Equivariant means and \mathbb{Z}_2 -AR's

Ananda López Poo Cabrera¹

Universidad Nacional Autónoma de México

38th Summer Conference on Topology and its Applications July, 2024

Let G be a compact topological group. We call a space X together with an action of G a G-space.

<ロ > < 同 > < 三 > < 三 > <

E

590

Let G be a compact topological group. We call a space X together with an action of G a G-**space**.

We say that a subset A of X is **invariant** if $gx \in A$ for every $g \in G$ and $x \in A$.

▲ 伊 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Ξ.

 $\checkmark Q (\sim$

Let G be a compact topological group. We call a space X together with an action of G a G-**space**.

We say that a subset A of X is **invariant** if $gx \in A$ for every $g \in G$ and $x \in A$.

A continuous function $f : X \to Y$ between *G*-spaces is equivariant if gf(x) = f(gx) for every $g \in G$ and $x \in X$.

We say that a metrizable space X is an **absolute retract** (denoted by AR) provided that for any metrizable space Y that contains X as a closed subset there exists a retraction $r : Y \to X$.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ……

3

We say that a metrizable space X is an **absolute retract** (denoted by AR) provided that for any metrizable space Y that contains X as a closed subset there exists a retraction $r : Y \to X$.

We say that a metrizable *G*-space *X* is a *G*-equivariant absolute retract (denoted by *G*-AR) provided that for any metrizable *G*-space *Y* that contains *X* as a closed and invariant subset there exists an equivariant retraction $r : Y \to X$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

3

We say that a metrizable space X is an **absolute retract** (denoted by AR) provided that for any metrizable space Y that contains X as a closed subset there exists a retraction $r : Y \to X$.

We say that a metrizable *G*-space *X* is a *G*-equivariant absolute retract (denoted by *G*-AR) provided that for any metrizable *G*-space *Y* that contains *X* as a closed and invariant subset there exists an equivariant retraction $r : Y \to X$.

Let X be a G-space. For each subgroup H of G, the H-fixed point set X^H is the set

$$\{x \in X \mid hx = x \text{ for each } h \in H\}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

3

J. Jaworowski raised the following problem in the seventies.

Jaworowski's problem

Let G be a compact Lie group and X a metrizable G-space that has finitely many G-orbit types. Assume that for each closed subgroup H of G, the H-fixed point set X^H is an AR. Is then X a G-AR?

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Recall that an involution on a space X is a continuous function $\alpha: X \to X$ such that $\alpha^2 = 1_X$.

<ロト < 回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 = < 国 = < 国 = < G = < G = < G = < G = < G = < G = <

 \mathcal{A}

Recall that an involution on a space X is a continuous function $\alpha: X \to X$ such that $\alpha^2 = 1_X$.

An action of \mathbb{Z}_2 on a space X induces an involution $\alpha : X \to X$, given by $\alpha(x) = -1 \cdot x$. Conversely, an involution α on X induces an action of \mathbb{Z}_2 on X. We denote the resulting \mathbb{Z}_2 -space by (X, α) .

▲□ → ▲ 三 → ▲ 三 → ▲ □ →

 $\checkmark Q ()$

Recall that an involution on a space X is a continuous function $\alpha: X \to X$ such that $\alpha^2 = 1_X$.

An action of \mathbb{Z}_2 on a space X induces an involution $\alpha : X \to X$, given by $\alpha(x) = -1 \cdot x$. Conversely, an involution α on X induces an action of \mathbb{Z}_2 on X. We denote the resulting \mathbb{Z}_2 -space by (X, α) .

If (X, α) and (Y, β) are \mathbb{Z}_2 -spaces, we say that α is conjugate with β if there exists an homeomorphism $h : X \to Y$ such that $\alpha = h^{-1} \circ \beta \circ h$.

Let Q be the Hilbert cube $\prod_{n=1}^{\infty} [-1, 1]$. The **standard involution** on Q is the function $\sigma : Q \to Q$ given by $\sigma(x) = -x$.

Ananda López Poo Cabrera Equivariant means and \mathbb{Z}_2 -AR's

 \mathcal{A}

Let Q be the Hilbert cube $\prod_{n=1}^{\infty} [-1, 1]$. The **standard involution** on Q is the function $\sigma : Q \to Q$ given by $\sigma(x) = -x$.

The next result was proved in [2] by S. Antonyan, using a theorem proved in [6] by J. West and R. Wong.

