Betweenness and equidistance in metric spaces Summer Topology and its Applications

Paul Bankston, Aisling McCluskey

University of Coimbra

July 8, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Betweenness and equidistance in metric spaces Summer Topology and its Applications

Paul Bankston, Aisling McCluskey

University of Coimbra

July 8, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The building blocks

Given a metric space $X = \langle X, \rho \rangle$ and points $a, b \in X$, we make the following basic definitions.

• The **interval** I(a, b), with *bracket points a* and *b*, is the set $\{x \in X : \rho(a, b) = \rho(a, x) + \rho(x, b)\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The building blocks

Given a metric space $X = \langle X, \rho \rangle$ and points $a, b \in X$, we make the following basic definitions.

• The **interval** I(a, b), with *bracket points a* and *b*, is the set $\{x \in X : \rho(a, b) = \rho(a, x) + \rho(x, b)\}$.

 The equiset E(a, b), with cocenters a and b, is the set {x ∈ X : ρ(x, a) = ρ(x, b)} of points equidistant from a and b.

Recall: $x \in I(a, b)$ means $\rho(a, x) + \rho(x, b) = \rho(a, b)$.

Example

Define for the unit circle S in \mathbb{R}^2 with $a, b \in S$ a metric ρ as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\rho(a, b) =$ shortest arc distance between *a* and *b*.

Recall: $x \in I(a, b)$ means $\rho(a, x) + \rho(x, b) = \rho(a, b)$.

Example

Define for the unit circle S in \mathbb{R}^2 with $a, b \in S$ a metric ρ as follows:

 $\rho(a, b) =$ shortest arc distance between *a* and *b*.

If a and b are two antipodal points on S, then I(a, b) = S

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recall: $x \in I(a, b)$ means $\rho(a, x) + \rho(x, b) = \rho(a, b)$.

Example

Define for the unit circle S in \mathbb{R}^2 with $a, b \in S$ a metric ρ as follows:

 $\rho(a, b) =$ shortest arc distance between *a* and *b*.

If a and b are two antipodal points on S, then I(a, b) = S while for any third point c on S, $I(a, c) \cup I(c, b)$ is a proper subset of S.

Recall: $x \in I(a, b)$ means $\rho(a, x) + \rho(x, b) = \rho(a, b)$.

Example

Define for the unit circle S in \mathbb{R}^2 with $a, b \in S$ a metric ρ as follows:

 $\rho(a, b) =$ shortest arc distance between *a* and *b*.

If a and b are two antipodal points on S, then I(a, b) = S while for any third point c on S, $I(a, c) \cup I(c, b)$ is a proper subset of S.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If instead we use the usual Euclidean metric on S, then $I(a, b) = \{a, b\}$ for any $a, b \in S$.

Metric matters

Given $(x, y), (u, v) \in \mathbb{R}^2$, define the taxicab metric ρ on \mathbb{R}^2 as follows:

$$\rho((x, y), (u, v)) = |x - u| + |y - v|.$$

Normed vector spaces $\langle X, \| \cdot \| \rangle$ over \mathbb{R}

Here the metric on X is induced by the norm in the usual way:

$$p(x,y) := \|x - y\|$$

Define, for points *a* and *b*, the **linear interval** bracketed by these points to be the line segment $[a, b] := \{ta + (1-t)b : 0 \le t \le 1\}$.

Normed vector spaces $\langle X, \| \cdot \| \rangle$ over \mathbb{R}

Here the metric on X is induced by the norm in the usual way:

$$p(x,y) := \|x - y\|$$

Define, for points *a* and *b*, the **linear interval** bracketed by these points to be the line segment $[a, b] := \{ta + (1-t)b : 0 \le t \le 1\}$.

Clearly [a, b] is always contained in I(a, b), but the metric interval may be much larger—even with nonempty topological interior.

A D N A 目 N A E N A E N A B N A C N

Normed vector spaces $\langle X, \| \cdot \| \rangle$ over \mathbb{R}

Here the metric on X is induced by the norm in the usual way:

$$p(x,y) := \|x - y\|$$

Define, for points *a* and *b*, the **linear interval** bracketed by these points to be the line segment $[a, b] := \{ta + (1-t)b : 0 \le t \le 1\}$.

