
Embeddings of mappings via products and
universal mappings

A.C. Megaritis

University of Patras, Department of Mathematics, Patra, Greece

The research has been financed by the funding programme "MEDICUS" of the
University of Patras, Greece.

SUMTOPO 2024

1 / 47



Introduction

A topological space T is universal in a class P of topological spaces
if T belongs to P and every space that belongs to P is embeddable in
T , i.e. T contains a homeomorphic copy of every element of the class
P. The question whether there are universal spaces in a given class of
spaces is called the universality problem for that class.

Universality problems appeared in topology in its early development and
theorems which assert the existence of universal objects is useful be-
cause they enable us to reduce the study of a class of spaces to the
study of subspaces of one fixed space. In the construction of univer-
sal spaces embeddings of spaces in products usually play an important
role. The "diagonal theorem" is a main method for constructing universal
spaces.
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Introduction

In [Universal spaces and mappings, North-Holland Mathematics Stud-
ies, 198. Elsevier Science B.V., Amsterdam, 2005] S. D. Iliadis gave a
set-theoretical construction of containing spaces for an arbitrary collec-
tion of spaces and introduced the notion of a saturated class of spaces.

This construction provides another approach to the universality problem
and enables us to prove in a unified way the existence of a universal
element for many classes of spaces.

Furthermore, S. D. Iliadis studied the universality problem for classes
consisting of mappings, by applying the construction of containing spa-
ces and the notion of a saturated class of spaces to the class of the
domains and to the class of the ranges of all mappings of the considered
class of mappings.
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Introduction

On the other hand, in [Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math.
Sci. 34 (2001), 21–44] D. Buhagiar used partial products in order to
obtain universal type theorems for T0, Tychonoff and zero-dimensional
maps in the category MAP.

Following Buhagiar’s approach, in this talk we present embeddings the-
orems for continuous mappings and as a consequence, we obtain uni-
versal mappings for several classes of continuous mappings.
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Introduction

The talk is divided into the following sections:
In Section 1 the basic notation and terminology used throughout
this talk are introduced.
In Section 2 we state and prove the two main diagonal theorems for
mappings.
In Section 3 we construct universal mappings for various classes of
continuous mappings using the results of Section 2.
In Section 4 we study the universality problem for classes consist-
ing of mappings with the same range. Moreover, we give another
approach to the universality problem based on function spaces with
the topology of pointwise convergence. Finally, partial products are
used to obtain an embedding theorem for mappings and then apply
it for the class of T0-mappings.
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Section 1: Preliminaries

Embedding of a mapping to another mapping
Let g : X1 → Y1 and f : X2 → Y2 be two continuous mappings of
topological spaces. A pair (i , j), where i is a homeomorphic embedding
of X1 into X2 and j is a homeomorphic embedding of Y1 into Y2 such
that f ◦ i = j ◦ g, i.e. the following diagram is commutative, is said to be
an embedding of g into f .

X2 Y2

X1 Y1

f

g

i j
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Preliminaries

Product of a family of mappings
Let {Xλ}λ∈Λ and {Yλ}λ∈Λ be two families of topological spaces and
{fλ}λ∈Λ a family of continuous mappings, where fλ : Xλ → Yλ. The
continuous mapping assigning to the point {xλ}λ∈Λ ∈

∏
λ∈Λ Xλ the point

{fλ(xλ)}λ∈Λ ∈
∏
λ∈Λ Yλ is called the product of the family {fλ}λ∈Λ and

is denoted by ∏
λ∈Λ fλ

or by
fλ1 × fλ2 × . . .× fλn

if Λ = {λ1, λ2, . . . , λn}.
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Preliminaries

Diagonal of a family of mappings
Let X be a topological space, {Yλ}λ∈Λ a family of topological spaces
and {fλ}λ∈Λ a family of continuous mappings, where fλ : X → Yλ. The
continuous mapping assigning to the point x ∈ X the point

{fλ(x)}λ∈Λ ∈
∏
λ∈Λ Yλ

is called the diagonal of the family {fλ}λ∈Λ and is denoted by

4λ∈Λfλ

or by
fλ14fλ24 . . .4fλn

if Λ = {λ1, λ2, . . . , λn}.
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Preliminaries

We say that the family {fλ}λ∈Λ separates points if for every pair of
distinct points x , y ∈ X there exists λ ∈ Λ such that fλ(x) 6= fλ(y).

We say also that the family {fλ}λ∈Λ separates points and closed sets
if for every point x ∈ X and every closed subset F of X with x /∈ F there
exists λ ∈ Λ such that fλ(x) /∈ ClYλ

(fλ(F )).

