Products of uniform realcompactifications

Ana S. Meroño

Departamento de Matemática Aplicada a la Ingeniería Industrial Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid

> A joint work with Prof. M. Isabel Garrido Departamento de Álgebra, Geometría y Topología Facultad de CC. Matemáticas Universidad Complutense de Madrid

SUMTOPO, Coimbra, July 2024

・ロト ・四ト ・ヨト ・ヨト

- Uniform realcompactifications
- 2 The problem
- Sufficient conditions
- Output State Action Action
- Open problems

Uniform realcompactifications: the Samuel compactification

Let (X, μ) be a uniform space (Hausdorff).

The **Samuel compactification** of (X, μ) , that we denoted by $s_{\mu}X$, is the completion of $(X, f\mu)$ where $f\mu$ denotes the uniformity on X induced by all the finite covers from μ .

• The finite modification $f\mu$ coincides with the weak uniformity $wU^*_{\mu}(X)$ on X induced by all the real-valued bounded uniformly continuous functions $f \in U^*_{\mu}(X)$.

 $s_{\mu}X \neq \beta X$ **Example.** Let $(0,1) \subset \mathbb{R}$, endowed with the usual euclidean metric/uniformity, then $s_{\mu}(0,1) = [0,1]$ and $\beta(0,1) = \beta \mathbb{R}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A topological space X is **realcompact** if it is homeomorphic to a closed subspace of a topological product of real lines $\mathbb{R}^{\mathcal{I}}$.

A **realcompactification** of a topological space X is a realcompact space Y in which X is densely embedded.

By **uniform realcompactification** of (X, μ) we mean a realcompactification Y of X which is a topological subspace of $s_{\mu}X$, that is,

$$X \subset Y \subset s_{\mu}X.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣

Uniform realcompactifications

Let $\mathcal{L}(X) \subset C(X)$ a family of real-valued continuous functions, such that $\mathcal{L}(X)$ separates points form closed sets of the space X.

A subbase of the weak uniformity induced by $\mathcal{L}(X)$ is the family of covers

$$\{V_{f,\varepsilon}(x): x \in X\}, f \in \mathcal{L}, \varepsilon > 0$$

where

$$V_{f,\varepsilon}(x) = \{y \in X : |f(x) - f(y)| < \varepsilon\}.$$

- The Lipschitz realcompactification $H(Lip_d(X))$ of a metric space (X, d) is the completion of $(X, wLip_d(X))$.
- The **Samuel realcompactification** $H(U_{\mu}(X))$ of (X, μ) is the completion of $(X, wU_{\mu}(X))$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Uniform realcompactifications

• The G_{δ} - realcompactification K(X) of (X, μ) is the G_{δ} -closure of X in $s_{\mu}X$ or, equivalently, the completion of $(X, w\mathcal{L}(X))$ where

$$\mathcal{L}(X) = \left\{ rac{f}{g} : f,g \in U^*_\mu(X), \, g(x)
eq 0 \, orall x \in X
ight\}.$$

• The countable-modification realcompactification $e_{\mu}X$ of (X, μ) is the completion (X, e_{μ}) where e_{μ} is the uniformity on X induced by all the countable covers from μ or, equivalently, the completion of $(X, w\mathcal{L}(X))$ where

$$\mathcal{L}(X) = \left\{rac{f}{g}: f,g\in U^*_\mu(X),\, g^*(\xi)
eq 0\,orall \xi\in e_\mu X
ight\}$$

and $g^*: s_\mu X \to \mathbb{R}$ denotes the unique continuous extension of $g \in U^*_\mu(X)$ to $s_\mu X$.

For uniform spaces (X, μ)

$$X\subset K(X)\subset e_\mu X\subset H(U_\mu(X))\subset s_\mu X.$$
 For metric spaces (X,d)

$$X \subset vX = K(X) \subset e_dX \subset H(U_d(X)) \subset H(Lip_d(X)) \subset s_dX$$

where vX denotes the well-known **Hewitt realcompactification**.

All these realcompactifications are in general different.

イロト 不得 トイラト イラト 一日

Let (X, μ) and (Y, ν) be uniform spaces and $(X \times Y, \mu \times \nu)$ is the uniform product of both spaces.

Let $H(\mathcal{L}(X))$ denote any of the above considered uniform realcompactifications, as the completion of $(X, w\mathcal{L}(X))$, we ask when

 $H(\mathcal{L}(X \times Y)) = H(\mathcal{L}(X)) \times H(\mathcal{L}(Y)),$

that is, there is an homeomorphism

$$\varphi: H(\mathcal{L}(X \times Y)) \to H(\mathcal{L}(X)) \times H(\mathcal{L}(Y))$$

leaving $X \times Y$ pointwise fixed.

