Renorming Problem for non-archimedean normed spaces

Albert Kubzdela

Poznań University of Technology, Poland

38th SUMMER CONFERENCE ON TOPOLOGY AND ITS APPLICATIONS, 8-12
JULY 2024

Definition

 \mathbb{K} is a field. A valuation is a map $|.|: \mathbb{K} \to [0, \infty)$ such that:

$$\begin{array}{rcl} |\lambda| &=& 0 \text{ if and only if } \; \lambda=0, \\ |\lambda\mu| &=& |\lambda|\cdot|\mu|\,, \\ |\lambda+\mu| \leq |\lambda+\mu| \end{array}$$

for all $\lambda, \mu \in \mathbb{K}$. The pair $(\mathbb{K}, |.|)$ is called a valued field.

If |.| satisfies the strong triangle inequality, i.e

$$|\lambda + \mu| \le \max\{|\lambda|, |\mu|\} \text{ for all } \lambda, \mu \in \mathbb{K}.$$

then, the valuation |.| is called non-archimedean and $\mathbb K$ is called a non-archimedean valued field

Remark

Any valued field is either non-archimedean or isometrically isomorphic to a valued subfield of the field of complex numbers

Definition

 \mathbb{K} is a field. A valuation is a map $|.|: \mathbb{K} \to [0, \infty)$ such that:

$$\begin{array}{rcl} |\lambda| &=& 0 \text{ if and only if } \; \lambda=0, \\ |\lambda\mu| &=& |\lambda|\cdot|\mu|\,, \\ |\lambda+\mu| \leq |\lambda+\mu| \end{array}$$

for all $\lambda, \mu \in \mathbb{K}$. The pair $(\mathbb{K}, |.|)$ is called a valued field.

If |.| satisfies the strong triangle inequality, i.e.

$$|\lambda + \mu| \le \max\{|\lambda|, |\mu|\} \text{ for all } \lambda, \mu \in \mathbb{K}.$$

then, the valuation |.| is called non-archimedean and $\mathbb K$ is called a non-archimedean valued field

Remark

Any valued field is either non-archimedean or isometrically isomorphic to a valued subfield of the field of complex numbers

Definition

 \mathbb{K} is a field. A valuation is a map $|.|: \mathbb{K} \to [0, \infty)$ such that:

$$\begin{array}{rcl} |\lambda| &=& 0 \text{ if and only if } \; \lambda=0, \\ |\lambda\mu| &=& |\lambda|\cdot|\mu|\,, \\ |\lambda+\mu| \leq |\lambda+\mu| \end{array}$$

for all $\lambda, \mu \in \mathbb{K}$. The pair $(\mathbb{K}, |.|)$ is called a valued field.

If |.| satisfies the strong triangle inequality, i.e.

$$|\lambda + \mu| \le \max\{|\lambda|, |\mu|\} \text{ for all } \lambda, \mu \in \mathbb{K}.$$

then, the valuation |.| is called non-archimedean and $\mathbb K$ is called a non-archimedean valued field

Remark

Any valued field is either non-archimedean or isometrically isomorphic to a valued subfield of the field of complex numbers

The base field \mathbb{K} is a non-archimedean valued field (replacing \mathbb{R} or \mathbb{C}), complete with the metric generated by a non-trivial valuation

```
A valuation |.| is non-trivial if |\lambda| \neq 1 for all \lambda \neq 0, (\lambda \in \mathbb{K} \setminus \mathbb{K}) := \{|\lambda| : \lambda \in \mathbb{K} \setminus \{0\}\}
```

- ullet the value group of $\mathbb K$
- a subgroup of the multiplicative group of the positive real numbers R⁺

K is discretely valued:

- ullet 0 is only an accumulation point of $|\mathbb{K}^{\times}|$
- $|\mathbb{K}^{\times}| = \{|\rho|^n : n \in \mathbb{Z}\}, \rho \in \mathbb{K} \text{ with } 0 < |\rho| < 1$
- Example: the field of p adic numbers \mathbb{Q}_p

K is densely valued

The base field \mathbb{K} is a non-archimedean valued field (replacing \mathbb{R} or \mathbb{C}), complete with the metric generated by a non-trivial valuation A valuation $|\cdot|$ is non-trivial if $|\lambda| \neq 1$ for all $\lambda \neq 0$, $(\lambda \in \mathbb{K})$

 $|\mathbb{K}^{\times}| := \{|\lambda| : \lambda \in \mathbb{K} \setminus \{0\}\}$

- the value group of K
- ullet a subgroup of the multiplicative group of the positive real numbers \mathbb{R}^+

K is discretely valued:

- ullet 0 is only an accumulation point of $|\mathbb{K}^{\times}|$
- $|\mathbb{K}^{\times}| = \{|\rho|^n : n \in \mathbb{Z}\}, \rho \in \mathbb{K} \text{ with } 0 < |\rho| < 1$
- Example: the field of p adic numbers \mathbb{Q}_p

K is densely valued

The base field \mathbb{K} is a non-archimedean valued field (replacing \mathbb{R} or \mathbb{C}), complete with the metric generated by a non-trivial valuation

A valuation |.| is non-trivial if $|\lambda| \neq 1$ for all $\lambda \neq 0$, $(\lambda \in \mathbb{K})$ $|\mathbb{K}^{\times}| := \{|\lambda| : \lambda \in \mathbb{K} \setminus \{0\}\}$

- the value group of K
- ullet a subgroup of the multiplicative group of the positive real numbers \mathbb{R}^+

- ullet 0 is only an accumulation point of $|\mathbb{K}^{\times}|$
- $|\mathbb{K}^{\times}| = \{|\rho|^n : n \in \mathbb{Z}\}, \rho \in \mathbb{K} \text{ with } 0 < |\rho| < 1$
- Example: the field of p adic numbers \mathbb{Q}_p

