More on non-trivial autohomeomorphisms of \mathbb{N}^* and \mathbb{M}^*

Alan Dow

Department of Mathematics and Statistics University of North Carolina Charlotte

July 2024, Coimbra

$$|M = |N \times I \subseteq \beta |N| = |N \times I \cup |I_{u} |I_{v}|$$

$$|\Pi = |N \times I \subseteq \beta |N| = |N \times I \cup |I_{u} |I_{v}|$$

$$|\Pi = |\Pi \times I \cup |I_{v} |I_{v}|$$

$$|I_{v} = |I_{v} |I_{v} |I_{v}|$$

$$|I_{v} = |I_{v} |I_{v} |I_{v}|$$

$$I_{v} = I_{v} |I_{v} |I_{v} |I_{v}|$$

$$I_{v} = I_{v} |I_{v} |I_{v} |I_{v}|$$

$$I_{v} = I_{v} |I_{v} |I_{v} |I_{v} |I_{v}|$$

$$I_{v} = I_{v} |I_{v} |I_{v}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Choose a real sharp blade and cut each I_n at a point $d_n \in D$,

Choose a real sharp blade and cut each I_n at a point $d_n \in D$,

Definition

An \mathbb{N}^* cut-set is a set $K \subset \mathbb{M}^*$ that hits every \mathbb{I}_u in a single cut-point and such that $\pi \upharpoonright K$ is a homeomorphism onto \mathbb{N}^* . It can be a trivial copy of \mathbb{N}^* .

Definition

An \mathbb{N}^* cut-set is a set $K \subset \mathbb{M}^*$ that hits every \mathbb{I}_u in a single cut-point and such that $\pi \upharpoonright K$ is a homeomorphism onto \mathbb{N}^* . It can be a trivial copy of \mathbb{N}^* .

Definition

An \mathbb{N}^* cut-set is a set $K \subset \mathbb{M}^*$ that hits every \mathbb{I}_u in a single cut-point and such that $\pi \upharpoonright K$ is a homeomorphism onto \mathbb{N}^* . It can be a trivial copy of \mathbb{N}^* .

Definition

An \mathbb{N}^* cut-set is a set $K \subset \mathbb{M}^*$ that hits every \mathbb{I}_u in a single cut-point and such that $\pi \upharpoonright K$ is a homeomorphism onto \mathbb{N}^* . It can be a trivial copy of \mathbb{N}^* .

Under PFA every N^{*} cut-set is trivial, even Japanese ones

antohomeomorphisms
$$\Psi$$
 of M1 are trivial
if $\exists cts \ \varphi: M \rightarrow M s.c. \ \Psi = \beta \varphi |_{M} \neq$
for $\alpha \in N$, let $|M|_{\alpha}^{*} = (\alpha \times I)^{*} = \Pi'(\alpha^{*})$

日とくほとくほど

Alan Dow More on non-trivial autohomeomorphisms of \mathbb{N}^* and \mathbb{M}^*

If Ψ is trivial, so is H_ψ

[Farah] a map on \mathbb{N}^* is almost trivial if there is a ccc over fin ideal on which it does have a lifting.

ccc over fin means no uncountable almost disjoint families not in the ideal

Theorem (CH with Will and KP)

Every $H : \mathbb{N}^* \to \mathbb{N}^*$ does lift to a $\Psi : \mathbb{M}^* \to \mathbb{M}^*$.

Theorem (CH with Will and KP)

Every $H : \mathbb{N}^* \to \mathbb{N}^*$ does lift to a $\Psi : \mathbb{M}^* \to \mathbb{M}^*$.

 \mathbb{N}^* cut-sets will explain why this result seems harder than it should

Theorem (CH with Will and KP)

Every $H : \mathbb{N}^* \to \mathbb{N}^*$ does lift to a $\Psi : \mathbb{M}^* \to \mathbb{M}^*$.

 \mathbb{N}^* cut-sets will explain why this result seems harder than it should

Remark [PFA]

the question can be vacuous because, by Shelah, it is consistent that every $H: \mathbb{N}^* \to \mathbb{N}^*$ is trivial.

