is said to be prime to an ideal I of A if, for any $x \in A$, the containment $ax \in I$ implies that $x \in I$. Equivalently, $x \notin I$ implies $ax \notin I$. Clearly, an element of A is a non-zerodivisor if and only if it is prime to the zero ideal of A. Thus, $T(\varphi)$ consists of those elements b of B such that $b\varphi(a) \in \{0\}$ for some $a \in A$ which is prime to $\{0\}$.

Let Nil(A) designate the nilradical of A. Replacing the zero ideal with the nilradical, and non-zerodivisors with elements prime to the nilradical in the definition of the torsion ideal, we define what we call the nil-torsion ideal of φ , denoted $T^{\bullet}(\varphi)$, by the requirement

 $b \in T^{\bullet}(\varphi) \iff b\varphi(a) \in \operatorname{Nil}(B)$, for some $a \in A$ which is prime to $\operatorname{Nil}(A)$

In this talk, we compare these ideals and note that while $T(\varphi)$ is always a radical ideal, $T^{\bullet}(\varphi)$ is not. We do this by means of an example.

These notions are also viewed in the context of algebraic frames with the finite intersection property. That is, in terms of two functors, RId: **CRing** \rightarrow **FIPFrm**, which sends a ring to the lattice of its radical ideals, and the second ZId: **CRing** \rightarrow **FIPFrm** but with some restrictions (with ring homomorphisms that contract z-ideals to z-ideals), which sends a ring to the lattice of its z-ideals.

References

[1] Dobbs, D.E., Picavet, G.: Straight rings. Comm. Algebra 37 (2009), 757–793.

^{*}This is joint work with Themba Dube (University of South Africa).