K is densely valued

The base field \mathbb{K} is a non-archimedean valued field (replacing \mathbb{R} or \mathbb{C}), complete with the metric generated by a non-trivial valuation

A valuation |.| is non-trivial if
$$|\lambda| \neq 1$$
 for all $\lambda \neq 0$, $(\lambda \in \mathbb{K})$ $|\mathbb{K}^{\times}| := \{|\lambda| : \lambda \in \mathbb{K} \setminus \{0\}\}$

- the value group of K
- a subgroup of the multiplicative group of the positive real numbers ℝ⁺

K is discretely valued:

- ullet 0 is only an accumulation point of $|\mathbb{K}^{\times}|$
- $|\mathbb{K}^{\times}| = \{|\rho|^n : n \in \mathbb{Z}\}, \rho \in \mathbb{K} \text{ with } 0 < |\rho| < 1$
- Example: the field of p adic numbers \mathbb{Q}_p

$\mathbb K$ is densely valued

The base field \mathbb{K} is a non-archimedean valued field (replacing \mathbb{R} or \mathbb{C}), complete with the metric generated by a non-trivial valuation

A valuation |.| is non-trivial if
$$|\lambda| \neq 1$$
 for all $\lambda \neq 0$, $(\lambda \in \mathbb{K})$ $|\mathbb{K}^{\times}| := \{|\lambda| : \lambda \in \mathbb{K} \setminus \{0\}\}$

- the value group of K
- a subgroup of the multiplicative group of the positive real numbers ℝ⁺

K is discretely valued:

- ullet 0 is only an accumulation point of $|\mathbb{K}^{\times}|$
- $|\mathbb{K}^{\times}| = \{|\rho|^n : n \in \mathbb{Z}\}, \rho \in \mathbb{K} \text{ with } 0 < |\rho| < 1$
- Example: the field of p adic numbers \mathbb{Q}_p

$\mathbb K$ is densely valued

The base field \mathbb{K} is a non-archimedean valued field (replacing \mathbb{R} or \mathbb{C}), complete with the metric generated by a non-trivial valuation

A valuation |.| is non-trivial if $|\lambda| \neq 1$ for all $\lambda \neq 0$, $(\lambda \in \mathbb{K})$

$$|\mathbb{K}^{\times}| := \{|\lambda| : \lambda \in \mathbb{K} \setminus \{0\}\}$$

- the value group of K
- ullet a subgroup of the multiplicative group of the positive real numbers \mathbb{R}^+

K is discretely valued:

- 0 is only an accumulation point of |K*|
- $|\mathbb{K}^{\times}| = \{|\rho|^n : n \in \mathbb{Z}\}, \rho \in \mathbb{K} \text{ with } 0 < |\rho| < 1$
- Example: the field of p adic numbers \mathbb{Q}_p

K is densely valued:

Let E be a linear space over \mathbb{K} equipped with a non-archimedean norm $\|\cdot\|$, i.e. $\|\cdot\|$ satisfies for all $x, y \in E$ the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}$$

$$||E^{\times}|| := \{||x|| : x \in E \setminus \{0\}\}.$$

Question

$$\mathsf{Is} \, \| E^{\times} \| = | \mathbb{K}^{\times} | \, ?$$

- ullet $\|E^{ imes}\|$ is always an union of cosets of $\|\mathbb{K}^{ imes}\|$ in the multiplicative group \mathbb{R}^+
- we can select a set $T \subset \mathbb{R}^+$ such that

$$||E^{\times}|| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$$

Let E be a linear space over K equipped with a non-archimedean norm ||.||, i.e. ||.|| satisfies for all $x, y \in E$ the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}$$

$$||E^{\times}|| := \{||x|| : x \in E \setminus \{0\}\}.$$

Question

$$\mathsf{Is} \, \| E^{\times} \| = | \mathbb{K}^{\times} | \, ?$$

- ullet $\|E^{ imes}\|$ is always an union of cosets of $\|\mathbb{K}^{ imes}\|$ in the multiplicative group \mathbb{R}^+
- we can select a set $T \subset \mathbb{R}^+$ such that

$$||E^{\times}|| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$$

Let E be a linear space over K equipped with a non-archimedean norm ||.||, i.e. ||.|| satisfies for all $x, y \in E$ the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}$$

$$||E^{\times}|| := \{||x|| : x \in E \setminus \{0\}\}.$$

Question

Is
$$\|E^{\times}\| = |\mathbb{K}^{\times}|$$
 ?

- ullet $\|E^{ imes}\|$ is always an union of cosets of $|\mathbb{K}^{ imes}|$ in the multiplicative group \mathbb{R}^+
- we can select a set $T \subset \mathbb{R}^+$ such that

$$||E^{\times}|| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$$

Let E be a linear space over K equipped with a non-archimedean norm ||.||, i.e. ||.|| satisfies for all $x, y \in E$ the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}$$

$$||E^{\times}|| := \{||x|| : x \in E \setminus \{0\}\}.$$

Question

Is
$$\|\mathbf{E}^{\times}\| = |\mathbb{K}^{\times}|$$
 ?

- ullet $\| {\it E}^{ imes} \|$ is always an union of cosets of $| {\it K}^{ imes} |$ in the multiplicative group ${\it R}^+$
- we can select a set $T \subset \mathbb{R}^+$ such that

$$||E^{\times}|| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$$

Examples

Example 1

 \mathbb{K}_s (s > 0), the normed space whose underlying linear space is \mathbb{K} itself, normed by the norm $||x||_c := s \cdot |x|, x \in \mathbb{K}$. Let $s \notin |\mathbb{K}^{\times}|$. Then, $||\mathbb{K}_s^{\times}||_s \neq |\mathbb{K}^{\times}|$.