Clearly [a, b] is always contained in I(a, b), but the metric interval may be much larger—even with nonempty topological interior.

The metric interval I(a, b) is called **linear** if it equals $[\![a, b]\!]$.

Betweenness and nearness

Each equiset E(a, b) gives rise to a division of X into two subsets, called *comparative nearness regions*.

The comparative nearness region R(a, b), with center a and off-center b, is the set {x ∈ X : ρ(x, a) ≤ ρ(x, b)} of points at least as near to a as to b.

Then $E(a, b) = R(a, b) \cap R(b, a)$.

Metric intervals and nearness regions are closed subsets of the given metric space.

An axiomatic perspective

We single out a first-order predicate language whose atomic formulas are equalities and formulas of the form I(y, x, z) and R(x, y, z), where I and R are ternary relation symbols.

Interpret I(y, x, z) as $x \in I(y, z)$

and R(x, y, z) as $x \in R(y, z)$.

An axiomatic perspective

We single out a first-order predicate language whose atomic formulas are equalities and formulas of the form I(y, x, z) and R(x, y, z), where I and R are ternary relation symbols.

Interpret I(y, x, z) as $x \in I(y, z)$

and R(x, y, z) as $x \in R(y, z)$.

We define an **IR-structure** to be a triple $\langle X, I, R \rangle$, where I and R are arbitrary ternary relations on X.

An axiomatic perspective

We single out a first-order predicate language whose atomic formulas are equalities and formulas of the form I(y, x, z) and R(x, y, z), where I and R are ternary relation symbols.

Interpret
$$I(y, x, z)$$
 as $x \in I(y, z)$

and R(x, y, z) as $x \in R(y, z)$.

We define an **IR-structure** to be a triple $\langle X, I, R \rangle$, where *I* and *R* are arbitrary ternary relations on *X*. An IR-structure is **metric** if its *I*- and *R*-relations arise from a metric as described above.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- (I1, Inclusivity) $I(x, x, y) \wedge I(x, y, y) : a, b \in I(a, b)$
- (I2, Symmetry) $I(y, x, z) \rightarrow I(z, x, y)$: I(a, b) = I(b, a)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(I3, Uniqueness) $I(y, x, y) \rightarrow x = y$: $I(a, a) = \{a\}$

(11, Inclusivity) $I(x, x, y) \land I(x, y, y) : a, b \in I(a, b)$ (12, Symmetry) $I(y, x, z) \rightarrow I(z, x, y) : I(a, b) = I(b, a)$ (13, Uniqueness) $I(y, x, y) \rightarrow x = y : I(a, a) = \{a\}$ (14, Antisymmetry) $(I(y, x, z) \land I(y, z, x)) \rightarrow x = z : c \in I(a, b)$ and $b \in I(a, c) \rightarrow b = c$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(I1, Inclusivity) $I(x, x, y) \land I(x, y, y) : a, b \in I(a, b)$ (I2, Symmetry) $I(y, x, z) \rightarrow I(z, x, y) : I(a, b) = I(b, a)$ (I3, Uniqueness) $I(y, x, y) \rightarrow x = y : I(a, a) = \{a\}$ (I4, Antisymmetry) $(I(y, x, z) \land I(y, z, x)) \rightarrow x = z : c \in I(a, b)$ and $b \in I(a, c) \rightarrow b = c$ (I5, Transitivity) $(I(y, w, x) \land I(y, x, z)) \rightarrow I(y, w, z) : I(a, c) \subseteq I(a, b)$ whenever $c \in I(a, b)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(I1, Inclusivity) $I(x, x, y) \wedge I(x, y, y) : a, b \in I(a, b)$ (12, Symmetry) $I(y, x, z) \rightarrow I(z, x, y)$: I(a, b) = I(b, a)(13, Uniqueness) $I(y, x, y) \rightarrow x = y$: $I(a, a) = \{a\}$ (I4, Antisymmetry) $(I(y, x, z) \land I(y, z, x)) \rightarrow x = z$: $c \in I(a, b)$ and $b \in I(a, c) \rightarrow b = c$ (I5, Transitivity) $(I(y, w, x) \land I(y, x, z)) \rightarrow I(y, w, z)$: $I(a, c) \subseteq I(a, b)$ whenever $c \in I(a, b)$ (16, Concentration) $(I(y, x, z) \land I(y, w, x) \land I(x, w, z)) \rightarrow w = x : \text{if } c \in I(a, b)$ then $I(a, c) \cap I(c, b) = \{c\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