イロト 不得 トイラト イラト 一日

The problem: topological precedent

• Stone-Čech compactification

(Gliskberg 1959) $\beta(X \times Y) = \beta X \times \beta Y$ if and only if $X \times Y$ is pseudocompact or X is finite or Y is finite.

• Hewitt realcompactification

(Hušek 1971) Let Y be a discrete space, then $v(X \times Y) = vX \times vY$ if and only if the cardinal X or Y is nonmeasurable.

(Ohta 1981) Let X and Y be metrizable space, then $v(X \times Y) = vX \times vY$ if and only if the cardinal X or Y is nonmeasurable.

(Hušek 1971) Let X and Y be spaces of measurable cardinal. If $v(X \times Y) = vX \times vY$ then every discrete open cover of $X \times Y$ has nonmeasurable cardinal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

(Čech 1966, Woods 1995) Let (X, μ) and (Y, ν) be uniform spaces. Then $s_{\mu \times \nu}(X \times Y) = s_{\mu}X \times s_{\nu}Y$ if and only if (X, μ) or (Y, ν) is totally bounded (precompact).

• Let X be topological space and u be the fine uniformity on X, then $s_u X = \beta X$.

• (Nobel 1969) In general, the product of the fine uniformities is not fine.

- 4 回 ト - 4 回 ト

$H(\mathcal{L}(X \times Y)) \geq H(\mathcal{L}(X)) \times H(\mathcal{L}(Y))$

The identity map

$$\mathit{id}:(X \times Y, \mathit{wL}(X \times Y))
ightarrow (X, \mathit{wL}(X)) imes (Y, \mathit{wL}(Y)))$$

is uniformly continuous, hence can be extended to the completions

$$\widetilde{\mathit{id}}: \mathit{H}(\mathcal{L}(X \times Y))
ightarrow \mathit{H}(\mathcal{L}(X)) imes \mathit{H}(\mathcal{L}(Y)).$$

 $H(\mathcal{L}(X \times Y)) \leq H(\mathcal{L}(X)) \times H(\mathcal{L}(Y))????$

Every function $f \in \mathcal{L}(X \times Y)$ can be continuously extended to $H(\mathcal{L}(X)) \times H(\mathcal{L}(Y))$??

イロト 不得 トイラト イラト 一日

Theorem

Let $f \in \mathcal{L}(X \times Y)$, then it can be continuously extended to $X \times H(\mathcal{L}(Y))$.

$$\forall x \in X, f_x : Y \to \mathbb{R}, \qquad f_x(y) = f(x, y), f_x \in \mathcal{L}(Y)$$

 $f_{x}^{*}: H(\mathcal{L}(Y)) \to \mathbb{R}$

$$\widetilde{f}: X \times H(\mathcal{L}(Y)) \to \mathbb{R}, \qquad \widetilde{f}(x,\xi) = f_x^*(\xi)$$

If $X = H(\mathcal{L}(X))$, then $H(\mathcal{L}(X \times Y)) = H(\mathcal{L}(X)) \times H(\mathcal{L}(Y))$.

A weaker requirement is possible.

- 4 回 ト 4 三 ト 4 三 ト

Let $(\widetilde{X}, \widetilde{\mu})$ denote the completion of a uniform space (X, μ) and let γX denote the **weak completion**, that is, the G_{δ} -closure of X in its completion \widetilde{X} .

• If $H(\mathcal{L}(X)) \neq K(X)$ then $H(\mathcal{L}(\widetilde{X})) = H(\mathcal{L}(X))$.

Theorem

If $\widetilde{X} = H(\mathcal{L}(X))$, then $H(\mathcal{L}(X \times Y)) = H(\mathcal{L}(X)) \times H(\mathcal{L}(Y))$.

• $K(X) = K(\gamma X)$

Theorem

If
$$\gamma X = K(X)$$
, then $K(X \times Y) = K(X) \times K(Y)$.

Theorem

Let $f \in U^*_{\mu \times \nu}(X \times Y)$, then it can be continuously extended to $X \times s_{\nu}Y$.

Theorem

(Comfort-Hager 1971) Let X ad Y be topological spaces. TFAE:

• The projection π_X from $X \times Y$ onto X carries zero-sets onto closed sets.

② Each function in f ∈ C*(X × Y) can be extended continuously over X × βY.