Theorem

Let X be a space that is homeomorphic to Q and $\alpha : X \to X$ be an involution with a unique fixed point. Then, (X, α) is a \mathbb{Z}_2 -AR if and only if α is conjugated with the standard involution $\sigma : Q \to Q$.

3

When $G = \mathbb{Z}_2$, X is homeomorphic to the Hilbert cube Q and X has a unique \mathbb{Z}_2 -fixed point, Jaworowski's problem is equivalent to the following problem raised by R. D. Anderson in the sixties.

Anderson's problem

Let $\alpha : Q \to Q$ be an involution with a unique fixed point. Is then α conjugate with the standard involution $\sigma : Q \to Q$?

(口)

 $\checkmark Q (\sim$

Let \mathcal{K}_0^n denote the family of all closed convex subsets of \mathbb{R}^n containing the origin.

<ロト < 団 > < 団 > < 豆 > < 豆 > 三 三

JQ (?

Let \mathcal{K}_0^n denote the family of all closed convex subsets of \mathbb{R}^n containing the origin.

Theorem (L. Higueras Montaño, N. Jonard, 2023)

- 1. \mathcal{K}_0^n , equipped with the Attouch-Wets metric, is homeomorphic to Q.
- Every involution α : Kⁿ₀ → Kⁿ₀ with a unique fixed point that is decreasing with respect to the inclusion order (i.e. if A, B ∈ Kⁿ₀ and A ⊆ B, then α (B) ⊆ α (A)) is conjugate with σ : Q → Q.

Weak version of Jaworowski's problem

Let (X, α) be a metrizable \mathbb{Z}_2 -space. Assume that X and $X^{\mathbb{Z}_2}$ are AR's and that there exists a lattice structure (X, \leq, \wedge, \vee) such that α is decreasing with respect to the partial order \leq . Is then (X, α) a \mathbb{Z}_2 -AR?

Theorem (S. Antonyan, 2005)

Let G be a compact Lie group and X a metrizable G-space that is an AR and has a unique G-fixed point. if X is G-contractible, then it is a G-AR.

< □ ▶

王

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- < 同 ▶ < 三 ▶ < 三 ▶ - .

Theorem (S. Antonyan, 2005)

Let G be a compact Lie group and X a metrizable G-space that is an AR and has a unique G-fixed point. if X is G-contractible, then it is a G-AR.

We say a *G*-space *X* is *G*-contractible if there exists a homotopy $H: X \times [0,1] \rightarrow X$ from the identity map Id_X to a constant function, such that H(gx, t) = gH(x, t) for every $g \in G$, $x \in X$ and $t \in [0,1]$.

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ →

3

Theorem (N. J., A. L.)

Let (X, α) be a metrizable \mathbb{Z}_2 -space such that X is homeomorphic to Q and α has a unique fixed point. Then, (X, α) is a \mathbb{Z}_2 -AR if and only if there exists a continuous function $g : X \times X \to X$ that satisfies that, for every $x, y \in X$,

1)
$$g(x, x) = x$$
,
2) $g(x, y) = g(y, x)$,
3) $g(\alpha(x), \alpha(y)) = \alpha(g(x, y))$.

3

 \mathcal{A}

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ →

Theorem (N. J., A. L.)

Let (X, α) be a metrizable \mathbb{Z}_2 -space such that X and $X^{\mathbb{Z}_2}$ are AR's. If there exists a continuous function $g : X \times X \to X$ that satisfies that, for every $x, y \in X$,

1)
$$g(x, x) = x$$
,
2) $g(x, y) = g(y, x)$,
3) $g(\alpha(x), \alpha(y)) = \alpha(g(x, y))$,
then X is a \mathbb{Z}_2 -AR.

 $\checkmark Q (\sim$

Definition

A mean on a topological space X is a continuous function $g: X \times X \rightarrow X$ that satisfies that, for every $x, y \in X$, 1) g(x, x) = x, 2) g(x, y) = g(y, x).

 \mathcal{A}

Definition

A mean on a topological space X is a continuous function $g: X \times X \rightarrow X$ that satisfies that, for every $x, y \in X$, 1) g(x,x) = x, 2) g(x,y) = g(y,x).

Definition

Let (X, α) be a \mathbb{Z}_2 -space. We will say that an **equivariant mean** is a continuous function $g : X \times X \to X$ that satisfies that, for every $x, y \in X$,

1)
$$g(x, x) = x$$
,
2) $g(x, y) = g(y, x)$,
3) $g(\alpha(x), \alpha(y)) = \alpha(g(x, y))$.

3

< □ > < □ > < □ > < □ > < □ > .

