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Linear dynamics

Given a TVS (topological vector space) X and an operator (i.e. a
continuous linear map) T : X → X study the properties of the
sequence (T n)n∈N of iterates of T , where

T n = T ◦ . . . ◦ T︸ ︷︷ ︸
n−times

.
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Linear dynamics
Hypercyclic operators

An operator T : X → X is called hypercyclic if there exists a vector
x ∈ X such that the set (called the orbit of x under T )

{T nx : n ∈ N}

is dense in X .

The operators:

(Rolewicz) 2B : ℓ2 → ℓ2, (x1, x2, x3, . . .) 7→ (2x2, 2x3, 2x4, . . .)

(Maclane) T : H(C) → H(C), f (·) 7→ f (·+ 1)

(Birkhoff) T : H(C) → H(C), f 7→ f ′

are hypercyclic.
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Linear dynamics
How to show that an operator is hypercyclic?

We can construct a hypercyclic vector.

In some cases we can use Birkhoff Transitivity Theorem.

An operator T : X → X is topologically transitive if for any
non-empty and open subsets U,V in X there is n ∈ N with
T n(U) ∩ V ̸= ∅.

Birkhoff Transitivity Theorem

Let T be an operator on a separable Fréchet space X . TFAE:

1 T is hypercyclic.

2 T is topologically transitive.

A Fréchet space is a complete TVS which topology can be
generated by a countable family of seminorms.
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Notions from linear dynamics

An operator T : X → X is called:

hypercyclic if there exists a vector x ∈ X such that the set
{T nx : n ∈ N} is dense in X .

topologically transitive if for any non-empty and open subsets
U,V in X there is n ∈ N with T n(U) ∩ V ̸= ∅.
mixing if for any non-empty and open subsets U,V in X there
is N ∈ N with T n(U) ∩ V ̸= ∅ for every n ≥ N.

In general:

mixing ⇒ topologically transitive

and

hypercyclic ⇒ topologically transitive
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Compositions operators

X : a TVS consisting of functions on R
ψ : R → R

Composition operator

Cψ : X → X , f 7→ f ◦ ψ

Two questions

1 When this operator is well-defined?

2 What are the dynamical properties of this operator?
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The space of smooth functions

C∞(R) = {f : R → R smooth}

This is a Fréchet space, a sequence (pn)n∈N of seminorms is given
by

pn(f ) = max
x∈[−n,n]

max
0≤i≤n

∣∣∣f (i)(x)∣∣∣
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The translation is hypercyclic

Theorem

Let ψ(x) = x + 1. The operator Cψ : C∞(R) → C∞(R) is
hypercyclic.

Proof: Let (qn)n∈N be a sequence of all polynomials with rational
coefficients, every polynomial is in the sequence infinitely many
times.

x

y

-1 1

q1(x)

2 6

q2(x − 4)

7 13

q3(x − 10)

Then

f = q1 on [−1, 1]

C 4
ψ(f ) = q2 on [−2, 2]

C 10
ψ (f ) = q3 on [−3, 3]

C an
ψ (f ) = qn on [−n, n]
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The space of smooth functions

Theorem

For a smooth function ψ : R → R TFAE:

1 For all x ∈ R we have that ψ(x) ̸= x and ψ′(x) ̸= 0.

2 The operator Cψ : C∞(R) → C∞(R) is hypercyclic.
3 The operator Cψ : C∞(R) → C∞(R) is mixing.

Adam Przestacki Dynamics on OM (R)



The Schwartz space of rapidly decreasing smooth functions

S(R) = {f ∈ C∞(R) : lim
|x |→∞

f (j)(x)xn = 0 for all n, j ≥ 0}

This is a Fréchet space, the topology is generated by the sequence
of seminorms:

pN(f ) := max
0≤j≤N

sup
x∈R

(
1 + x2

)n ∣∣∣f (i)(x)∣∣∣
Galbis, Jordá: a descritpion of well-defined compostion operators

Let f ∈ S(R). There is M with |f (x)| ≤ M for x ∈ R.
For all n and all x ∈ R we have

|Cn
ψ(f )(x)| ≤ M.

There are no hypercyclic composition operators acting on S(R)
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The space of slowly increasing smooth functions

Joint work with Thomas Kalmes (Chemnitz, Germany)

OM(R) = {f ∈ C∞(R) : f · v ∈ S(R) for every v ∈ S(R)}

OM(R) = ∩∞
m=1 ∪∞

n=1 Om
n (R),

where

Om
n (R) :=

{
f ∈ Cm(R) : |f |m,n := sup

x∈R,0≤j≤m
(1 + |x |2)−n|f (j)(x)| <∞

}
The space OM(R) with its natural locally convex topology is:

complete; non-metrizable.