Example 2

```
Assume that \mathbb{K} is densely valued, i.e. \left|\mathbb{K}^{\times}\right| is a dense subset of (0,\infty) and \left|\mathbb{K}^{\times}\right| \neq \mathbb{R}^{+}. E := \left(I^{\infty}, \left|\left|..\right|\right|_{\infty}\right). Then, \left|\left|E^{\times}\right|\right|_{\infty} \neq \left|\mathbb{K}^{\times}\right|. choose r \in \mathbb{R}^{+} \setminus \left|\mathbb{K}^{\times}\right| and select a sequence (\lambda_{n}) \subset \mathbb{K} such that \left|\lambda_{1}\right| < \left|\lambda_{2}\right| < \left|\lambda_{3}\right| < \ldots < \left|\lambda_{n}\right| < r and \lim_{n} \left|\lambda_{n}\right| = r. Set x := (\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots) \in I^{\infty}. Then, \left|\left|x\right|\right|_{\infty} = r and \left|\left|x\right|\right|_{\infty} \notin \left|\mathbb{K}^{\times}\right|.
```


Examples

Example 1

 \mathbb{K}_s (s > 0), the normed space whose underlying linear space is \mathbb{K} itself, normed by the norm $||x||_s := s \cdot |x|, x \in \mathbb{K}$. Let $s \notin |\mathbb{K}^{\times}|$. Then, $||\mathbb{K}_s^{\times}||_s \neq |\mathbb{K}^{\times}|$.

Example 2

```
Assume that \mathbb{K} is densely valued, i.e. \left|\mathbb{K}^{\times}\right| is a dense subset of (0,\infty) and \left|\mathbb{K}^{\times}\right| \neq \mathbb{R}^{+}. E:=\left(I^{\infty},\left|\left|..\right|\right|_{\infty}\right). Then, \left|\left|E^{\times}\right|\right|_{\infty} \neq \left|\mathbb{K}^{\times}\right|. choose r \in \mathbb{R}^{+} \setminus \left|\mathbb{K}^{\times}\right| and select a sequence (\lambda_{n}) \subset \mathbb{K} such that \left|\lambda_{1}\right| < \left|\lambda_{2}\right| < \left|\lambda_{3}\right| < ... < \left|\lambda_{n}\right| < r and \lim_{n}\left|\lambda_{n}\right| = r. Set x:=\left(\lambda_{1},\lambda_{2},\lambda_{3},...\right) \in I^{\infty}. Then, \left|\left|x\right|\right|_{\infty} = r and \left|\left|x\right|\right|_{\infty} \notin \left|\mathbb{K}^{\times}\right|.
```


Examples

Example 1

 \mathbb{K}_s (s > 0), the normed space whose underlying linear space is \mathbb{K} itself, normed by the norm $||x||_s := s \cdot |x|, x \in \mathbb{K}$. Let $s \notin |\mathbb{K}^{\times}|$. Then, $||\mathbb{K}_s^{\times}||_s \neq |\mathbb{K}^{\times}|$.

Example 2

Assume that \mathbb{K} is densely valued, i.e. $\left|\mathbb{K}^{\times}\right|$ is a dense subset of $(0,\infty)$ and $\left|\mathbb{K}^{\times}\right| \neq \mathbb{R}^{+}$. $E:=\left(I^{\infty},\left|\left|..\right|\right|_{\infty}\right)$. Then, $\left|\left|E^{\times}\right|\right|_{\infty} \neq \left|\mathbb{K}^{\times}\right|$. choose $r\in\mathbb{R}^{+}\setminus\left|\mathbb{K}^{\times}\right|$ and select a sequence $(\lambda_{n})\subset\mathbb{K}$ such that $\left|\lambda_{1}\right|<\left|\lambda_{2}\right|<\left|\lambda_{3}\right|<...<\left|\lambda_{n}\right|< r$ and $\lim_{n}\left|\lambda_{n}\right|=r$. Set $x:=(\lambda_{1},\lambda_{2},\lambda_{3},...)\in I^{\infty}$. Then, $\left|\left|x\right|\right|_{\infty}=r$ and $\left|\left|x\right|\right|_{\infty}\notin\left|\mathbb{K}^{\times}\right|$.

Renorming Problem

in general

Can one for every normed space E introduce a norm $||.||_{\bullet}$ on E that is equivalent to the given norm, i.e. determines the same topology and has very special properties?

Serre Problem

Can one for every non-archimedean normed space E introduce a norm $||.||_{\bullet}$ on E that is equivalent to the given norm and has the property $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$?

K is discretely valued:

- ullet 0 is only an accumulation point of $|\mathbb{K}^{\times}|$
- $\left|\mathbb{K}^{\times}\right| = \left\{\left|\rho\right|^{n} : n \in \mathbb{Z}\right\}, \rho \in \mathbb{K} \text{ with } 0 < \left|\rho\right| < 1$

Serre, 1962

$$||x||_{\bullet} := \inf \left\{ s \in \left| \mathbb{K}^{\times} \right| : ||x|| \le s \right\}, x \in E$$

$$||x||_{\bullet} \ge ||x|| \ge |\rho| \cdot ||x||_{\bullet}$$

Renorming Problem

in general

Can one for every normed space E introduce a norm $||.||_{\bullet}$ on E that is equivalent to the given norm, i.e. determines the same topology and has very special properties?

Serre Problem

Can one for every non-archimedean normed space E introduce a norm $||.||_{\bullet}$ on E that is equivalent to the given norm and has the property $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$?