Theorem (CH with Will and KP)

Every $H : \mathbb{N}^* \to \mathbb{N}^*$ does lift to a $\Psi : \mathbb{M}^* \to \mathbb{M}^*$.

 \mathbb{N}^* cut-sets will explain why this result seems harder than it should

Remark [PFA]

the question can be vacuous because, by Shelah, it is consistent that every $H: \mathbb{N}^* \to \mathbb{N}^*$ is trivial.

Even more is true under PFA - and we end up with a new proof

Theorem (CH with Will and KP)

Every $H : \mathbb{N}^* \to \mathbb{N}^*$ does lift to a $\Psi : \mathbb{M}^* \to \mathbb{M}^*$.

 \mathbb{N}^* cut-sets will explain why this result seems harder than it should

Remark [PFA]

the question can be vacuous because, by Shelah, it is consistent that every $H : \mathbb{N}^* \to \mathbb{N}^*$ is trivial.

Even more is true under PFA - and we end up with a new proof

Theorem (A. Vignatti, 2018)

PFA implies that every autohomeomorphism on \mathbb{M}^* is trivial.

There are forcing extensions of PFA models, in which

< E.

There are forcing extensions of PFA models, in which

1 there **are** non-trivial $H : \mathbb{N}^* \to \mathbb{N}^*$, and

There are forcing extensions of PFA models, in which

- **1** there **are** non-trivial $H : \mathbb{N}^* \to \mathbb{N}^*$, and
- ② for every homeomorphism Ψ : $\mathbb{M}^* \to \mathbb{M}^*$, the induced H_{ψ} is actually trivial.

There are forcing extensions of PFA models, in which

- **1** there **are** non-trivial $H : \mathbb{N}^* \to \mathbb{N}^*$, and
- ② for every homeomorphism Ψ : $\mathbb{M}^* \to \mathbb{M}^*$, the induced H_{ψ} is actually trivial.

Thus, consistently not every H on \mathbb{N}^* lifts to Ψ_H on \mathbb{M}^* .

Given
$$\Psi$$
, not only is: H_{Ψ} induced
but so is $g \mapsto g_{\Psi}$ for $g \in C(N, I)$
satisfying $g_{\Psi}^* = g^* \circ \Psi^{-1}$
including this map g s.t.
 $g \mid_{ENIXI}$ is M_{A}
 2^{n-1} times.
 Ψ_{n} let $D_{n} = Snix j \stackrel{i}{\underset{2^{n}}{\underset{$

For the purposes of the talk combine
two notions into one:
Defin: Let
$$D = |M|$$
 be closed discrete.
(copy of M)
say but $\Psi|_{D^*}$ is trivial if
 \exists closed discrete $E = |M|$ s.t.
(i) $\Psi(D^*) = E^* \int_{C^*} \Psi(D^*) \int_{T^*} (D^*) = E^* \int_{T^*} (D^*) \int_{T^*} (D^*)$

Theorem: If
$$\Psi_{Da}^{r}$$
 is trivial, where
 $D_{a} = \bigcup_{n \in a} D_{n} = \bigcup_{n \in c} \ln x \{i_{2n}^{r}: o \leq i \leq 2^{n}\}$
then $Q \in triv(\Psi_{H})$.
"Proof" : For every $n \in H(a)$, let
 L_{n} be the number of times that
 g_{Ψ} alternates $\leq V_{3}$, $\geq 2V_{3}$
every to verify there must be
 $h_{a}: a \rightarrow H(a) \quad matching$
for $n \in A$ $2^{n} = L_{h_{a}(n)}$ I

For PFA + every
$$\Psi: M^* \rightarrow M^*$$

is trivial:
 $f \in IN^{D} = \bigcup_{f} \exists i i \times first find rationals''$
 $\forall f \exists h_{f}: D_{f} \rightarrow E_{f} \mod vali on all f$
 $OCA + \exists h^* > h_{f} for all f$
 $f ducing h: \bigcup ini \times O_{I} \rightarrow M$
 $eusr appeal to \Psi$
 $to prove \exists m h extends$
 $to continuous P: \bigcup ini \times I \rightarrow M$.
 $(-to-1)$