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Effective descent morphisms are the solution to the following descent problem: re-

constructing bundles over the codomain from bundles over the domain (which may be

interpreted as local data) plus additional gluing structure satisfying coherence conditions.

In the category of topological spaces, the quintessential example of effective descent mor-

phisms are the open covers, viewed as open, continuous maps
∑

i∈I Ui → X, which solve

the classical problem of constructing bundles over X by patching together bundles over

each open set Ui via a family of transition maps satisfying the cocycle conditions. We refer

to [JT94, JST04], [Luc21, Section 3] as introductions to the topic.

Numerous descent problems can be found across a wide variety of settings in geometry

and topology [BJ97], and the concept of effective descent morphisms finds applications

in categorical Galois theory [BJ01] and non-abelian cohomology [Duc17]. Thus, under-

standing effective descent morphisms in a category C paves the way to obtaining results

for classification of locally trivial structures; fiber bundles are a basic example of this.

The problem of characterizing effective descent morphisms in a category often poses a

challenging problem, even for specific instances of categories C. General characterization

results are available for well-behaved classes of categories, such as Barr-exact categories

and locally cartesian closed categories [JST04], whose effective descent morphisms are pre-

cisely the regular epimorphisms. However, the problem of characterizing effective descent

morphisms in topological spaces, accomplished by [RT94] and refined by [CH02], evidences

its challenging nature. Another instance is the characterization of effective descent func-

tors between (internal) categories, carried out by Le Creurer [Cre99]. A survey that aims

to provide a uniform framework for effective descent morphisms for categorical/topological

structures is given in [Pre24].

When faced with the problem of studying effective descent morphisms in a category C,
there are two predominant strategies: (1) we find a suitable fully faithful embedding

C → D into a larger category D whose effective descent morphisms are better understood,

and apply classical reflection results [JT94, 2.7 Corollary], [Luc18, Theorem 1.3]. This

is the approach employed in [RT94] for topological spaces, which later inspired similar

results for various sorts of categories of generalized spaces (in the sense of [CT03, HST14]

– the so-called (T,V)-categories), obtained in [CH04, CJ11, CH17]; (2) we describe C
as a bidimensional limit of a diagram of categories whose effective descent morphisms

admit a simpler description [Luc18, Corollary 9.5], which has been applied in the study of

effective descent morphisms of (generalized) categorical structures, among which we find

[PL23a, PL23b].

Save in certain cases, such strategies can only provide sufficient conditions for a mor-

phism to be effective for descent. Our ongoing work [CLP24b] stands in contrast with such

reflection results: aiming to obtain necessary conditions for a morphism to be effective for

descent, we provide conditions for a functor to preserve effective descent morphisms. As a

consequence, we obtain necessary conditions for a morphism to be effective for descent in
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Artin gluings (also known as scones), subscones and cartesian subscones. Another impor-

tant example encompassed by our setting are the effective descent morphisms in the lax

comma category Cat//X studied in [CLP24a, Section 3].
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