K is discretely valued:

- ullet 0 is only an accumulation point of $|\mathbb{K}^{\times}|$
- $\left|\mathbb{K}^{\times}\right| = \left\{\left|\rho\right|^{n} : n \in \mathbb{Z}\right\}, \rho \in \mathbb{K} \text{ with } 0 < \left|\rho\right| < 1$

Serre, 1962

 $\begin{aligned} ||x||_{\bullet} &:= \inf \left\{ s \in \left| \mathbb{K}^{\times} \right| : ||x|| \leq s \right\}, \, x \in E \\ ||x||_{\bullet} &\geq ||x|| \geq |\rho| \cdot ||x||_{\bullet} \end{aligned}$

Renorming Problem

in general

Can one for every normed space E introduce a norm $||.||_{\bullet}$ on E that is equivalent to the given norm, i.e. determines the same topology and has very special properties?

Serre Problem

Can one for every non-archimedean normed space E introduce a norm $||.||_{\bullet}$ on E that is equivalent to the given norm and has the property $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$?

\mathbb{K} is discretely valued:

- 0 is only an accumulation point of |K[×]|
- $\left|\mathbb{K}^{\times}\right| = \left\{\left|\rho\right|^{n} : n \in \mathbb{Z}\right\}, \rho \in \mathbb{K} \text{ with } 0 < \left|\rho\right| < 1$

Serre, 1962

$$||x||_{ullet} := \inf \left\{ s \in \left| \mathbb{K}^{\times} \right| : ||x|| \le s \right\}, \, x \in E$$

$$||x||_{\bullet} \ge ||x|| \ge |\rho| \cdot ||x||_{\bullet}$$

E- non-archimedean normed space

Definition

Let I be a set; A subset $\{x_i : i \in I\} \subset E$ is called orthogonal if for each finite subset $J \subset I$ and all $\{\lambda_i\}_{i \in J} \subset \mathbb{K}$ we have

$$\left\| \sum_{i \in J} \lambda_i x_i \right\| \ge \max_{i \in J} \|\lambda_i x_i\|.$$

An orthogonal set $\{x_i\}_{i\in I}$ in E is said to be an orthogonal base of E if $[\{x_i\}_{i\in I}]=E$; then every $x\in E$ has an unequivocal expansion

$$X = \sum_{i \in I} \lambda_i X_i \ (\lambda_i \in \mathbb{K}, \ i \in I).$$

E- a non-archimedean Banach space with an orthogonal base

• there is a norm $||.||_{\bullet}$ on E that is equivalent to the given norm and has the property $||E^{\times}||_{\cdot} = |\mathbb{K}^{\times}|$

A. Kubzdela (Poznań) Renorming Problem Coimbra, 2024 7 / 14

E- non-archimedean normed space

Definition

Let I be a set; A subset $\{x_i: i \in I\} \subset E$ is called orthogonal if for each finite subset $J \subset I$ and all $\{\lambda_i\}_{i \in I} \subset \mathbb{K}$ we have

$$\left|\left|\sum_{i\in J}\lambda_ix_i\right|\right|\geq \max_{i\in J}\left\|\lambda_ix_i\right\|.$$

An orthogonal set $\{x_i\}_{i\in I}$ in E is said to be an orthogonal base of E if $\overline{[\{x_i\}_{i\in I}]}=E$; then every $x\in E$ has an unequivocal expansion

$$X = \sum_{i \in I} \lambda_i X_i \ (\lambda_i \in \mathbb{K}, \ i \in I).$$

E- a non-archimedean Banach space with an orthogonal base

• there is a norm $||.||_{\bullet}$ on E that is equivalent to the given norm and has the property $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$

A. Kubzdela (Poznań) Renorming Problem

E- non-archimedean normed space

Definition

Let I be a set; A subset $\{x_i: i \in I\} \subset E$ is called orthogonal if for each finite subset $J \subset I$ and all $\{\lambda_i\}_{i \in I} \subset \mathbb{K}$ we have

$$\left|\left|\sum_{i\in J}\lambda_i x_i\right|\right| \geq \max_{i\in J}\left\|\lambda_i x_i\right\|.$$

An orthogonal set $\{x_i\}_{i\in I}$ in E is said to be an orthogonal base of E if $\overline{[\{x_i\}_{i\in I}]}=E$; then every $x\in E$ has an unequivocal expansion

$$X = \sum_{i \in I} \lambda_i X_i \ (\lambda_i \in \mathbb{K}, \ i \in I).$$

E- a non-archimedean Banach space with an orthogonal base

• there is a norm $||.||_{\bullet}$ on E that is equivalent to the given norm and has the property $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$

Coimbra, 2024

7/14

A. Kubzdela (Poznań) Renorming Problem

E- non-archimedean normed space

Definition

Let I be a set; A subset $\{x_i : i \in I\} \subset E$ is called orthogonal if for each finite subset $J \subset I$ and all $\{\lambda_i\}_{i \in J} \subset \mathbb{K}$ we have

$$\left|\left|\sum_{i\in J}\lambda_i x_i\right|\right| \geq \max_{i\in J}\left\|\lambda_i x_i\right\|.$$

An orthogonal set $\{x_i\}_{i\in I}$ in E is said to be an orthogonal base of E if $\overline{[\{x_i\}_{i\in I}]}=E$; then every $x\in E$ has an unequivocal expansion

$$x = \sum_{i \in I} \lambda_i x_i \ (\lambda_i \in \mathbb{K}, \ i \in I).$$

E- a non-archimedean Banach space with an orthogonal base

• there is a norm $||.||_{\bullet}$ on E that is equivalent to the given norm and has the property $||E^{\times}||_{\cdot} = |\mathbb{K}^{\times}|$

- I is a set
- $s: I \to (0, \infty)$ is a map

$c_0(I:s,\mathbb{K})$

the set of all $x=(x_i)_{i\in I}\in\mathbb{K}^I$, for which $\lim_i|x_i|\cdot s$ (i)=0 normed by

$$||x||_s := \sup\{|x_i| \cdot s(i) : i \in I\}.$$

$$\bullet \ \mathsf{s=1} \Longrightarrow \left(c_0 \left(I, \mathbb{K} \right), \left| \left| . \right| \right|_{\infty} \right)$$

