Strong Mazurkiewicz manifolds

VLADIMIR TODOROV

Department of Mathematic; University of Architecture, Civil Engineering and Geodesy; Hristo Smirnenski Blvd. #1, 1046 Sofia, Bulgaria tt.vladimir@gmail.com

The notion of Cantor *n*-manifolds is well known: A compact metric space is a Cantor *n*-manifold if it cannot be separated by any closed (n-2)-dimensional subset. There are different generalizations of that notion. One is the Mazurkiewicz *n*-manifold which is a locally compact separable metric space X such that for every (n-2)-dimensional set $M \subset X$ and any two disjoint closed sets $A, B \subset X$ both with nonempty interiors there is a continuum $C \subset X \setminus M$ meeting A and B. In the present talk we consider a stronger version of Mazurkiewicz *n*-manifolds: A metric compactum X is said to be a strong Mazurkiewicz *n*-manifold (SMM(n)) if for every (n-2)-dimensional set $M \subset X$ and every points $x_0, x_1 \in X \setminus M$ there exists a continuum $C \subset X \setminus M$ joining x_0 and x_1 . We describe some SMM(n) and their properties. Note that $X \setminus M$ may not be linearly connected, for example, every metric compactum X contains a 0-dimensional set M such that $X \setminus M$ doesn't contain any arc.