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forall A\, i € K. The pair (K, |.|) is called a valued field.
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Definition
K is a field. A valuationis amap |.| : K — [0, co) such that:

[\l = Oifandonlyif A=0,
Aul = |AL- el
A+ pl < A+ pf

forall A\, i € K. The pair (K, |.|) is called a valued field.

If |.| satisfies the strong triangle inequality, i.e.
A+ p| <max{|A|,|u|} forall A\, u e K.

then, the valuation |.| is called non-archimedean and K is called a non-archimedean
valued field

Remark

Any valued field is either non-archimedean or isometrically isomorphic to a valued
subfield of the field of complex numbers
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The base field K is a non-archimedean valued field (replacing R or C), complete with
the metric generated by a non-trivial valuation
A valuation |.| is non-trivial if |A| # 1 for all A # 0, (A € K)
’KX} ={|A\: A e K\{0}}
@ the value group of K
@ a subgroup of the multiplicative group of the positive real numbers R*
K is discretely valued:
@ 0is only an accumulation point of |K* |
o [K*|={lp|":neZ},pecKwith0<|p| <1
@ Example: the field of p — adic numbers Q,

K is densely valued:
@ |K*|is a dense subset of (0, c0)
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Let E be a linear space over K equipped with a non-archimedean norm ||.||, i.e. ||.||
satisfies for all x, y € E the strong triangle inequality:

lIx + yl| < max {||x|],|lyl|}
|EX|| == {lIx|l : x € E\ {0}}.
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Basics Il

Let E be a linear space over K equipped with a non-archimedean norm ||.||, i.e. ||.||
satisfies for all x, y € E the strong triangle inequality:

lIx + yl| < max {||x|],|lyl|}
|EX|| == {lIx|l : x € E\ {0}}.

Question
Is [|[EX|| = K| ? }

o ||E*|| is always an union of cosets of [KX*| in the multiplicative group R*

@ we can select aset T ¢ R* such that

IE (= Ut |

teT
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Example 1

Ks (s > 0), the normed space whose underlying linear space is K itself, normed by the
norm [|x||; := s ||, x € K. Let s ¢ [K*|. Then, ||K||, # [K*]|.
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Intro

Examples

Example 1

Ks (s > 0), the normed space whose underlying linear space is K itself, normed by the
norm [|x||; := s ||, x € K. Let s ¢ [K*|. Then, ||K||, # [K*]|.

Example 2

Assume that K is densely valued, i.e. |[K*| is a dense subset of (0, c0)
and [K*| #R". E == (I™,[|.[|..)- Then, ||E*||_ # |K*|.

choose r € R™\ {KX\ and select a sequence (\;) C K such that

[A1] < [A2| < |As| < ... < |An| < randlimg|Ap| =r.

Set x := (A1, A2, As, ...) € I, Then, [|x]| = rand ||x]|_, ¢ [K*|.
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Renorming Problem

in general

Can one for every normed space E introduce a norm ||.||, on E that is equivalent to the
given norm, i.e. determines the same topology and has very special properties?
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Serre Problem

Can one for every non-archimedean normed space E introduce a norm ||.||, on E that
is equivalent to the given norm and has the property ||E*||, = [K*|?
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Renorming Problem

in general

Can one for every normed space E introduce a norm ||.||, on E that is equivalent to the
given norm, i.e. determines the same topology and has very special properties?

v

Serre Problem

Can one for every non-archimedean normed space E introduce a norm ||.||, on E that
is equivalent to the given norm and has the property ||E*||, = [K*|?

K is discretely valued:
@ 0is only an accumulation point of |K* |
o [K*|={lp|":neZ},pecKwith0 < |p| <1

Serre, 1962
Ixll, :=inf{s € [K*|:|Ix| < s}, x€ E

XUy = 1IxI[ = [ol - lIx1],
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Renorming Problem for Banach spaces with an orthogonal base |

E- non-archimedean normed space

Definition

Let I be a set; A subset {x; : i € I} C E is called orthogonal if for each finite subset
J c landall {\j};., C Kwe have

Z /\,'X,'

> max H)\,‘X,'H .
- ied
ied

An orthogonal set {x;},, in E is said to be an orthogonal base of E if [{x;},.,] = E;
then every x € E has an unequivocal expansion

x=> dxi(NeEK, i€l
iel
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Renorming Problem for Banach spaces with an orthogonal base |

E- non-archimedean normed space

Definition

Let I be a set; A subset {x; : i € I} C E is called orthogonal if for each finite subset
J c landall {\j};., C Kwe have

Z AiXj

ied

> max H)\,‘X,'H .
ied

An orthogonal set {x;},, in E is said to be an orthogonal base of E if [{x;},.,] = E;
then every x € E has an unequivocal expansion

x=> dxi(NeEK, i€l
iel

E- a non-archimedean Banach space with an orthogonal base

@ thereis a norm |||, on E that is equivalent to the given norm and has the
property [|E*|], = [K*|
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@ s:/—(0,00) is amap

c(l:s,K):
the set of all x = (x;),, € K/, for which lim; |xi| - s (i) = 0 normed by

lIx]|g :==sup{|x|-s(i):iel}.
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@ /is aset
@ s:/—(0,00) is amap

c(l:s,K):
the set of all x = (x;),, € K/, for which lim; |xi| - s (i) = 0 normed by

1|1, = sup {x - s (i) i € 1}
o s=1= (a0 (LK), [II..)