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- ullet a linear homeomorphism $h:c_0\left(I:s,\mathbb{K}
 ight)
 ightarrow c_0\left(I,\mathbb{K}
 ight)$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

$$||x||_s := \sup\{|x_i| \cdot s(i) : i \in I\}$$

$$\bullet \ \mathsf{s=1} \Longrightarrow \left(c_0 \left(I, \mathbb{K} \right), \left| \left| . \right| \right|_{\infty} \right)$$

- there are a set I and a map $s: I \to (0, \infty) \Longrightarrow$ an isomorphism $j: E \to c_0$ ($I: s, \mathbb{K}$)
- a linear homeomorphism $h: c_0(I:s,\mathbb{K}) \to c_0(I,\mathbb{K})$
- $||c_0(I, \mathbb{K})^{\times}|| = |\mathbb{K}^{\times}|$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

$$c_0(I:s,\mathbb{K})$$
:

the set of all $x = (x_i)_{i \in I} \in \mathbb{K}^I$, for which $\lim_i |x_i| \cdot s(i) = 0$ normed by

$$||x||_s := \sup\{|x_i|\cdot s(i): i\in I\}.$$

$$\bullet \ \mathsf{s=1} \Longrightarrow \left(c_0 \left(I, \mathbb{K} \right), \left| \left| . \right| \right|_{\infty} \right)$$

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- a linear homeomorphism $h: c_0 (I: s, \mathbb{K}) \to c_0 (I, \mathbb{K})$
- $||c_0(I, \mathbb{K})^{\times}|| = |\mathbb{K}^{\times}|$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

$$c_0(I:s,\mathbb{K}):$$

the set of all $x = (x_i)_{i \in I} \in \mathbb{K}^I$, for which $\lim_i |x_i| \cdot s(i) = 0$ normed by

$$||x||_s := \sup \{|x_i| \cdot s(i) : i \in I\}.$$

• s=1
$$\Longrightarrow$$
 $(c_0(I,\mathbb{K}),||.||_{\infty})$

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- ullet a linear homeomorphism $h:c_0\left(I:s,\mathbb{K}
 ight)
 ightarrow c_0\left(I,\mathbb{K}
 ight)$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

$$c_0(I:s,\mathbb{K})$$
:

the set of all $x = (x_i)_{i \in I} \in \mathbb{K}^I$, for which $\lim_i |x_i| \cdot s(i) = 0$ normed by

$$||x||_s := \sup \{|x_i| \cdot s(i) : i \in I\}.$$

• s=1
$$\Longrightarrow$$
 $(c_0(I,\mathbb{K}),||.||_{\infty})$

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- a linear homeomorphism $h: c_0 (I:s,\mathbb{K}) \to c_0 (I,\mathbb{K})$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

$$c_0(I:s,\mathbb{K})$$
:

the set of all $x = (x_i)_{i \in I} \in \mathbb{K}^I$, for which $\lim_i |x_i| \cdot s(i) = 0$ normed by

$$||x||_s := \sup \{|x_i| \cdot s(i) : i \in I\}.$$

• s=1
$$\Longrightarrow$$
 $(c_0(I,\mathbb{K}),||.||_{\infty})$

E- a non-archimedean Banach space with an orthogonal base

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- ullet a linear homeomorphism $h:c_0\left(I:s,\mathbb{K}
 ight)
 ightarrow c_0\left(I,\mathbb{K}
 ight)$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

 $c_0(I:s,\mathbb{K})$:

the set of all $x = (x_i)_{i \in I} \in \mathbb{K}^I$, for which $\lim_i |x_i| \cdot s(i) = 0$ normed by

$$||x||_s := \sup \{|x_i| \cdot s(i) : i \in I\}.$$

• s=1 \Longrightarrow $(c_0(I,\mathbb{K}),||.||_{\infty})$

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- a linear homeomorphism $h: c_0 (I: s, \mathbb{K}) \to c_0 (I, \mathbb{K})$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

$$c_0(I:s,\mathbb{K})$$
:

the set of all $x = (x_i)_{i \in I} \in \mathbb{K}^I$, for which $\lim_i |x_i| \cdot s(i) = 0$ normed by

$$||x||_s := \sup \{|x_i| \cdot s(i) : i \in I\}.$$

• s=1
$$\Longrightarrow$$
 $(c_0(I,\mathbb{K}),||.||_{\infty})$

E- a non-archimedean Banach space with an orthogonal base

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- a linear homeomorphism $h: c_0 (I: s, \mathbb{K}) \to c_0 (I, \mathbb{K})$
- $\bullet ||c_0(I,\mathbb{K})^{\times}|| = |\mathbb{K}^{\times}|$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

- I is a set
- $s: I \to (0, \infty)$ is a map

$$c_0(I:s,\mathbb{K})$$
:

the set of all $x = (x_i)_{i \in I} \in \mathbb{K}^I$, for which $\lim_i |x_i| \cdot s(i) = 0$ normed by

$$||x||_s := \sup \{|x_i| \cdot s(i) : i \in I\}.$$

• s=1
$$\Longrightarrow$$
 $(c_0(I,\mathbb{K}),||.||_{\infty})$

- there are a set I and a map $s:I\to (0,\infty)$ \Longrightarrow an isomorphism $j:E\to c_0$ $(I:s,\mathbb{K})$
- a linear homeomorphism $h: c_0 (I: s, \mathbb{K}) \to c_0 (I, \mathbb{K})$
- $\bullet ||c_0(I,\mathbb{K})^{\times}|| = |\mathbb{K}^{\times}|$
- $||x||_{\bullet} := ||h(j(x))|| (x \in E)$

Renorming Problem - solutions for densely valued $\ensuremath{\mathbb{K}}$

K is densely valued:

• $|\mathbb{K}^{\times}|$ is a dense subset of $[0, \infty)$

van Rooij, 1976

 $\mathbb K$ is densely valued: If $||E^{\times}||$ is an union of countably many cosets of $|\mathbb K^{\times}|$, then for every $\varepsilon>0$ there is a norm $||.||_{\bullet}$ on E such that

$$||x|| \le ||x||_{\bullet} \le (1+\varepsilon) \cdot ||x||$$

and $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$.