Consider the \mathbb{Z}_2 -space (Q, σ) . The function $g : Q \times Q \rightarrow Q$, given by

$$g\left((x_n),(y_n)\right)=\left(\frac{x_n+y_n}{2}\right),$$

is an equivariant mean.

▲□ > < E > < E > E

 \mathcal{A}

V. Milman and L. Rotem defined and equivariant mean on the family $\mathcal{K}^n_{(0),b}$ of all compact convex subsets of \mathbb{R}^n containing the origin in their interior, equipped with the Hausdorff metric.

This is a \mathbb{Z}_2 -space if we consider the polar involution $A \to A^\circ$, given by

$$\mathcal{A}^\circ = \left\{ x \in \mathbb{R}^n \mid \sup_{a \in \mathcal{A}} \langle a, x
angle \leq 1
ight\}.$$

Let x, y > 0. The sequences (a_n) and (h_n) given by

$$a_0=x, \quad h_0=y,$$

$$a_{n+1} = \frac{a_n + h_n}{2}, \quad h_{n+1} = \left(\frac{a_n^{-1} + h_n^{-1}}{2}\right)^{-1},$$

satisfy that (a_n) is decreasing, (h_n) is increasing, $h_n \leq a_n$ for every $n \geq 1$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} h_n = \sqrt{xy}$.

| ◆ □ ▶ | ◆ 三 ▶ | ◆ 三 ▶ | ● 三

 \mathcal{A}

Let $K, T \in \mathcal{K}^n_{(0),b}$. The sequences (A_n) and (H_n) given by

$$A_0=K, \quad H_0=T,$$

$$A_{n+1}=\frac{A_n+H_n}{2}, \quad H_{n+1}=\left(\frac{A_n^\circ+H_n^\circ}{2}\right)^\circ,$$

satisfy that (A_n) is decreasing with respect to inclusion order, (H_n) is increasing, $H_n \subseteq A_n$ for every $n \ge 1$ and $\lim_{n\to\infty} A_n = \lim_{n\to\infty} H_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \mathcal{A}

Let $K, T \in \mathcal{K}^n_{(0),b}$. The sequences (A_n) and (H_n) given by

$$A_0=K, \quad H_0=T,$$

$$A_{n+1}=\frac{A_n+H_n}{2}, \quad H_{n+1}=\left(\frac{A_n^\circ+H_n^\circ}{2}\right)^\circ,$$

satisfy that (A_n) is decreasing with respect to inclusion order, (H_n) is increasing, $H_n \subseteq A_n$ for every $n \ge 1$ and $\lim_{n\to\infty} A_n = \lim_{n\to\infty} H_n$.

They defined $g : \mathcal{K}^n_{(0),b} \times \mathcal{K}^n_{(0),b} \to \mathcal{K}^n_{(0),b}$ by $g(K, T) = \lim_{n \to \infty} A_n = \lim_{n \to \infty} H_n.$

▲□▶▲□▶▲□▶▲□▶ ■ のQ@

Definition

Let (X, α) be a \mathbb{Z}_2 -space. We will say that a continuous function $E: X \times X \to X$ is **good** if, for every $x, y \in X$, the sequences (A_n) and (H_n) given by

$$A_0=x, \quad H_0=y,$$

$$A_{n+1} = E(A_n, H_n), \quad H_{n+1} = \alpha \left(E(\alpha(A_n), \alpha(H_n)) \right)$$

satisfy that (A_n) is decreasing, (H_n) is increasing, they are both convergent and $\lim_{n\to\infty} A_n = \lim_{n\to\infty} H_n$.

 \mathcal{A}

In the following, (X, α) is a metrizable \mathbb{Z}_2 -space such that X and $X^{\mathbb{Z}_2}$ are ARs. We assume that there exists a lattice structure (X, \leq, \wedge, \vee) such that α is decreasing with respect to the partial order \leq . We also assume that \wedge and \vee are continuous.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

 $\checkmark Q ()$

In the following, (X, α) is a metrizable \mathbb{Z}_2 -space such that X and $X^{\mathbb{Z}_2}$ are ARs. We assume that there exists a lattice structure (X, \leq, \wedge, \vee) such that α is decreasing with respect to the partial order \leq . We also assume that \wedge and \vee are continuous.

Proposition (N. J., A. L.)

Suppose X is compact. If $E: X \times X \to X$ is a good mean, then $g: X \times X \to X$, given by

$$g(x,y) = \lim_{n \to \infty} A_n(x,y) = \lim_{n \to \infty} H_n(x,y),$$

is an equivariant mean, and therefore (X, α) is a \mathbb{Z}_2 -AR.

