Equivariant means and \mathbb{Z}_2 -ARs

Ananda López Poo Cabrera*

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México ananda@ciencias.unam.mx

In the 70's, the following problem was posed by J. Jaworowski.

Jaworowski's problem. Let G be a compact Lie group and X a metrizable G-space that has finitely many G-orbit types. Assume that for each compact subgroup H of G, the H-fixed point set X^H is an AR. Is then X a G-AR?

Although many attempts have been made to answer this question, this problem remains open even in the simplest case when $G = \mathbb{Z}_2$ and the set $X^{\mathbb{Z}_2}$ is a singleton. If X is homeomorphic with the Hilbert cube $Q = \prod_{n=1}^{\infty} [-1, 1]$, this particular case is equivalent to an open problem known as Anderson's conjecture ([1]). Notice that every action of \mathbb{Z}_2 on a space X induces an involution $\alpha : X \to X$, given by $\alpha(x) = -1 \cdot x$. Conversely, an involution α on X induces an action of \mathbb{Z}_2 on X. We will denote the resulting \mathbb{Z}_2 -space by (X, α) .

A partial positive answer to Anderson's conjecture was found in [2] for the special case when the involution α is decreasing with respect to a certain partial order on Q. Since the order played an important role in this case, it is natural to ask whether it does in a more general setting.

In this talk, we will discuss conditions for a metrizable \mathbb{Z}_2 -space (X, α) to be a \mathbb{Z}_2 -AR, provided that X is an AR and there exists a lattice structure (X, \leq, \wedge, \vee) such that α is decreasing with respect to the partial order \leq . We will see that the existence of an equivariant, symmetric map $g: X \times X \to X$ satisfying g(x, x) = x for all $x \in X$ is sufficient for X to be a \mathbb{Z}_2 -AR, and we will talk about when such a function exists. In particular, it exists if the operators \wedge and \vee are continuous and the lattice (X, \leq, \wedge, \vee) is modular. We will also briefly discuss a particular case of Jaworowski's problem for finite groups.

References

- S. Antonyan. Some open problems in equivariant infinite-dimensional topology. Topology Appl. 311 (2022), 1-12.
- [2] L. Higueras-Montaño and N. Jonard. A topological insight into the polar involution of convex sets. Accepted in Israel Journal of Mathematics.

^{*}This is joint work with Natalia Jonard (Universidad Nacional Autónoma de México).