Theorem, 2024

Let \mathbb{K} be densely valued and (E, ||.||) be a non-archimedean normed space. Then,

- there is a set I and a linear homeomorphic embedding $E o c_0(I,\widehat{\mathbb{K}});$
- there is an equivalent norm $||.||_{\bullet}$ on E such that $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$.

9/14

A. Kubzdela (Poznań) Renorming Problem Coimbra, 2024

Renorming Problem - solutions for densely valued $\ensuremath{\mathbb{K}}$

\mathbb{K} is densely valued:

• $|\mathbb{K}^{\times}|$ is a dense subset of $[0, \infty)$

van Rooij, 1976

 $\mathbb K$ is densely valued: If $||E^ imes||$ is an union of countably many cosets of $|\mathbb K^ imes|$, then for every arepsilon>0 there is a norm $||.||_ullet$ on E such that

$$||x|| \le ||x||_{\bullet} \le (1+\varepsilon) \cdot ||x||$$

and $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$.

Theorem, 2024

Let $\mathbb K$ be densely valued and (E,||.||) be a non-archimedean normed space. Then,

- there is a set I and a linear homeomorphic embedding $E o c_0(I,\widehat{\mathbb{K}});$
- there is an equivalent norm $||.||_{\bullet}$ on E such that $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$.

A. Kubzdela (Poznań) Renorming Problem Coimbra, 2024 9 / 14

Renorming Problem - solutions for densely valued **K**

\mathbb{K} is densely valued:

• $|\mathbb{K}^{\times}|$ is a dense subset of $[0, \infty)$

van Rooij, 1976

 \mathbb{K} is densely valued: If $||E^{\times}||$ is an union of countably many cosets of $|\mathbb{K}^{\times}|$, then for every $\varepsilon > 0$ there is a norm $||.||_{\bullet}$ on E such that

$$||x|| \leq ||x||_{\bullet} \leq (1+\varepsilon) \cdot ||x||$$

and
$$||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$$
.

- there is a set I and a linear homeomorphic embedding $E \to c_0\left(I,\widehat{\mathbb{K}}\right)$;
- there is an equivalent norm $||.||_{\bullet}$ on E such that $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$.

A. Kubzdela (Poznań)

Renorming Problem - solutions for densely valued $\ensuremath{\mathbb{K}}$

 \mathbb{K} is densely valued:

• $|\mathbb{K}^{\times}|$ is a dense subset of $[0, \infty)$

van Rooij, 1976

 \mathbb{K} is densely valued: If $||E^{\times}||$ is an union of countably many cosets of $|\mathbb{K}^{\times}|$, then for every $\varepsilon > 0$ there is a norm $||.||_{\bullet}$ on E such that

$$||x|| \leq ||x||_{\bullet} \leq (1+\varepsilon) \cdot ||x||$$

and
$$||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$$
.

Theorem, 2024

Let $\mathbb K$ be densely valued and $(\mathcal E, ||.||)$ be a non-archimedean normed space. Then,

- there is a set I and a linear homeomorphic embedding $E o \widehat{c_0(I, \mathbb{R})}$;
- there is an equivalent norm $||.||_{\bullet}$ on E such that $||E^{\times}||_{\bullet} = |\mathbb{K}^{\times}|$.

9/14

A. Kubzdela (Poznań) Renorming Problem

E- a non-archimedean normed space

E: a spherical completion of E: a spherically complete NA Banach space such that there exists an isometric embedding $i: E \to \widehat{E}$ and \widehat{E} has no proper spherically complete linear subspace containing i(E).

 $D \subset E$ is a linear subspace of E. E is called an immediate extension of D if there is no nonzero element of E that is orthogonal to D

- \hat{E} is an immediate extension of E;
- every linear subspace of \hat{E} which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E is an immediate extension of D, F be spherically complete and $T: D \to F$ be an isometric embedding. Then T can be extended to a linear isometry $T': E \to F$

A.Kubzdela, C.Perez-Garcia, 2023

For every non-archimedean space E there is a set I, and a map $s: I \to (0, \infty)$ such that there is an isomorphic embedding $g: E \longrightarrow c_0(\widehat{I:s}, \mathbb{K})$

E- a non-archimedean normed space

 \widehat{E} : a spherical completion of E: a spherically complete NA Banach space such that there exists an isometric embedding $i: E \to \widehat{E}$ and \widehat{E} has no proper spherically complete linear subspace containing i(E).

 $D \subset E$ is a linear subspace of E. E is called an immediate extension of D if there is no nonzero element of E that is orthogonal to D

- \hat{E} is an immediate extension of E;
- every linear subspace of \hat{E} which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E is an immediate extension of D, F be spherically complete and $T: D \to F$ be an isometric embedding. Then T can be extended to a linear isometry $T': E \to F$

A.Kubzdela, C.Perez-Garcia, 2023

For every non-archimedean space E there is a set I, and a map $s: I \to (0, \infty)$ such that there is an isomorphic embedding $a: E \longrightarrow c_0(\widehat{I:s}, \mathbb{K})$

E- a non-archimedean normed space

 \widehat{E} : a spherical completion of E: a spherically complete NA Banach space such that there exists an isometric embedding $i: E \to \widehat{E}$ and \widehat{E} has no proper spherically complete linear subspace containing i(E).

