$\mathbb N\text{-}compactness$ and $\mathbb N\text{-}compact$ extensions in the absence of the Axiom of Choice

ELIZA WAJCH*

Institute of Mathematics, University of Siedlee, 3 Maja 54, 08-110 Siedlee, Poland eliza.wajch@gmail.com

The set-theoretic framework for the results is Zermelo-Fraenkel system **ZF**. The Axiom of Choice is not an axiom of \mathbf{ZF} . A topological space is \mathbb{N} -compact if it is homeomorphic with a closed subspace of \mathbb{N}^J for some set J. Let X be a given non-empty zero-dimensional T_1 -space. There exists an N-compact extension $v_0 X$ of X such that, for every N-compact space Y, every continuous map $f: X \to Y$ has a continuous extension $f: v_0 X \to Y$. Contrary to what happens in **ZFC**, X may fail to admit its Banaschewski compactification $\beta_0 X$ in **ZF**. Several necessary and sufficient conditions for X to admit $\beta_0 X$ are obtained in **ZF** in terms of the closed subring $U_{\aleph_0}(X)$ of C(X), introduced in [2] and defined as follows: if $f \in C(X)$, then $f \in U_{\aleph_0}(X)$ if and only if, for every $\epsilon > 0$, there exists a countable clopen partition \mathcal{A} of X such that, for every $A \in \mathcal{A}$, $\sup\{|f(x) - f(y)| : x, y \in A\} \leq \epsilon$. The principle of countable multiple choices (**CMC**) implies that X is strongly zero-dimensional if and only if every function from C(X) has an extension to a function from $U_{\aleph_0}(v_0X)$. If $\beta_0 X$ exists, then $U^*_{\aleph_0}(X) = U_{\aleph_0}(X) \cap C^*(X)$ is the ring of all functions from $C^*(X)$, continuously extendable over $\beta_0 X$. Let \mathbb{R}_{disc} denote \mathbb{R} with the discrete topology. If X is N-compact, we show in \mathbf{ZF} the following theorems about characters on rings of functions, relevant to the results obtained in [1] and [3]: (a) for every character χ on the ring $C(X, \mathbb{R}_{disc})$, there exists a unique $x_0 \in X$ such that, for every $f \in C(X, \mathbb{R}_{disc})$, $\chi(f) = f(x_0)$; (b) **CMC** implies that, for every character χ on the ring $U_{\aleph_0}(X)$, there exists a unique $x_0 \in X$ such that, for every $f \in U_{\aleph_0}(X), \chi(f) = f(x_0)$. Applying characters on rings, we prove that if X is \mathbb{N} -compact and admits its Banaschewski compactification, then **CMC** implies the following: (c) there exists a Tychonoff space Y such that the rings $U_{\aleph_0}(X)$ and C(Y) are isomorphic if and only if X is strongly zero-dimensional; (d) if Y is a real compact space such that the rings C(Y) and $U_{\aleph_0}(X)$ are isomorphic, then X and Y are homeomorphic strongly zero-dimensional spaces. Many other results on N-compactness and Banaschewski compactifications in **ZF** are included in [4].

References

- [1] K. Boulabiar, Characters on C(X), Canad. Math. Bull. 58(1) (2015), 7–8.
- [2] K. Keremedis, A. R. Olfati and E. Wajch, On *P*-spaces and G_{δ} -sets in the absence of the Axiom of Choice, Bull. Belg. Math. Soc. Simon Stevin 30 (2023), 194–236.
- [3] A. R. Olfati, On a question of $C_c(X)$, Comment. Math. Univ. Carolin. 57(2) (2016), 253–260.
- [4] A. R. Olfati and E. Wajch, E-compact extensions in the absence of the Axiom of Choice, preprint, arXiv:2211.00411

^{*}This is joint work with AliReza Olfati (Department of Mathematics, Faculty of Basic Sciences, Yasouj University, Iran).