If X is a T0-space, then every family {fλ}λ∈Λ separating points and
closed sets separates points as well.
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Preliminaries

The diagonal theorem
Let X be a topological space, {Yλ}λ∈Λ a family of topological spaces
and {fλ}λ∈Λ a family of continuous mappings, where fλ : X → Yλ. If
the family {fλ}λ∈Λ separates points and separates points and closed
sets, then the diagonal 4λ∈Λfλ : X →

∏
λ∈Λ Yλ is a homeomorphic

embedding.
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Section 2: Embeddings of mappings into projections of products

Theorem 2.1
Let g : X → Y be a continuous mapping, {fλ}λ∈Λ a family of contin-
uous mappings, where fλ : Xλ → Yλ, and {αλ}λ∈Λ, {βλ}λ∈Λ two fam-
ilies of continuous mappings, where αλ : X → Xλ and βλ : Y → Yλ,
such that fλ ◦ αλ = βλ ◦ g for each λ ∈ Λ. If the families {αλ}λ∈Λ

and {βλ}λ∈Λ separate points and separate points and closed sets,
then the pair (4λ∈Λαλ,4λ∈Λβλ) is an embedding of g into the product∏
λ∈Λ fλ :

∏
λ∈Λ Xλ →

∏
λ∈Λ Yλ.

∏
λ∈Λ Xλ

∏
λ∈Λ Yλ

Xλ Yλ

X Y

∏
λ∈Λ fλ

fλ

g

αλ

i=4λ∈Λαλ

βλ

j=4λ∈Λβλ
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Embeddings of mappings into projections of products

The first diagonal theorem for mappings
Let g : X → Y be a continuous mapping and {γλ}λ∈Λ, {βλ}λ∈Λ two
families of continuous mappings, where γλ : X → Xλ, βλ : Y → Yλ. If
the families {γλ}λ∈Λ and {βλ}λ∈Λ separates points and separates points
and closed sets, then the pair

(h ◦ 4λ∈Λ(γλ4(βλ ◦ g)),4λ∈Λβλ)

is an embedding of g into the second projection

pr2 :
∏
λ∈Λ Xλ ×

∏
λ∈Λ Yλ →

∏
λ∈Λ Yλ,

where h is the canonical homeomorphism from
∏
λ∈Λ(Xλ × Yλ) onto∏

λ∈Λ Xλ ×
∏
λ∈Λ Yλ.
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Embeddings of mappings into projections of products

∏
λ∈Λ(Xλ × Yλ)

∏
λ∈Λ Yλ

Xλ × Yλ Yλ

X Y

∏
λ∈Λ pλ

pλ

g

γλ4(βλ◦g)

4λ∈Λ(γλ4(βλ◦g))

βλ

4λ∈Λβλ
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Embeddings of mappings into projections of products

∏
λ∈Λ(Xλ × Yλ)
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λ∈Λ Yλ

Xλ × Yλ Yλ

X Y

∏
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g

αλ
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Embeddings of mappings into projections of products

∏
λ∈Λ Xλ ×

∏
λ∈Λ Yλ

∏
λ∈Λ(Xλ × Yλ)

∏
λ∈Λ Yλ

Xλ × Yλ Yλ

X Y

pr2h

∏
λ∈Λ pλ

pλ

g

γλ4(βλ◦g)

4λ∈Λ(γλ4(βλ◦g))

βλ

4λ∈Λβλ
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Embeddings of mappings into projections of products

The second diagonal theorem for mappings
Let g : X → Y be a continuous mapping and {γλ}λ∈Λ a family of con-
tinuous mappings, where γλ : X → Xλ. Let also e : Y → Z be a
homeomorphic embedding. If the family {γλ}λ∈Λ separates points and
separates points and closed sets, then the pair

(4λ∈Λγλ4(e ◦ g),e)

is an embedding of g into the second projection

pZ :
(∏

λ∈Λ Xλ
)
× Z → Z .
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Embeddings of mappings into projections of products

(∏
λ∈Λ Xλ

)
× Z Z

X Y

Xλ

pZ

g
γλ

i=4λ∈Λγλ4(e◦g) e
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Section 3: Universal mappings

In this section we apply the diagonal theorems for mappings in order
to construct universal mappings for various classes of continuous map-
pings.

Universal mapping
An element f of a class F of continuous mappings is said to be universal
in F if for every g ∈ F there exists an embedding of g into f .

