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The building blocks

Given a metric space X = ⟨X , ρ⟩ and points a, b ∈ X , we make the
following basic definitions.

• The interval I (a, b), with bracket points a and b, is the set
{x ∈ X : ρ(a, b) = ρ(a, x) + ρ(x , b)}.

• The equiset E (a, b), with cocenters a and b, is the set
{x ∈ X : ρ(x , a) = ρ(x , b)} of points equidistant from a and
b.



The building blocks

Given a metric space X = ⟨X , ρ⟩ and points a, b ∈ X , we make the
following basic definitions.

• The interval I (a, b), with bracket points a and b, is the set
{x ∈ X : ρ(a, b) = ρ(a, x) + ρ(x , b)}.

• The equiset E (a, b), with cocenters a and b, is the set
{x ∈ X : ρ(x , a) = ρ(x , b)} of points equidistant from a and
b.



Menger betweenness

Recall: x ∈ I (a, b) means ρ(a, x) + ρ(x , b) = ρ(a, b).

Example

Define for the unit circle S in R2 with a, b ∈ S a metric ρ as
follows:

ρ(a, b) = shortest arc distance between a and b.

If a and b are two antipodal points on S , then I (a, b) = S while for
any third point c on S , I (a, c) ∪ I (c , b) is a proper subset of S .

If instead we use the usual Euclidean metric on S , then
I (a, b) = {a, b} for any a, b ∈ S .
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Metric matters

Given (x , y), (u, v) ∈ R2, define the taxicab metric ρ on R2 as
follows:

ρ((x , y), (u, v)) = |x − u|+ |y − v |.



Normed vector spaces ⟨X , ∥ · ∥⟩ over R

Here the metric on X is induced by the norm in the usual way:

ρ(x , y) := ∥x − y∥

Define, for points a and b, the linear interval bracketed by these
points to be the line segment [[a, b]] := {ta + (1− t)b : 0 ⩽ t ⩽ 1}.

Clearly [[a, b]] is always contained in I (a, b), but the metric interval
may be much larger−even with nonempty topological interior.

The metric interval I (a, b) is called linear if it equals [[a, b]].
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Betweenness and nearness

Each equiset E (a, b) gives rise to a division of X into two subsets,
called comparative nearness regions.

• The comparative nearness region R(a, b), with center a
and off-center b, is the set {x ∈ X : ρ(x , a) ⩽ ρ(x , b)} of
points at least as near to a as to b.

Then E (a, b) = R(a, b) ∩ R(b, a).
Metric intervals and nearness regions are closed subsets of the
given metric space.



An axiomatic perspective

We single out a first-order predicate language whose atomic
formulas are equalities and formulas of the form I (y , x , z) and
R(x , y , z), where I and R are ternary relation symbols.

Interpret I (y , x , z) as x ∈ I (y , z)

and R(x , y , z) as x ∈ R(y , z).

We define an IR-structure to be a triple ⟨X , I ,R⟩, where I and R
are arbitrary ternary relations on X . An IR-structure is metric if its
I - and R-relations arise from a metric as described above.



An axiomatic perspective

We single out a first-order predicate language whose atomic
formulas are equalities and formulas of the form I (y , x , z) and
R(x , y , z), where I and R are ternary relation symbols.

Interpret I (y , x , z) as x ∈ I (y , z)

and R(x , y , z) as x ∈ R(y , z).

We define an IR-structure to be a triple ⟨X , I ,R⟩, where I and R
are arbitrary ternary relations on X .

An IR-structure is metric if its
I - and R-relations arise from a metric as described above.



An axiomatic perspective

We single out a first-order predicate language whose atomic
formulas are equalities and formulas of the form I (y , x , z) and
R(x , y , z), where I and R are ternary relation symbols.

Interpret I (y , x , z) as x ∈ I (y , z)

and R(x , y , z) as x ∈ R(y , z).

We define an IR-structure to be a triple ⟨X , I ,R⟩, where I and R
are arbitrary ternary relations on X . An IR-structure is metric if its
I - and R-relations arise from a metric as described above.



Elementary betweenness aspect of metric IR-structures

(I1, Inclusivity) I (x , x , y)∧ I (x , y , y) : a, b ∈ I (a, b)

(I2, Symmetry) I (y , x , z) → I (z , x , y) : I (a, b) = I (b, a)

(I3, Uniqueness) I (y , x , y) → x = y : I (a, a) = {a}

(I4, Antisymmetry) (I (y , x , z)∧ I (y , z , x)) → x = z :
c ∈ I (a, b) and b ∈ I (a, c) → b = c

(I5, Transitivity) (I (y ,w , x)∧ I (y , x , z)) → I (y ,w , z) :
I (a, c) ⊆ I (a, b) whenever c ∈ I (a, b)

(I6, Concentration)
(I (y , x , z)∧ I (y ,w , x)∧ I (x ,w , z)) → w = x : if c ∈ I (a, b)
then I (a, c) ∩ I (c , b) = {c}
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The order within

Write x ⩽y z for I (y , x , z): then I4 looks like usual antisymmetry,

(x ⩽y z ∧ z ⩽y x) → x = z ,

and I5 looks like usual transitivity,

(w ⩽y x ∧ x ⩽y z) → w ⩽y z .

