Hypercyclic and mixing composition operators on $\mathcal{O}_M(\mathbb{R})$

Adam Przestacki Adam Mickiewicz University, Poznań

38th SUMMER CONFERENCE ON TOPOLOGY AND ITS APPLICATIONS

æ

- **▲ 日 →** ▲ E

Given a TVS (topological vector space) X and an operator (i.e. a continuous linear map) $T : X \to X$ study the properties of the sequence $(T^n)_{n \in \mathbb{N}}$ of iterates of T, where

$$T^n = \underbrace{T \circ \ldots \circ T}_{n-times}.$$

Hypercyclic operators

æ

< □ > <

 $\{T^n x: n \in \mathbb{N}\}$

is dense in X.

 $\{T^n x: n \in \mathbb{N}\}$

is dense in X.

The operators:

 $\{T^n x : n \in \mathbb{N}\}$

is dense in X.

The operators:

• (*Rolewicz*) $2B : \ell_2 \to \ell_2$, $(x_1, x_2, x_3, \ldots) \mapsto (2x_2, 2x_3, 2x_4, \ldots)$

 $\{T^n x : n \in \mathbb{N}\}$

is dense in X.

The operators:

- (*Rolewicz*) $2B : \ell_2 \to \ell_2$, $(x_1, x_2, x_3, \ldots) \mapsto (2x_2, 2x_3, 2x_4, \ldots)$
- (Maclane) $T: H(\mathbb{C}) \to H(\mathbb{C}), f(\cdot) \mapsto f(\cdot+1)$

 $\{T^n x : n \in \mathbb{N}\}$

is dense in X.

The operators:

- (*Rolewicz*) $2B : \ell_2 \to \ell_2$, $(x_1, x_2, x_3, \ldots) \mapsto (2x_2, 2x_3, 2x_4, \ldots)$
- (Maclane) $T: H(\mathbb{C}) \to H(\mathbb{C}), f(\cdot) \mapsto f(\cdot+1)$
- (Birkhoff) $T: H(\mathbb{C}) \to H(\mathbb{C}), f \mapsto f'$

 $\{T^n x : n \in \mathbb{N}\}$

is dense in X.

The operators:

- (*Rolewicz*) $2B : \ell_2 \to \ell_2$, $(x_1, x_2, x_3, \ldots) \mapsto (2x_2, 2x_3, 2x_4, \ldots)$
- (Maclane) $T : H(\mathbb{C}) \to H(\mathbb{C}), f(\cdot) \mapsto f(\cdot+1)$
- (Birkhoff) $T: H(\mathbb{C}) \to H(\mathbb{C}), f \mapsto f'$

are hypercyclic.

How to show that an operator is hypercyclic?

How to show that an operator is hypercyclic?

How to show that an operator is hypercyclic?

• We can construct a hypercyclic vector.

How to show that an operator is hypercyclic?

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

How to show that an operator is hypercyclic?

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

An operator $T: X \to X$ is topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

An operator $T: X \to X$ is topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

Birkhoff Transitivity Theorem

Let T be an operator on a separable Fréchet space X. TFAE:

- T is hypercyclic.
- T is topologically transitive.

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

An operator $T: X \to X$ is topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

Birkhoff Transitivity Theorem

Let T be an operator on a separable Fréchet space X. TFAE:

- T is hypercyclic.
- T is topologically transitive.

A Fréchet space is a complete TVS which topology can be generated by a countable family of seminorms.

Notions from linear dynamics

An operator $T: X \rightarrow X$ is called:

Adam Przestacki Dynamics on $\mathcal{O}_M(\mathbb{R})$

A ≥ ▶

Notions from linear dynamics

An operator $T: X \to X$ is called:

• hypercyclic if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X.

Notions from linear dynamics

An operator $T: X \to X$ is called:

- hypercyclic if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X.
- topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

An operator $T: X \to X$ is called:

- hypercyclic if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X.
- topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.
- mixing if for any non-empty and open subsets U, V in X there is N ∈ N with Tⁿ(U) ∩ V ≠ Ø for every n ≥ N.