We recall that a topological space T is said to be universal in a class
P of spaces if T ∈ P and for every X ∈ P there exists a homeomorphic
embedding of X into T . If T is universal in P, then the weights and the
cardinalities of all elements of P are restricted by the weight and the car-
dinality of T , respectively. Thus, we can suppose that the weights of all
spaces are less than or equal to a given infinite cardinal. Since for every
T0-space X we have |X | 6 2w(X), in order to restrict the cardinalities of
spaces it is convenient to consider that all spaces are T0-spaces.
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Universal mappings

Finite Product Condition
A class F of continuous mappings satisfies the Finite Product Condi-
tion if the conditions f1 ∈ F and f2 ∈ F imply that f1 × f2 ∈ F.

Proposition 3.1
Let f1 : X1 → Y1 and f2 : X2 → Y2 be two universal elements of a class F
of continuous mappings. Then the product f1× f2 : X1×X2 → Y1×Y2 is
universal in F too, provided that F satisfies the Finite Product Condition.

Corollary 3.1
Let f : X → Y be a universal element of a class F of continuous map-
pings. Then the product f × f : X 2 → Y 2 is universal in F, provided that
F satisfies the Finite Product Condition.
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Universal mappings

Proposition 3.2
Let T be universal in a class P of topological spaces. The identity map-
ping idT : T → T is universal in the class H(P,P) of all homeomor-
phisms h : X → Y from X ∈ P onto Y ∈ P.

T T

X Y

idT

h

i=j◦h j
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Universal mappings

Alexandroff cube
Let S be the Sierpiński space, i.e. the set {0,1} with the topology
{∅, {0}, {0,1}}. The space Sν , where ν > ℵ0 is called the Alexandroff
cube.

Proposition 3.3
Let ν be an infinite cardinal. The second projection f : Sν × Sν → Sν

is universal in the class Cν(T0,T0) of all continuous mappings from a
T0-space of weight ν into a T0-space of weight ν.

Proposition 3.4
Let ν be an infinite cardinal. The second projection f : Sν × Sν → Sν

is universal in the class C6ν(T0,T0) of all continuous mappings from a
T0-space of weight less than or equal to ν into a T0-space of weight less
than or equal to ν.
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Universal mappings

S × S S

S X Y

pλ

g

βλ◦g

γλ

γλ4(βλ◦g) βλ
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Universal mappings

S × S S

S X Y

(S × S)ν Sν

pλ

g

βλ◦g

γλ

γλ4(βλ◦g)

4λ∈Λ(γλ4(βλ◦g))

βλ

4λ∈Λβλ∏
λ∈Λ pλ

20 / 47



Universal mappings

S × S S

S X Y

(S × S)ν Sν

Sν × Sν

pλ

g

βλ◦g

γλ

γλ4(βλ◦g)

4λ∈Λ(γλ4(βλ◦g))

βλ

4λ∈Λβλ

h

∏
λ∈Λ pλ

f
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Universal mappings

Open mapping
We recall that a mapping f : X → Y is said to be open if for every open
subset U of X the set f (U) is open in Y .

Corollary 3.2
Let ν be an infinite cardinal. The second projection f : Sν × Sν → Sν is
universal in the following classes:

1 The class Cop
ν (T0,T0) of all open continuous mappings from a T0-

space of weight ν into a T0-space of weight ν.
2 The class Cop

6ν(T0,T0) of all open continuous mappings from a T0-
space of weight 6 ν into a T0-space of weight 6 ν.
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Universal mappings

Corollary 3.3
Let ν be an infinite cardinal and F be a superclass of the class of contin-
uous open mappings. Particularly, F can be one of the classes: (i) the
class of semi-open continuous mappings, (ii) the class of δ-open contin-
uous mappings, (iii) the class of almost open continuous mappings. The
second projection f : Sν ×Sν → Sν is universal in the following classes:

1 The class CF
ν(T0,T0) of all mappings belonging to F from a T0-

space of weight ν into a T0-space of weight ν.
2 The class CF

6ν(T0,T0) of all mappings belonging to F from a T0-
space of weight 6 ν into a T0-space of weight 6 ν.
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Universal mappings

Tychonoff cube
Let I be the interval [0,1] with the usual topology. The space Iν , where
ν > ℵ0 is called the Tychonoff cube. The Tychonoff cube Iℵ0 is called
the Hilbert cube.

Proposition 3.5
Let ν be an infinite cardinal. The second projection f : Iν × Iν → Iν is
universal in the class Cν(Tych,Tych) of all continuous mappings from a
Tychonoff space of weight ν into a Tychonoff space of weight ν.