Moreover, if ⟨X , I ,R⟩ satisfies I1−I5, then each binary relation ⩽a,
a ∈ X , is a partial ordering on X , with unique least element a.
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Axioms emphasising betweenness (continued)

(I7, Convexity)

I (c , d) ⊆ I (a, b) for all c , d ∈ I (a, b)

(I8, Weak Disjunctivity)

I (a, b) ⊆ I (a, c) ∪ I (c , b) for c ∈ I (a, b)

Theorem (D. Anderson, P. Bankston, Mc C 2023)

In an IR-structure satisfying I1−I5, every weakly disjunctive
interval is convex.
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Strict convexity in normed vector spaces

Definition
A normed vector space ⟨X , ∥ · ∥⟩ is said to be strictly convex if the
unit sphere SX = {x ∈ X : ∥x∥ = 1 has ’no flat spots’ i.e. contains
no line segment [[a, b]] for any a, b ∈ SX .

Example

Fix 1 ⩽ p < ∞, and let R2
p be the vector space R2, equipped with

the p-norm

∥⟨x , y⟩∥p := (|x |p + |y |p)
1
p .

We also define the ∞-norm, given by

∥⟨x , y⟩∥∞ := max{|x |, |y |}
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Convexity in normed vector spaces

Theorem (P. Bankston, R. Smyth, McC 2018)

A normed vector space X is strictly convex if and only if all
(metric) intervals are linear.

Corollary

Let X be a normed vector space. The following three conditions
are equivalent.

(a) The norm of X arises from an inner product.

(b) For each x , y ∈ X , E (x , y) is convex.

(c) For each x , y ∈ X , R(x , y) is convex.



Special case of dimension two

In dimension two we can be quite explicit about the shape of
intervals.

Theorem
Let X = ⟨R2, ∥ · ∥⟩ be a normed plane that is not strictly convex,
with p, q distinct extreme points of BX , such that [[p, q]] ⊆ SX . Fix
a ∈ [[p, q]] , and fix unique α,β ∈ [0,∞) so that α+ β = 1 and
a = αp + βq. Let P be the parallelogram
{α ′p + β ′q : 0 ⩽ α ′ ⩽ α, 0 ⩽ β ′ ⩽ β} (a line segment if and only
if a ∈ {p, q}).

Then I (0, a) = P; in particular, when a ̸∈ {p, q} then I (0, a) is a
parallelogram with [[0, a]] as one of its two diagonals. Furthermore,
if a ∈ [[p, q]] \ {p, q} then M(0, a) is a nondegenerate line segment
parallel to [[p, q]].



Some general results for normed vector spaces

Theorem
Every normed plane is I-convex.

The following is one of several characterisations of normed vector
space properties purely in terms of abstract betweenness,
equidistance and comparative nearness:

Theorem
Equisets and nearness regions in a normed vector space are convex
precisely when the norm arises from an inner product.
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Where next? Intervals in metric hyperspaces

Notions of linear and metric betweenness make sense for sets as
well as for points.

Definition
Let A and B be nonempty subsets of a vector space X . Then
C ⊆ X is linearly between A and B if there is a scalar 0 ⩽ t ⩽ 1
such that C = (1− t)A+ tB.

In the metric case, if A,B and C are also compact, the metric ρ on
X gives rise to the Hausdorff metric ρH for such sets, and we say
that a compact set C is metrically between A and B if
ρH(A,C ) + ρH(C ,B) = ρH(A,C ).
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Restriction to linearly convex compact subsets

• Inclusivity: [[A,A]] = {A} if and only if A is linearly convex.

• Transitivity: note that if A = {a1, a2} and B = {b} are subsets
of the real plane such that a1, a2, b are distinct, then each
C ∈ [[A,B]] \ B is a doubleton set;
hence sets in [[A,C ]] typically have four points, and [[A,C ]] is
therefore not generally contained in [[A,B]].

• Transitivity and weak disjuntivity (+ basic) imply convexity.
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Comparing linear intervals with metric intervals in the
hyperspace KL(X )

Recall: C ∈ [[A,B]] if there is a scalar 0 ⩽ t ⩽ 1 such that
C = (1− t)A+ tB.

Theorem
Let X be a normed vector space, with A a singleton set and B
compact. Then [[A,B]] ⊆ [A,B].

Theorem (D. Anderson, P. Bankston, McC 2023)

Let X be a normed vector space, with A, B ⊆ X . Then
[[A,B]] ⊆ [A,B].
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Obrigado

Ḿıle búıochas

Thank you very much