<ロ > < 同 > < 三 > < 三 > <

Ξ.

Suppose that X is compact. If $E : X \times X \rightarrow X$ is a mean that satisfies that, for every $x, y \in X$,

- 1. $x \le E(x, y) < y$ if x < y,
- 2. $E(x, y) \geq \alpha (E(\alpha(x), \alpha(y))),$

then *E* is good.

 $\checkmark Q (\sim$

Suppose that X is compact. If $E : X \times X \rightarrow X$ is a mean that satisfies that, for every $x, y \in X$,

1.
$$x \leq E(x, y) < y$$
 if $x < y$,
2. $E(x, y) \geq \alpha (E(\alpha(x), \alpha(y)))$,
then *E* is good.

These conditions can be exchanged for

1.
$$x < E(x, y) \le y$$
 if $x < y$,
2. $E(x, y) \le \alpha (E(\alpha(x), \alpha(y)))$.

Ξ.

 $\checkmark Q (\sim$

▲□▶ ▲□▶ ▲□▶ ▲ ■▶ -

If (X, \leq, \wedge, \vee) is a modular lattice (i.e., $x \leq b$ implies $x \vee (a \wedge b) = (x \vee a) \wedge b$ for all $x, a, b \in X$), then there exists and equivariant mean $g: X \times X \to X$, and therefore X is a \mathbb{Z}_2 -AR.

If (X, \leq, \wedge, \vee) is a modular lattice (i.e., $x \leq b$ implies $x \vee (a \wedge b) = (x \vee a) \wedge b$ for all $x, a, b \in X$), then there exists and equivariant mean $g: X \times X \to X$, and therefore X is a \mathbb{Z}_2 -AR.

Consider the lattice (Q, \leq, \wedge, \vee) given by $(x_n) \leq (y_n)$ if and only if $x_n \leq y_n$ for every $n \in \mathbb{N}$,

$$(x_n) \wedge (y_n) = (\min \{x_n, y_n\}),$$
$$(x_n) \vee (y_n) = (\max \{x_n, y_n\}).$$

This is a modular lattice and \wedge and \vee are continuous functions.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

 $\land \land \land \land$

Definition

Let (X, α) be a \mathbb{Z}_2 -space. We will say that an **equivariant mean** is a continuous function $g : X \times X \to X$ that satisfies that, for every $x, y \in X$,

1) g(x, x) = x, 2) g(x, y) = g(y, x), 3) $g(\alpha(x), \alpha(y)) = \alpha(g(x, y))$.

Ananda López Poo Cabrera Equivariant means and \mathbb{Z}_2 -AR's

3

 $\checkmark Q (\sim$

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ──

Definition

Let (X, α) be a \mathbb{Z}_2 -space. We will say that an **equivariant mean** is a continuous function $g : X \times X \to X$ that satisfies that, for every $x, y \in X$,

1) g(x, x) = x, 2) g(x, y) = g(y, x), 3) $g(\alpha(x), \alpha(y)) = \alpha(g(x, y))$.

Definition

Let X be a G-space. We will say that an **equivariant** *n*-mean is a continuous function $p: X^n \to X$ that satisfies that, for every $(x_1, \ldots, x_n) \in X^n$, 1) $p(x, \ldots, x) = x$, 2) $p(x_1, \ldots, x_n) = p(x_{\tau(1)}, \ldots, x_{\tau(n)})$ for every permutation τ of $\{1, \ldots, n\}$. 3) $p(gx_1, \ldots, gx_n) = gp(x_1, \ldots, x_n)$ for every $g \in G$.

3

Theorem (N. J., A. L.)

Let (X, α) be a metrizable \mathbb{Z}_2 -space such that X and $X^{\mathbb{Z}_2}$ are AR's. If there exists an equivariant mean $g : X \times X \to X$, then X is a \mathbb{Z}_2 -AR.

<ロ> <同> <同> < 三> < 三> < □> <

王

Theorem (N. J., A. L.)

Let (X, α) be a metrizable \mathbb{Z}_2 -space such that X and $X^{\mathbb{Z}_2}$ are AR's. If there exists an equivariant mean $g : X \times X \to X$, then X is a \mathbb{Z}_2 -AR.

Theorem (N. J., A. L.)

Let G be a finite group. Let X be a metrizable G-space such that for each closed subgroup H of G the set X^H is an AR. If for each $n \in \mathbb{N}$ such that n = |H| for some closed subgroup H of G there exists an equivariant *n*-mean $p : X^n \to X$, then X is a G-AR.

