On commutators acting on some Fréchet spaces over non-Archimedean fields

Agnieszka Ziemkowska-Siwek*

Institute of Mathematics, Poznań University of Technology, Poland agnieszka.ziemkowska-siwek@put.poznan.pl

Recall that a non-Archimedean field means a non-trivially valued field \mathbb{K} endowed with complete metric generated by the valuation $|\cdot| : \mathbb{K} \to [0, \infty)$ such that $|\alpha + \beta| \leq \max\{|\alpha|, |\beta|\}$ for all $\alpha, \beta \in \mathbb{K}$. The talk deals with commutators on the generalized power series spaces $D_f(a, r)$ over non-Archimedean fields, which provide the most known and important examples of non-Archimedean nuclear Fréchet spaces. Recall also that a *commutator* of a pair of operators A and B on a locally convex space E is defined by [A, B] := AB - BA. An operator T on E is said to be a commutator if T can be expressed in the form T = [A, B] for some operators A and B on E. We show (among others) the following

Theorem: If $r \in \{0, \infty\}$ and $\sup_n [a_{2n}/a_n] < \infty$ or $r \in (-\infty, 0) \cup (0, \infty)$, $\lim_n [a_{2n}/a_n] = 1$ and f is rapidly increasing, then every operator on $D_f(a, r)$ is a commutator. On the other hand, if $\lim_n [a_{n+1}/a_n] = \infty$, the identity operator on $D_f(a, r)$ is not a commutator.

^{*}This is joint work with Wiesław Śliwa (University of Rzeszów).