- 4 回 ト - 4 回 ト

Necessary conditions: Lipschitz realcompactification

Theorem

(Garrido-Meroño 2023) Let (X, d), (Y, ρ) be metric spaces. TFAE:

- $H(Lip_{d+\rho}(X \times Y)) = H(Lip_d(X)) \times H(Lip_{\rho}(X));$
- $\widetilde{X} = H(Lip_d(X)) \text{ or } \widetilde{Y} = H(Lip_{\rho}(Y));$
- S X or Y satisfy that every bounded subset by the metric is totally bounded.
- $H(Lip_d(X))$ is σ -compact, $H(Lip_d(X)) = \bigcup_{n \in \mathbb{N}} cl_{s_dX} B_d(x, 1/n)$ $B_d(x, 1/n)$ open ball of centre $x \in X$ and radius $1/n, n \in \mathbb{N}$

Theorem

If X and Y are Banach spaces then $H(Lip_{d+\rho}(X \times Y)) = H(Lip_d(X)) \times H(Lip_{\rho}(X))$ if and only if one of them is finite-dimensional.

イロト イヨト イヨト イヨト

Necessary conditions: G_{δ} -realcompactification

Theorem

Let (X, μ) , (Y, ν) be uniform spaces. TFAE:

$$2 \gamma X = K(X) or \gamma Y = K(Y);$$

S X or Y has no uniformly discrete subspace of measurable cardinal.

• The G_{δ} -closure is preserve by products and subspaces.

Theorem

(Ohta 1981) If (X, d) and (Y, ρ) are metric spaces, TFAE:

 $v(X \times Y) = K(X \times Y) = K(X) \times K(Y) = vX \times vY;$

X or Y has no uniformly discrete subspace of measurable cardinal
the cardinal of X or Y is nonmeasurable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Necessary conditions: Samuel realcompactification

X or Y has no uniformly discrete subspace of measurable cardinal.

Theorem

If $H(U_{\mu \times \nu}(X \times Y)) = H(U_{\mu}(X)) \times H(U_{\nu}(Y))$ then X or Y satisfy that every Bourbaki-bounded subset is totally Bounded.

Definition

A subset B of a uniform space (X, μ) is **Bourbaki-bounded** in X if f(B) is a bounded subset for every $f \in U_{\mu}(X)$.

Necessary conditions: Samuel realcompactification

Theorem

If (D, ν) is a uniformly discrete space of measurable cardinal and (X, μ) is any uniform space of having nonmeasurable cardinal then $H(U_{\mu \times \nu}(X \times D)) = H(U_{\mu}(X)) \times H(U_{\nu}(D)).$

Since D has measurable cardinal then $D \neq vD = H(U_v(D))$ (trivially every Bourbaki-bounded subset is totally bounded).

Take (X, μ) complete, such that $X \neq H(U_{\mu}(X))$, for instance any infinite dimensional Banach space (X having measurable cardinal).

$$H(U_{\mu imes
u}(X imes Y)) = H(U_{\mu}(X)) imes H(U_{
u}(Y))$$
 $\$
 $\widetilde{X} = H(U_{\mu}(X)) ext{ or } \widetilde{Y} = H(U_{
u}(Y))$

Necessary conditions: countable-modification realc.

$$e_{\mu imes
u}(X imes Y)) = e_{\mu}X imes e_{
u}Y$$
 \Downarrow
 $K(X imes Y) = K(X) imes K(Y)$
 \Uparrow

X or Y has no uniformly discrete subspace of measurable cardinal.

イロト イヨト イヨト イヨト

Necessary conditions: countable-modification realc.

Theorem

If (D, ν) is a uniformly discrete space of measurable cardinal and (X, μ) is any uniform space having nonmeasurable cardinal then $e_{\mu \times \nu}(X \times D) = e_{\mu}X \times e_{\nu}D.$

Since D has measurable cardinal then $D \neq vD = e_{\nu}D$.

Take (X, μ) complete, such that $X \neq e_{\nu}D$, for instance the Banach space $(\ell_{\infty}(\omega_1), || \cdot ||_{\infty})$ (X has measurable cardinal).

 $H(U_{\mu \times \nu}(X \times Y)) = H(U_{\mu}(X)) \times H(U_{\nu}(Y))$ $\Downarrow FALSE????$ $e_{\mu \times \nu}(X \times Y)) = e_{\mu}X \times e_{\nu}Y$ $\Downarrow \uparrow FALSE????$ $K(X \times Y) = K(X) \times K(Y)$

イロト 不得 トイヨト イヨト 二日

 (D, ν) uniformly discrete space of measurable cardinal (D^{ω_0}, π) , π product uniformity

To find (X, μ) a uniform space of nonmeasurable cardinal such that:

 $H(U_{\mu imes\pi}(X imes D^{\omega_0})
eq H(U_{\mu}(X)) imes H(U_{\pi}(D^{\omega_0}))$

or

 $e_{\mu imes\pi}(X imes D^{\omega_0})
eq e_{\mu}X imes e_{\pi}D^{\omega_0}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you very much!