A topological insight into the polar involution of convex sets

NATALIA JONARD-PÉREZ*

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México nat@ciencias.unam.mx

Let us denote by \mathcal{K}_0^n the family of all closed convex sets in the *n*-dimensional euclidean space $A \subset \mathbb{R}^n$ containing the origin $0 \in \mathbb{R}^n$. For $A \in \mathcal{K}_0^n$, its polar set is denoted by A° . Namely,

$$A^{\circ} := \left\{ x \in \mathbb{R}^n : \sup_{a \in A} \langle a, x \rangle \le 1 \right\},\,$$

where $\langle \cdot, \cdot \rangle$ stands for the usual inner product on \mathbb{R}^n .

In this talk, we will discuss the topological nature of the polar map $A \to A^{\circ}$ on $(\mathcal{K}_{0}^{n}, d_{AW})$, where d_{AW} denotes the Attouch-Wets metric. We will show that $(\mathcal{K}_{0}^{n}, d_{AW})$ is homeomorphic to the Hilbert cube $Q = \prod_{i=1}^{\infty} [-1, 1]$ and that the polar map is topologically conjugate with the standard based-free involution $\sigma : Q \to Q$, defined by $\sigma(x) = -x$ for all $x \in Q$. We will also characterize all the inclusion-reversing involutions on \mathcal{K}_{0}^{n} which are conjugate σ . In this sense, we will show that the polar map is essentially the only possible decreasing involution with a unique fixed point on \mathcal{K}_{0}^{n} .

References

 L. F. Higueras-Montaño, N- Jonard Pérez, A topological insight into the polar involution of convex sets. (To appear in Israel Journal of Mathematics).

^{*}This is joint work with Luisa F. Higueras-Montaño