<ロ > < 同 > < 三 > < 三 > <

Ξ.

We say that a metrizable *G*-space *X* is a *G*-equivariant absolute neighborhood retract (denoted by *G*-ANR) provided that for any metrizable *G*-space *Y* that contains *X* as a closed and invariant subset there exist an invariant neighborhood *U* of *X* in *Y* and an equivariant retraction $r : U \to X$.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

 $\checkmark Q (\sim$

We say that a metrizable *G*-space *X* is a *G*-equivariant absolute neighborhood retract (denoted by *G*-ANR) provided that for any metrizable *G*-space *Y* that contains *X* as a closed and invariant subset there exist an invariant neighborhood *U* of *X* in *Y* and an equivariant retraction $r : U \to X$.

Theorem (H. Juárez-Anguiano, 2020)

Let X be a metrizable G-space that is a G-ANR and suppose that for each closed subgroup H of G, X^H is connected and has finitely generated homology groups such that almost all vanish. Then the following conditions are equivalent.

- 1) There exists an equivariant *n*-mean $p: X^n \to X$ for every $n \ge 2$.
- 2) There exists an equivariant *n*-mean $p: X^n \to X$ for some $n \ge 2$.
- 3) X is a G-AR.

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

Ξ.

In [4], H. Juárez-Anguiano asked the following question.

Question

Let X be a compact and connected metrizable G-space that is a G-ANR. If there exists an equivariant *n*-mean $p : X^n \to X$ for some $n \ge 2$, then is X a G-AR?

3

 \mathcal{A}

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ →

In [4], H. Juárez-Anguiano asked the following question.

Question

Let X be a compact and connected metrizable G-space that is a G-ANR. If there exists an equivariant *n*-mean $p : X^n \to X$ for some $n \ge 2$, then is X a G-AR?

Theorem (N. J., A. L.)

Let G be a finite group. Let X be a compact metrizable G-space that is a G-ANR. If there exists an equivariant *n*-mean $p : X^n \to X$ for n = |G|, then X is a G-AR.

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

3

Theorem (N. J., A. L.)

Let (X, d) be a proper metric *G*-space that is a *G*-ANR. Suppose that for some $n \in \mathbb{N}$ there exist an equivariant function $p: X^n \to X$ and $\lambda \in (0, 1)$ such that

$$\max_{i=1,\ldots,n} d\left(x_i, p\left(x_1,\ldots,x_n\right)\right) \leq \lambda \max_{j,k=1,\ldots,n} d\left(x_j,x_k\right)$$

for every $(x_1, \ldots, x_n) \in X^n$. Then, X is a G-AR.

(口)

Theorem (N. J., A. L.)

Let (X, d) be a proper metric *G*-space that is a *G*-ANR. Suppose that for some $n \in \mathbb{N}$ there exist an equivariant function $p: X^n \to X$ and $\lambda \in (0, 1)$ such that

$$\max_{i=1,\ldots,n} d\left(x_i, p\left(x_1,\ldots,x_n\right)\right) \leq \lambda \max_{j,k=1,\ldots,n} d\left(x_j,x_k\right)$$

for every $(x_1, \ldots, x_n) \in X^n$. Then, X is a G-AR.

Let G be a compact topological group acting on the circle \mathbb{S}^1 . Consider $p : \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^1$ defined by p(x, y) = x. Then, máx $\{d(x, p(x, y)), d(y, p(x, y))\} = d(x, y)$ for every $x, y \in \mathbb{S}^1$.

- S. Antonyan. A characterization of equivariant absolute extensors and the equivariant Dugundji Theorem. Houston Jour. Math. 31 (2005), 451-462.
- S. Antonyan. *Some open problems in equivariant infinite-dimensional topology*. Topology Appl. 311 (2022).
- L. Higueras-Montaño and N. Jonard. *A topological insight into the polar involution of convex sets*. Accepted in Israel Journal of Mathematics.
- H. Juárez-Anguiano. *Equivariant retracts and a topological social choice model*. Topology Appl. 279 (2020).

- 4 同 ト 4 三 ト

æ.

- V. Milman and L. Rotem. Non-standard constructions in convex geometry: geometric means of convex bodies. In Convexity and concentration, Vol. 161 (2017), Springer, New York, 361-390.
- J. West and R. Wong. *Based-free actions of finite groups on Hilbert cubes with absolute retract orbit spaces are conjugate.* In Geometric Topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) (1979), Academic Press, New York -London, 655-672.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

3