Proposition 3.6
Let ν be an infinite cardinal. The second projection f : Iν × Iν → Iν is
universal in the class C6ν(Tych,Tych) of all continuous mappings from a
Tychonoff space of weight less than or equal to ν into a Tychonoff space
of weight less than or equal to ν.
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Universal mappings

Corollary 3.4
Let ν be an infinite cardinal and F be a superclass of the class of contin-
uous open mappings. The second projection f : Iν × Iν → Iν is universal
in the following classes:

1 The class CF
ν(Tych,Tych) of all mappings belonging to F from a Ty-

chonoff space of weight ν into a Tychonoff space of weight ν.
2 The class CF

6ν(Tych,Tych) of all mappings belonging to F from a
Tychonoff space of weight 6 ν into a Tychonoff space of weight
6 ν.
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Universal mappings

Corollary 3.5
Let ν be an infinite cardinal. The second projection f : Iν × Iν → Iν is
universal in the class Cν(Com,Com) of all continuous mappings from a
compact Hausdorff space of weight ν into a compact Hausdorff space
of weight ν.

Corollary 3.6

The second projection f : Iℵ0 × Iℵ0 → Iℵ0 is universal in the class
C(s.metr, s.metr) of all continuous mappings from a separable metrizable
space into a separable metrizable space.
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Universal mappings

Cantor cube
Let D = {0,1} with the discrete topology. The space Dν , where ν > ℵ0
is called the Cantor cube.

Proposition 3.7
Let ν be an infinite cardinal. The second projection f : Dν × Dν → Dν

is universal in the class Cν(ind = 0, ind = 0) of all continuous mappings
from a T0-space X of weight ν with ind(X ) = 0 into a T0-space Y of
weight ν with ind(Y ) = 0.

Proposition 3.8
Let ν be an infinite cardinal. The second projection f : Dν × Dν → Dν is
universal in the class C6ν(ind = 0, ind = 0) of all continuous mappings
from a T0-space X of weight 6 ν with ind(X ) = 0 into a T0-space Y of
weight 6 ν with ind(Y ) = 0.
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Universal mappings

Proposition 3.9
Let ν be an infinite cardinal and J(ν) the hedgehog space of weight ν.
The second projection f : J(ν)ℵ0 × J(ν)ℵ0 → J(ν)ℵ0 is universal in the
class Cν(metr,metr) of all continuous mappings from a metrizable space
of weight ν into a metrizable space of weight ν.

Corollary 3.7
Let ν be an infinite cardinal and J(ν) the hedgehog space of weight
ν. The second projection f : J(ν)ℵ0 × J(ν)ℵ0 → J(ν)ℵ0 is universal in
the class Cop

ν (metr,metr) (respectively, Csop
ν (metr,metr)) of all open (re-

spectively, semi-open) continuous mappings from a metrizable space of
weight ν into a metrizable space of weight ν.
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Universal mappings

For every integer n > 0 and every infinite cardinal ν let Nn(ν) be the
subspace of the product J(ν)ℵ0 consisting of points with at most n ratio-
nal coordinates distinct from the point 0. It is well known that Nn(ν) is a
universal space for the class of all metrizable spaces X with dim(X ) 6 n
and w(X ) 6 ν.

Proposition 3.10
Let ν be an infinite cardinal. The second projection

f : J(ν)ℵ0 × Nn(ν)→ Nn(ν)

is universal in the class of all continuous mappings from a metrizable
space of weight ν into a metrizable space Y of weight ν with dim(Y ) 6 n.
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Universal mappings

In a similar manner we can combine the results obtained above. For
example, we obtain the following proposition.

Proposition 3.11
Let ν be an infinite cardinal. The second projection f : Sν × Iν → Iν

is universal in the class Cν(T0,Tych) of all continuous mappings from a
T0-space of weight ν into a Tychonoff space of weight ν.
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Section 4: Universality and mappings with the same range

Y -embedding of a mapping to another mapping
Let g : X1 → Y and f : X2 → Y be two continuous mappings of topo-
logical spaces. A homeomorphic embedding i of X1 into X2 such that
f ◦ i = g, i.e. the following diagram is commutative, is said to be an
Y -embedding of g into f .

X2

X1 Y

f

g

i
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Universality and mappings with the same range

Universal element for a class of mappings with the same range
An element f of a class FY of continuous mappings with the same range
Y is said to be universal in FY if for every g ∈ FY there exists an Y -
embedding of g into f .