A fundamental system of seminorms:

pm,v (f ) = sup
x∈R

max
0≤j≤m

|v(x)f (j)(x)|, f ∈ OM(R),m ≥ 0, v ∈ S(R).
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Composition operators on OM(R)

Theorem (Albanese, Jordá, Mele)

TFAE:

1 We have: ψ ∈ OM(R)
2 The operator Cψ : OM(R) → OM(R) is well-defined and continuous.

Albanese, Jordá, Mele:

Dynamical properties of Cψ: power boundedness, mean ergodicity

For ψ(x) = x + 1 the operator Cψ is mixing.

Problems

1 Characterize mixing.

2 Does mixing imply hypercyclicity?
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First observation

The space OM(R) embeds in a continuous and dense way into
C∞(R), so if Cψ is hypercyclic (mixing) on OM(R), then it is
hypercyclic (mixing) on C∞(R). In particular:

ψ(x) ̸= x for x ∈ R;
ψ′(x) ̸= 0 for x ∈ R.

For ψ : R → R:
ψ0(x) = x ;

for n ∈ N: ψn = ψ ◦ . . . ◦ ψ︸ ︷︷ ︸
n−times

;

if ψ is bijective, then for n ∈ N the function ψ−n is the inverse
of ψn.
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Hypercyclicity

Theorem

Let ψ ∈ OM(R) be bijective. If

1 ψ(x) ̸= x for x ∈ R,
2 ψ′(x) ̸= 0 for x ∈ R,
3 {(ψn)

′ : n ∈ Z} is bounded in OM(R),

then Cψ : OM(R) → OM(R) is hypercyclic.

Corollary

For ψ(x) = x + 1 the operator Cψ : OM(R) → OM(R) is hypercyclic.
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Mixing

Theorem

Let ψ ∈ OM(R) be bijective, without fixed points and with a
non-vanishing derivative. TFAE:

1 The operator Cψ : OM(R) → OM(R) is mixing.

2 There are a, b ∈ R such that for every k ∈ N and v ∈ S(R) we have

lim
n→∞

sup
x∈ψ−n([min{a,ψ(a)},max{a,ψ(a)}])

∣∣∣v(x)(ψn)
(k)(x)

∣∣∣ = 0

and

lim
n→∞

sup
x∈ψn([min{b,ψ(b)},max{b,ψ(b)}])

∣∣∣v(x)(ψ−n)
(k)(x)

∣∣∣ = 0.

Can we calculate this?
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Examples

Let ψ̃ : [0, 1] → R be a smooth function such that: ψ̃(x) = 3x + 1 for

x ∈ [0, 1/7], ψ̃(x) = 3x − 1 for x ∈ [6/7, 1], ψ̃′(x) > 0 for x ∈ [0, 1].
The function ψ : R → R defined by the formula

ψ(x) = ψ̃(x − n) + n if x ∈ [n, n + 1], n ∈ Z,

belongs to OM(R), has no fixed points and a non-vanishing derivative.

Cψ is not mixing on OM(R).

Cψ is not topologically transitive on OM(R). Hence is not
hypercyclic.

Cψ is mixing on C∞(R).
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Abel’s equation

Given: ψ : R → R
find: H : R → R with

H(ψ(x)) = H(x) + 1.

Abel’s equation is an important tool in:

finding eigenvalues and spectra of composition operators

iteration semigrups theory
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Abel’s equation and mixing

Let ψ ∈ OM(R).

If there exists H ∈ OM(R) such that H ′(x) ̸= 0
and

H(ψ(x)) = H(x) + 1.

then the diagram

OM(R) OM(R)

OM(R) OM(R)

Cx+1

CH CH

Cψ

commutes and CH has dense range (H is necessarily bijective).

Hence Cψ is mixing and hypercyclic.
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Abel’s equation and mixing

Theorem

Let ψ ∈ OM(R) be bijective. TFAE:

1 There exists H ∈ OM(R) with a non-vanishing derivative and which
satisfies the equation H(ψ(x)) = H(x) + 1.

2 The operator Cψ : OM(R) → OM(R) is mixing and

for v ∈ S(R) : lim
n→∞

v(ψn(0)) · n = 0 and lim
n→∞

v(ψ−n(0)) · n = 0.

Does the mixing property imply the red condition? If yes, then every
mixing composition is hypercyclic.
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1 There exists H ∈ OM(R) with a non-vanishing derivative and which
satisfies the equation H(ψ(x)) = H(x) + 1.

2 The operator Cψ : OM(R) → OM(R) is mixing and

for v ∈ S(R) : lim
n→∞

v(ψn(0)) · n = 0 and lim
n→∞

v(ψ−n(0)) · n = 0.

Does the mixing property imply the red condition? If yes, then every
mixing composition is hypercyclic.
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Thanks for your attention!
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