 $D \subset E$ is a linear subspace of E. E is called an immediate extension of D if there is no nonzero element of E that is orthogonal to D

- \hat{E} is an immediate extension of E:
- every linear subspace of \hat{E} which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E is an immediate extension of D, F be spherically complete and $T: D \to F$ be an isometric embedding. Then T can be extended to a linear isometry $T': E \to F$

A.Kubzdela, C.Perez-Garcia, 2023

For every non-archimedean space E there is a set I, and a map $s: I \to (0, \infty)$ such that there is an isomorphic embedding $a: E \longrightarrow c_0(\widehat{I:s}, \mathbb{K})$

E- a non-archimedean normed space

 \widehat{E} : a spherical completion of E: a spherically complete NA Banach space such that there exists an isometric embedding $i: E \to \widehat{E}$ and \widehat{E} has no proper spherically complete linear subspace containing i(E).

 $D \subset E$ is a linear subspace of E. E is called an immediate extension of D if there is no nonzero element of E that is orthogonal to D

- \hat{E} is an immediate extension of E;
- every linear subspace of \hat{E} which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E is an immediate extension of D, F be spherically complete and $T: D \to F$ be an isometric embedding. Then T can be extended to a linear isometry $T': E \to F$

A.Kubzdela, C.Perez-Garcia, 2023

For every non-archimedean space E there is a set I, and a map $s: I \to (0, \infty)$ such that there is an isomorphic embedding $g: E \longrightarrow c_0(\widehat{I:s}, \mathbb{K})$

E- a non-archimedean normed space

 \widehat{E} : a spherical completion of E: a spherically complete NA Banach space such that there exists an isometric embedding $i: E \to \widehat{E}$ and \widehat{E} has no proper spherically complete linear subspace containing i(E).

 $D \subset E$ is a linear subspace of E. E is called an immediate extension of D if there is no nonzero element of E that is orthogonal to D

- \hat{E} is an immediate extension of E;
- every linear subspace of \hat{E} which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E is an immediate extension of D, F be spherically complete and $T: D \to F$ be an isometric embedding. Then T can be extended to a linear isometry $T': E \to F$

A.Kubzdela, C.Perez-Garcia, 2023

For every non-archimedean space E there is a set I, and a map $s:I\to (0,\infty)$ such that there is an isomorphic embedding $g:E\longrightarrow c_0$ $\widehat{(I:s,\mathbb{K})}$

E- a non-archimedean normed space

 \widehat{E} : a spherical completion of E: a spherically complete NA Banach space such that there exists an isometric embedding $i: E \to \widehat{E}$ and \widehat{E} has no proper spherically complete linear subspace containing i(E).

 $D \subset E$ is a linear subspace of E. E is called an immediate extension of D if there is no nonzero element of E that is orthogonal to D

- \hat{E} is an immediate extension of E;
- every linear subspace of \hat{E} which contains E is an immediate extension of E;

Lemma

Let E, F be non-archimedean normed spaces, D be a linear subspace of E such that E is an immediate extension of D, F be spherically complete and $T: D \to F$ be an isometric embedding. Then T can be extended to a linear isometry $T': E \to F$

A.Kubzdela, C.Perez-Garcia, 2023

For every non-archimedean space E there is a set I, and a map $s: I \to (0, \infty)$ such that there is an isomorphic embedding $g: E \longrightarrow c_0(\widehat{I:s}, \mathbb{K})$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \ \|E^{\times}\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I: s, \widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i) := t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \left(\widehat{I:s,\widehat{\mathbb{K}}}
 ight)$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \ \|E^\times\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^\times|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I:s,\widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i):=t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \ \widehat{\left(I:s,\widehat{\mathbb{K}}
 ight)}$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \ \|E^{\times}\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I:s,\widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i):=t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \ \widehat{\left(I:s,\widehat{\mathbb{K}}
 ight)}$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \ \|E^{\times}\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I: s, \widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i) := t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \left(\widehat{I:s},\widehat{\mathbb{K}}
 ight)$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \ \|E^{\times}\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot \left| \mathbb{K}^{\times} \right|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I:s,\widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i):=t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \left(\widehat{I:s},\widehat{\mathbb{K}}
 ight)$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \| \mathbf{E}^{\times} \| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I:s,\widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i):=t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \left(\widehat{I:s},\widehat{\mathbb{K}}
 ight)$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \|E^{\times}\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I: s, \widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i):=t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \ \widehat{\left(I:s,\widehat{\mathbb{K}}
 ight)}$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \|E^{\times}\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I: s, \widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i) := t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \left(\widehat{I:s}, \widehat{\mathbb{K}}
 ight)$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{(I:s,\widehat{\mathbb{K}})} \xrightarrow{?} \widehat{c_0(I,\widehat{\mathbb{K}})}$$

- $\{x_i\}_{i \in I}$: a maximal orthogonal set in E
- E is an immediate extension of $[\{x_i\}_{i \in I}]$
- $\bullet \|E^{\times}\| = \bigcup_{t \in T} t \cdot |\mathbb{K}^{\times}|$
- $I = \bigcup_{t \in T} I_t$ where $||x_i|| \in t \cdot |\mathbb{K}^{\times}|$ if $i \in I_t$ $(t \in T)$
- $||x_i|| = t$ for every $i \in I_t$
- $g_0: [\{x_i\}_{i \in I}] \to c_0 (I: s, \widehat{\mathbb{K}}): x_i \longmapsto e_i (i \in I)$ $s(i) := t \text{ if } i \in I_t \Longrightarrow g_0 \text{ is an isometric embedding}$
- ullet Lemma $\Longrightarrow g: E o c_0 \left(\widehat{I:s,\widehat{\mathbb{K}}}
 ight)$ is an isometric embedding

$$E \xrightarrow{g} c_0 \widehat{\left(I:s,\widehat{\mathbb{K}}\right)} \xrightarrow{?} \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)}$$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $\bullet \ \ T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $T: c_0\left(\widehat{I:s},\widehat{\mathbb{K}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)}$ (into)
- $h := T|_{\widehat{c_0(l:s,\mathbb{R})}}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,
- $\bullet \ \left| \left| c_0 \left(\overline{I, \widehat{\mathbb{K}}} \right)^{\times} \right| \right| = \left| \left| c_0 \left(I, \widehat{\mathbb{K}} \right)^{\times} \right| \right| = \left| \mathbb{K}^{\times} \right| \Longrightarrow \left| \left| \overline{\textbf{\textit{E}}}^{\times} \right| \right|_{\bullet} = \left| \mathbb{K}^{\times} \right|$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $\bullet \ \ T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $T: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) o \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)}$ (into)
- $h := T|_{\widehat{c_0(l:s,\mathbb{R})}}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,
- $\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