Theorem 4.1
Let g : X → Y be a continuous mapping and {γλ}λ∈Λ a family of con-
tinuous mappings, where γλ : X → Xλ. If the family {γλ}λ∈Λ sep-
arates points and separates points and closed sets, then the map-
ping 4λ∈Λγλ4g is an Y -embedding of g into the second projection
pY :

(∏
λ∈Λ Xλ

)
× Y → Y .
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Universality and mappings with the same range

Proposition 4.1
Let ν be an infinite cardinal and FY be any of the following classes of
continuous mappings:

1 The class of all continuous (open, semi-open, δ-open, almost open)
mappings from a T0-space of weight ν into Y .

2 The class of all continuous (open, semi-open, δ-open, almost open)
mappings from a Tychonoff space of weight ν into Y .

3 The class of all continuous (open, semi-open, δ-open, almost open)
mappings from a compact Hausdorff space of weight ν into Y .

4 The class of all continuous (open, semi-open, δ-open, almost open)
mappings from a T0-space X of weight ν with ind(X ) = 0 into Y .

5 The class of all continuous (open, semi-open, δ-open, almost open)
mappings from a metrizable space of weight ν into Y .

Then in the class FY there exist universal elements.
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Universality and mappings with the same range

We will now present another approach to the universality problem based
on function spaces with the topology of pointwise convergence.

Let F be a subset of the set C(X ,Z ) of all continuous mappings from a
space X to a space Z . We say that F separates points if for every pair
of distinct points x1, x2 ∈ X there exists ϕ ∈ F such that ϕ(x1) 6= ϕ(x2).
We say also that F separates points and closed sets if for every point
x ∈ X and every closed subset F of X with x /∈ F there exists ϕ ∈ F
such that ϕ(x) /∈ ClZ (ϕ(F )).
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Universality and mappings with the same range

The topology of pointwise convergence on C(X ,Z ) is the topology
generated by the subbasis

{(x ,V ) : x ∈ X and V is open in Z},

where (x ,V ) = {ϕ ∈ C(X ,Z ) : ϕ(x) ∈ V}. The topology of pointwise
convergence on C(X ,Z ) coincides with the topology of a subspace of
the product

∏
x∈X Zx , where Zx = Z for every x ∈ X .

Let Cτ (X ,Z ) be the space of all continuous mappings from a space X
to a space Z equipped with a topology τ which is finer than the topology
of pointwise convergence on C(X ,Z ). Let also F be a subspace of
Cτ (X ,Z ) and Cp(F ,Z ) be the space of all continuous mappings from F
to Z with the topology of pointwise convergence.

We denote by µ : X → Cp(F ,Z ) the mapping, where µ(x) : F → Z
is given by µ(x)(ϕ) = ϕ(x). Let us note that µ(x) : F → Z is contin-
uous for every x ∈ X because τ is finer than the topology of pointwise
convergence.
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Universality and mappings with the same range

Theorem 4.2
Let g : X → Y be a continuous mapping. If F separates points and
separates points and closed sets, then the diagonal

µ4g : X → Cp(F ,Z )× Y

is an Y -embedding of g into pY , where pY is the second projection from
Cp(F ,Z )× Y onto Y .

Cp(F ,Z )× Y

Cp(F ,Z ) X Y

pY

gµ

µ4g
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Universality and mappings with the same range

If τ is the discrete topology, then C(F ,Z ) = ZF and the topology of
pointwise convergence on C(F ,Z ) coincides with the product topology.

Corollary 4.1
Let g : X → Y be a continuous mapping. If F separates points and
separates points and closed sets, then the diagonal µ4g : X → ZF ×Y
is an Y -embedding of g into pY , where pY is the second projection from
ZF × Y onto Y .

Corollary 4.2
Let ν be an infinite cardinal and Y be a T0-space of weight 6 ν. The
projection mapping f : Sν ×Y → Y is universal in the class Cν(T0,Y ) of
all continuous (open) mappings from a T0-space of weight ν into Y .
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Universality and mappings with the same range

Partial topological product P(Y ,Z ,O)

Let Y and Z be two topological spaces and let O be an open subset
of Y . We consider the set P = (Y \ O) ∪ (O × Z ) and the mapping
p : P → Y defined by

p(t) =

{
t , if t ∈ Y \O
y , if t = (y , z) ∈ O × Z .