The order within

Write $x \leq_{y} z$ for I(y, x, z): then I4 looks like usual antisymmetry,

 $(x \leqslant_y z \land z \leqslant_y x) \to x = z,$

The order within

Write $x \leq_{y} z$ for I(y, x, z): then I4 looks like usual antisymmetry,

$$(x \leqslant_y z \land z \leqslant_y x) \to x = z,$$

and 15 looks like usual transitivity,

$$(w \leqslant_y x \land x \leqslant_y z) \to w \leqslant_y z.$$

The order within

Write $x \leq_{y} z$ for I(y, x, z): then 14 looks like usual antisymmetry,

$$(x \leqslant_y z \land z \leqslant_y x) \to x = z,$$

and 15 looks like usual transitivity,

$$(w \leqslant_y x \land x \leqslant_y z) \to w \leqslant_y z.$$

Moreover, if $\langle X, I, R \rangle$ satisfies l1–l5, then each binary relation \leq_a , $a \in X$, is a partial ordering on X, with unique least element a.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Axioms emphasising betweenness (continued)

(I7, Convexity)

 $I(c,d) \subseteq I(a,b)$ for all $c,d \in I(a,b)$

Axioms emphasising betweenness (continued)

(I7, Convexity)

 $I(c,d) \subseteq I(a,b)$ for all $c,d \in I(a,b)$

(18, Weak Disjunctivity)

 $I(a,b) \subseteq I(a,c) \cup I(c,b)$ for $c \in I(a,b)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (D. Anderson, P. Bankston, Mc C 2023) In an IR-structure satisfying I1–I5, every weakly disjunctive interval is convex.

Strict convexity in normed vector spaces

Definition

A normed vector space $\langle X, \| \cdot \| \rangle$ is said to be *strictly convex* if the unit sphere $S_X = \{x \in X : \|x\| = 1 \text{ has 'no flat spots' i.e. contains no line segment <math>[a, b]$ for any $a, b \in S_X$.

Strict convexity in normed vector spaces

Definition

A normed vector space $\langle X, \| \cdot \| \rangle$ is said to be *strictly convex* if the unit sphere $S_X = \{x \in X : \|x\| = 1 \text{ has 'no flat spots' i.e. contains no line segment <math>[a, b]$ for any $a, b \in S_X$.

Example

Fix $1 \leq p < \infty$, and let \mathbb{R}_p^2 be the vector space \mathbb{R}^2 , equipped with the *p*-norm

$$\|\langle x, y \rangle\|_{p} := (|x|^{p} + |y|^{p})^{\frac{1}{p}}.$$

We also define the ∞ -norm, given by

$$\|\langle x,y \rangle\|_{\infty} := \max\{|x|,|y|\}$$

A D N A 目 N A E N A E N A B N A C N

Convexity in normed vector spaces

Theorem (P. Bankston, R. Smyth, McC 2018)

A normed vector space X is strictly convex if and only if all (metric) intervals are linear.

Corollary

Let X be a normed vector space. The following three conditions are equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (a) The norm of X arises from an inner product.
- (b) For each $x, y \in X$, E(x, y) is convex.
- (c) For each $x, y \in X$, R(x, y) is convex.

Special case of dimension two

In dimension two we can be quite explicit about the shape of intervals.

Theorem

Let $X = \langle \mathbb{R}^2, \| \cdot \| \rangle$ be a normed plane that is not strictly convex, with p, q distinct extreme points of B_X , such that $\llbracket p, q \rrbracket \subseteq S_X$. Fix $a \in \llbracket p, q \rrbracket$, and fix unique $\alpha, \beta \in [0, \infty)$ so that $\alpha + \beta = 1$ and $a = \alpha p + \beta q$. Let P be the parallelogram $\{\alpha' p + \beta' q : 0 \leq \alpha' \leq \alpha, 0 \leq \beta' \leq \beta\}$ (a line segment if and only if $a \in \{p, q\}$).