•
$$T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$$

- $\bullet \quad T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism

•
$$T: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) o \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)}$$
 (into)

- $h := T|_{c_0(l:s,\widehat{\mathbb{K}})}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,

$$\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

$$\bullet \ T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$$

$$T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$$

T is a linear homeomorphism

•
$$T: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)}$$
 (into)

•
$$h := T|_{c_0(l:s,\widehat{\mathbb{K}})}$$

•
$$||x||_{\bullet} := ||h(g(x))||, x \in E$$

•
$$|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$$
,

$$\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $T: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)}$ (into)
- $h := T|_{c_0(l:s,\widehat{\mathbb{K}})}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,
- $\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$

- ullet $ho \in \mathbb{K}$ be such that 0 < |
 ho| < 1
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $\bullet \ T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism

•
$$T: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)}$$
 (into)

- $h := T|_{c_0(\widehat{I:s},\widehat{\mathbb{K}})}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$
- $\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $\bullet \ \ \mathcal{T}: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)} \ (\text{into})$
- $h := T|_{\widehat{c_0(l:s,\mathbb{R})}}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,
- $\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $\bullet \ \ \mathcal{T}: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)} \ (\text{into})$
- $h := T|_{\widehat{c_0(I:s,\widehat{\mathbb{K}})}}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,
- $\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $\bullet \quad T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $\bullet \ \ \mathcal{T}: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)} \ (\text{into})$
- $h := T|_{c_0(\widehat{I:s},\widehat{\mathbb{K}})}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$
- $\bullet \ \left|\left|c_0\left(\widehat{I,\widehat{\mathbb{K}}}\right)^{\times}\right|\right| = \left|\left|c_0\left(I,\widehat{\mathbb{K}}\right)^{\times}\right|\right| = \left|\mathbb{K}^{\times}\right| \Longrightarrow \left|\left|\boldsymbol{E}^{\times}\right|\right|_{\bullet} = \left|\mathbb{K}^{\times}\right|$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $\bullet \ \ \mathcal{T}: c_0\left(\widehat{I:s,\widehat{\mathbb{K}}}\right) \to \widehat{c_0\left(I,\widehat{\mathbb{K}}\right)} \ (\text{into})$
- $h := T|_{\widehat{c_0(I:s,\widehat{\mathbb{K}})}}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,
- $\bullet \ \left| \left| c_0 \left(\overline{I, \widehat{\mathbb{K}}} \right)^{\times} \right| \right| = \left| \left| c_0 \left(I, \widehat{\mathbb{K}} \right)^{\times} \right| \right| = \left| \mathbb{K}^{\times} \right| \Longrightarrow \left| \left| \overline{E}^{\times} \right| \right|_{\bullet} = \left| \mathbb{K}^{\times} \right|$

- $\rho \in \mathbb{K}$ be such that $0 < |\rho| < 1$
- for every $i \in I$ choose $\mu_i \in \mathbb{K}$ for which

$$|\rho| \cdot s(i) \leq |\mu_i| \leq s(i)$$

- $T: I^{\infty}\left(I:s,\widehat{\mathbb{K}}\right) \to I^{\infty}\left(I,\widehat{\mathbb{K}}\right)$
- $T: X = (X_i)_{i \in I} \mapsto (\mu_i X_i)_{i \in I}$
- T is a linear homeomorphism
- $T: c_0(\widehat{I:s},\widehat{\mathbb{K}}) \to \widehat{c_0(I,\widehat{\mathbb{K}})}$ (into)
- $h := T|_{\widehat{c_0(I:s,\widehat{\mathbb{K}})}}$
- $||x||_{\bullet} := ||h(g(x))||, x \in E$
- $|\rho| \cdot ||x|| \le ||x||_{\bullet} \le ||x||, x \in E$,
- $\bullet \ \left| \left| c_0 \left(\overline{I,\widehat{\mathbb{K}}} \right)^{\times} \right| \right| = \left| \left| c_0 \left(\overline{I},\widehat{\mathbb{K}} \right)^{\times} \right| \right| = \left| \mathbb{K}^{\times} \right| \Longrightarrow \left| \left| \overline{E}^{\times} \right| \right|_{\bullet} = \left| \mathbb{K}^{\times} \right|$

bibliography

Serre J.P., Endomorphismes completement continus des espaces de Banach p-adiques. Inst. Hautes Etudes Sci. Publ.Math. **12**(1962), 69-85.

van Rooij, A.C.M., Notes on p-adic Banach spaces. Katholieke Universiteit Nijmegen, Report 7633 (1976).

Kubzdela, A., Perez-Garcia, C., Non-archimedean Banach spaces of universal disposition. Analysis Math. **49** (2023), 507—528

Kubzdela, A., Serre's Renorming Problem. Bulletin of the Belgian Mathematical Society - Simon Stevin. **31** (2024),102—114

Kakol J., Kubiś W., Kubzdela A., On non-archimedean Guarii spaces. J. Math. Anal. Appl. **450** (2017), 969—981

... Thank you for the attention