E- a non-archimedean Banach space with an orthogonal base

@ thereareaset/andamap s: | — (0,00) = anisomorphismj: E — ¢ (/ : 5,K)
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@ /is aset
@ s:/—(0,00) is amap
c(l:s,K):
the set of all x = (x;),, € K/, for which lim; |xi| - s (i) = 0 normed by

[IX]|g :=sup{|xi|-s(i):iel}.
0 s=1= (o (I,K),||.l..)
E- a non-archimedean Banach space with an orthogonal base
@ thereareaset/andamap s: | — (0,00) = anisomorphismj: E — ¢ (/ : 5,K)

@ alinear homeomorphism h: ¢y (/: 5,K) — ¢ (I, K)
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@ /is aset
@ s:/—(0,00) is amap
c(l:s,K):
the set of all x = (x;),, € K/, for which lim; |xi| - s (i) = 0 normed by

1|1, = sup {x - s (i) i € 1}
o s=1= (a0 (LK), [II..)

E- a non-archimedean Banach space with an orthogonal base
@ thereareaset/andamap s: | — (0,00) = anisomorphismj: E — ¢ (/ : 5,K)
@ alinear homeomorphism h: ¢ (/: s,K) — ¢o (1, K)
o [[e (1K)"|| = [ic*|
o [Ixlly = [lh G C)I (x € E)
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K is densely valued:
@ |K*|is a dense subset of [0, )

van Rooij, 1976
K is densely valued: If ||[E*|| is an union of countably many cosets of [K*|, then
for every € > 0 there is a norm ||.||, on E such that
x| < [Ix[ly < (1 +2) - [[x]]
and [|EX[|, = [K*|.

A. Kubzdela (Poznan) Renorming Problem Coimbra, 2024

9/14



Renorming Problem - solutions for densely valued K

K is densely valued:
@ |K*|is a dense subset of [0, )

van Rooij, 1976
K is densely valued: If ||[E*|| is an union of countably many cosets of [K*|, then
for every € > 0 there is a norm ||.||, on E such that
x| < [Ix[ly < (1 +2) - [[x]]
and [|EX[|, = [K*|.

Theorem, 2024
Let K be densely valued and (E, ||.||) be a non-archimedean normed space. Then,

—

@ there is a set / and a linear homeomorphic embedding E — ¢ (/, ]K);

e there is an equivalent norm ||.||, on E such that ||[E*||, = |K*|.
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E- a non-archimedean normed space
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E : a spherical completion of E: a spherically complete NA Banach space such that
there exists an isometric embedding i : E — E and E has no proper spherically
complete linear subspace containing i (E).
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E : a spherical completion of E: a spherically complete NA Banach space such that
there exists an isometric embedding i : E — E and E has no proper spherically
complete linear subspace containing i (E).

D C E is alinear subspace of E. E is called an immediate extension of D if there is no
nonzero element of E that is orthogonal to D

@ Eis an immediate extension of E;
@ every linear subspace of E which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E
is an immediate extension of D, F be spherically complete and T : D — F be an
isometric embedding. Then T can be extended to a linear isometry 7' : E — F
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E- a non-archimedean normed space

E : a spherical completion of E: a spherically complete NA Banach space such that
there exists an isometric embedding i : E — E and E has no proper spherically
complete linear subspace containing i (E).

D C E is alinear subspace of E. E is called an immediate extension of D if there is no
nonzero element of E that is orthogonal to D

o E is an immediate extension of E;
@ every linear subspace of E which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E
is an immediate extension of D, F be spherically complete and T : D — F be an
isometric embedding. Then T can be extended to a linear isometry 7' : E — F

A.Kubzdela, C.Perez-Garcia, 2023

For every non-archimedean space E thereisaset/,andamap s: / — (0, c0)
such that there is an isomorphic embedding g: E — ¢ (/: s,K)

y
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{Xi};c, : @ maximal orthogonal set in E
@ Eis an immediate extension of [{x},]

£ = U t- |

o /= kwhere||x|let-|K*|ifich(teT)
teT

(]

[|x;|| = t for every i € I
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Sketch of the proof of Theorem - part Il

{Xi};c, : @ maximal orthogonal set in E
@ Eis an immediate extension of [{x},]

£ = U t- |

o /= kwhere||x|let-|K*|ifich(teT)
teT

(]

[|x;|| = t for every i € I

® go: [{xi}ie/] = o (I : S,K) cxi— e (iel)
s(i):=tifi € l = go is an isometric embedding

—

o lemma=—g:E—> (I .S, ]K) is an isometric embedding

— 2 —

£ 0 (1:5%) " o (1K)
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@ peKbesuchthat0 < |p| < 1
@ for every i € | choose p; € K for which

lpl - s (1) < |pil < s(i)
o T:I® (/;s,]K) BN (/,K)

O T:x=(X)ig,— (1iXi)ic,
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Sketch of the proof of Theorem - part Il

@ peKbesuchthat0 < |p| < 1
@ for every i € | choose p; € K for which

lpl - s (1) < |pil < s(i)
o T:I® (/;s,]K) BN (/,K)

® T:x=(X)ic;— (HiXi)ig
@ T is alinear homeomorphism
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Sketch of the proof of Theorem - part Il

@ peKbesuchthat0 < |p| < 1
@ for every i € | choose p; € K for which

ol - s (1) < |uil < s(i)

T (1:5KR) = e (1K)
Tx=(X)c; = (iXi)ig

T is a linear homeomorphism

T (T? K) - co/(l,\]K) (into)
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o (1LR)|| = x| = 171, = |
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