Then I(0, a) = P; in particular, when $a \notin \{p, q\}$ then I(0, a) is a parallelogram with $[\![0, a]\!]$ as one of its two diagonals. Furthermore, if $a \in [\![p, q]\!] \setminus \{p, q\}$ then M(0, a) is a nondegenerate line segment parallel to $[\![p, q]\!]$.

Some general results for normed vector spaces

Theorem Every normed plane is I-convex.

Some general results for normed vector spaces

Theorem

Every normed plane is I-convex.

The following is one of several characterisations of normed vector space properties purely in terms of abstract betweenness, equidistance and comparative nearness:

Theorem

Equisets and nearness regions in a normed vector space are convex precisely when the norm arises from an inner product.

Where next? Intervals in metric hyperspaces

Notions of linear and metric betweenness make sense for sets as well as for points.

Definition

Let A and B be nonempty subsets of a vector space X. Then $C \subseteq X$ is linearly between A and B if there is a scalar $0 \leq t \leq 1$ such that C = (1 - t)A + tB.

Where next? Intervals in metric hyperspaces

Notions of linear and metric betweenness make sense for sets as well as for points.

Definition

Let A and B be nonempty subsets of a vector space X. Then $C \subseteq X$ is linearly between A and B if there is a scalar $0 \leq t \leq 1$ such that C = (1 - t)A + tB.

In the metric case, if A, B and C are also compact, the metric ρ on X gives rise to the Hausdorff metric ρ_H for such sets, and we say that a compact set C is metrically between A and B if $\rho_H(A, C) + \rho_H(C, B) = \rho_H(A, C)$.

(ロ)、

• Inclusivity: $[\![A, A]\!] = \{A\}$ if and only if A is linearly convex.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Inclusivity: $[\![A, A]\!] = \{A\}$ if and only if A is linearly convex.
- Transitivity: note that if A = {a₁, a₂} and B = {b} are subsets of the real plane such that a₁, a₂, b are distinct, then each C ∈ [A, B] \ B is a doubleton set;

- Inclusivity: $[\![A, A]\!] = \{A\}$ if and only if A is linearly convex.
- Transitivity: note that if A = {a₁, a₂} and B = {b} are subsets of the real plane such that a₁, a₂, b are distinct, then each C ∈ [[A, B]] \ B is a doubleton set; hence sets in [[A, C]] typically have four points, and [[A, C]] is therefore not generally contained in [[A, B]].

- Inclusivity: $[\![A, A]\!] = \{A\}$ if and only if A is linearly convex.
- Transitivity: note that if A = {a₁, a₂} and B = {b} are subsets of the real plane such that a₁, a₂, b are distinct, then each C ∈ [[A, B]] \ B is a doubleton set; hence sets in [[A, C]] typically have four points, and [[A, C]] is therefore not generally contained in [[A, B]].
- Transitivity and weak disjuntivity (+ basic) imply convexity.

Comparing linear intervals with metric intervals in the hyperspace KL(X)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Recall: $C \in \llbracket A, B \rrbracket$ if there is a scalar $0 \le t \le 1$ such that C = (1 - t)A + tB.

Comparing linear intervals with metric intervals in the hyperspace KL(X)

Recall: $C \in \llbracket A, B \rrbracket$ if there is a scalar $0 \le t \le 1$ such that C = (1 - t)A + tB.

Theorem

Let X be a normed vector space, with A a singleton set and B compact. Then $[\![A, B]\!] \subseteq [\![A, B]\!]$.

Comparing linear intervals with metric intervals in the hyperspace KL(X)

Recall: $C \in \llbracket A, B \rrbracket$ if there is a scalar $0 \le t \le 1$ such that C = (1 - t)A + tB.

Theorem

Let X be a normed vector space, with A a singleton set and B compact. Then $[\![A, B]\!] \subseteq [\![A, B]\!]$.

Theorem (D. Anderson, P. Bankston, McC 2023) Let X be a normed vector space, with A, $B \subseteq X$. Then $\llbracket A, B \rrbracket \subseteq \llbracket A, B \rrbracket$. Obrigado

Míle buíochas

Thank you very much

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