Let τ(Y ) and τ(O × Z ) be the topologies of Y and O × Z , respectively.
The partial topological product P(Y ,Z ,O) of the base Y by the fiber
Z relative to the open set O is the set P endowed with the topology
generated by the basis B(Y ,Z ,O) = p−1(τ(Y ))∪τ(O×Z ), i.e. the basic
open sets in P are the preimages of open sets of Y by the mapping p
and the open subsets of O × Z . The mapping p : P → Y is called
the projection of P = P(Y ,Z ,O) and it is a continuous, onto, open
mapping.
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Universality and mappings with the same range

Partial topological product XΛ

let Y be a topological space, {Zλ}λ∈Λ be a family of spaces and {Oλ}λ∈Λ

be a family of open subsets of Y . For every λ ∈ Λ, let Pλ = P(Y ,Zλ,Oλ)
be the partial topological product of the base Y by the fiber Zλ relative
to the open set Oλ and pλ : Pλ → Y be its projection. The partial
topological product XΛ of the base Y with the fibers Zλ relative to
the family of open sets Oλ is the subspace{

{xλ}λ∈Λ ∈
∏
λ∈Λ Pλ : pλ′(xλ′) = pλ′′(xλ′′) for every λ′, λ′′ ∈ Λ

}
of the product

∏
λ∈Λ Pλ.

For every λ ∈ Λ, the restriction πλ = prλ|XΛ
: XΛ → Pλ of the λ-th

canonical projection prλ is called the λ-th projection of XΛ onto Pλ

and is continuous, while the continuous mapping π : XΛ → Y defined by
π = pλ ◦ πλ for any λ ∈ Λ is called the projection of XΛ onto Y .
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Universality and mappings with the same range

Diagonal of two mappings relative to an open set
Let X , Y , Z be topological spaces, O be an open subset of Y and let
α : X → Z and g : X → Y be two continuous mappings. The mapping
4(g, α; O) : X → P(Y ,Z ,O) defined by

4(g, α; O)(x) =

{
(g(x), α(x)), if x ∈ g−1(O)

g(x), if x /∈ g−1(O)

is called the diagonal of g and α relative to the open set O.
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Universality and mappings with the same range

Let Y be a topological space, {Zλ}λ∈Λ be a family of spaces and
{Oλ}λ∈Λ be a family of open subsets of Y . Let also g : X → Y be a
continuous mapping and {αλ}λ∈Λ be a family of continuous mappings,
where αλ : X → Zλ.

We say the family {αλ}λ∈Λ separates the points of g relative to
{Oλ}λ∈Λ if for every pair of distinct points x , x ′ ∈ X with g(x) = g(x ′)
there exists λ ∈ Λ such that x , x ′ ∈ g−1(Oλ) and αλ(x) 6= αλ(x ′).

We say also that the family {αλ}λ∈Λ separates the points and closed
sets of g relative to {Oλ}λ∈Λ if for every point x ∈ X and every closed
subset F of X with x /∈ F there exists λ ∈ Λ such that x ∈ g−1(Oλ) and
αλ(x) /∈ ClZλ

(αλ(F )).
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Universality and mappings with the same range

Theorem 4.3
Let Y be a topological space, {Zλ}λ∈Λ be a family of spaces and
{Oλ}λ∈Λ be a family of open subsets of Y . Let also g : X → Y
be a continuous mapping of topological spaces and {αλ}λ∈Λ be a
family of continuous mappings, where αλ : X → Zλ. If the family
{αλ}λ∈Λ separates the points of g relative to {Oλ}λ∈Λ and separates
the points and closed sets of g relative to {Oλ}λ∈Λ, then the mapping
4λ∈Λ4(g, αλ; Oλ) : X → XΛ is an Y -embedding of g into π.

XΛ Pλ

Zλ X Y

π

πλ

pλ

gαλ

4λ∈Λ4(g,αλ;Oλ)
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Universality and mappings with the same range

T0-mapping
A mapping f : X → Y is said to be T0 if for every two distinct points
x , x ′ ∈ X such that f (x) = f (x ′) there exists an open set U in X such
that x ∈ U and x ′ /∈ U or x ′ ∈ U and x /∈ U.

Proposition 4.2
Let Y be a T0-space of weight ν, where ν is an infinite cardinal and
{Oλ}λ∈Λ be a family of open subsets of Y such that

⋃
λ∈Λ Oλ = Y . The

projection π : XM → Y is universal in the class CT0
ν (Y ) of all continuous

T0-mappings from a space of weight ν into Y , where M is a suitable set
such that |M| = ν and Zµ = S for every µ ∈ M.
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