Embedding the free topological group $F(X^n)$ into F(X)

ARKADY LEIDERMAN*

Ben-Gurion University of the Negev, Beer Sheva, Israel arkady@math.bgu.ac.il

A very well-known fact says that the free algebraic group on two generators \mathbb{F}_2 contains an isomorphic copy of the free algebraic group \mathbb{F}_{∞} on a countably infinite set of generators. Consequently, the questions that follow can be viewed as topological versions of this purely algebraic result.

Below $X \times X = X^2$ denotes the square of X, and $X \oplus X$ denotes the free topological sum of two copies of X.

Problem. Let X be a Tychonoff topological space with $|X| \ge 2$.

- (1) Is it true that the free topological group F(X) contains a (closed) subgroup topologically isomorphic to $F(X \times X)$?
- (2) Is it true that F(X) contains a (closed) subgroup topologically isomorphic to $F(X \oplus X)$?

We show that for every topological space X such that all finite powers of X are pseudocompact, $F(X^n)$ is topologically isomorphic to a closed subgroup of F(X) for each natural n. In particular, all pseudocompact k-spaces enjoy this property [1].

Our results are quite sharp because we present the first example of a Tychonoff countably compact space Z such that F(Z) does not contain an isomorphic copy of the group $F(Z^2)$. In addition, our space Z is separable, and its square Z^2 is not pseudocompact [1].

The second item of Problem above is still open. Analogous questions for the free abelian topological group A(X) are completely resolved in [2].

References

- [1] A. Leiderman and M. Tkachenko, Embedding the free topological group $F(X^n)$ into F(X), Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (RACSAM), (2024) 118:87.
- [2] M. Krupski, A. Leiderman and S. A. Morris, Embedding of the free abelian topological group $A(X \oplus X)$ into A(X), Mathematika, **65** (2019), 708–718.

 $^{^{*}}$ This is joint work with Mikhail Tkachenko (Universidad Autónoma Metropolitana, Mexico).