An operator $T: X \to X$ is called:

- hypercyclic if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X.
- topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.
- mixing if for any non-empty and open subsets U, V in X there is N ∈ N with Tⁿ(U) ∩ V ≠ Ø for every n ≥ N.

In general:

 $\mathsf{mixing} \Rightarrow \mathsf{topologically transitive}$

and

hypercyclic \Rightarrow topologically transitive

Adam Przestacki Dynamics on $\mathcal{O}_M(\mathbb{R})$

æ

<⊡> <≣

• X : a TVS consisting of functions on \mathbb{R}

A ≥ ▶

- X : a TVS consisting of functions on \mathbb{R}
- $\psi \colon \mathbb{R} \to \mathbb{R}$

▲ 同 ▶ ▲ 三 ▶ ▲

- X : a TVS consisting of functions on \mathbb{R}
- $\psi \colon \mathbb{R} \to \mathbb{R}$

▲ 同 ▶ ▲ 三 ▶ ▲

- X : a TVS consisting of functions on \mathbb{R}
- $\psi \colon \mathbb{R} \to \mathbb{R}$

Composition operator

$$C_{\psi}: X \to X, f \mapsto f \circ \psi$$

< /₽ > < E >

- X : a TVS consisting of functions on \mathbb{R}
- $\psi \colon \mathbb{R} \to \mathbb{R}$

Composition operator

$$C_{\psi}: X \to X, f \mapsto f \circ \psi$$

Two questions

▲ 伊 ▶ ▲ 王 ▶

- X : a TVS consisting of functions on \mathbb{R}
- $\psi \colon \mathbb{R} \to \mathbb{R}$

Composition operator

$$C_{\psi}: X \to X, f \mapsto f \circ \psi$$

Two questions

When this operator is well-defined?

(□) ▶ (□)

- X : a TVS consisting of functions on \mathbb{R}
- $\psi \colon \mathbb{R} \to \mathbb{R}$

Composition operator

$$C_{\psi}: X \to X, f \mapsto f \circ \psi$$

Two questions

- When this operator is well-defined?
- What are the dynamical properties of this operator?

The space of smooth functions

$C^{\infty}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \text{ smooth}\}$

Adam Przestacki Dynamics on $\mathcal{O}_M(\mathbb{R})$

∄ ▶ ∢ ≣ ▶

 $C^{\infty}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \text{ smooth}\}$

This is a Fréchet space, a sequence $(p_n)_{n\in\mathbb{N}}$ of seminorms is given by

$$p_n(f) = \max_{x \in [-n,n]} \max_{0 \le i \le n} \left| f^{(i)}(x) \right|$$

Theorem

Let
$$\psi(x) = x + 1$$
. The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.

æ

▶ ∢ ≣

Theorem

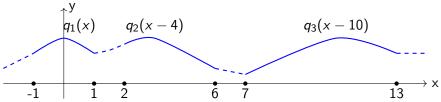
Let
$$\psi(x) = x + 1$$
. The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.

Theorem

Let
$$\psi(x) = x + 1$$
. The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.

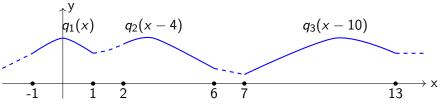
Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Theorem

Let
$$\psi(x) = x + 1$$
. The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Then

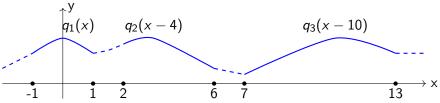
•
$$f = q_1$$
 on $[-1, 1]$

The translation is hypercyclic

Theorem

Let
$$\psi(x) = x + 1$$
. The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



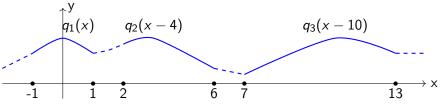
Then

The translation is hypercyclic

Theorem

Let
$$\psi(x) = x + 1$$
. The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Then

f = q₁ on [-1,1]
C⁴_v(f) = q₂ on [-2,2]

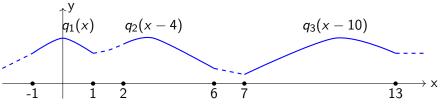
•
$$C^{10}_{\psi}(f) = q_3$$
 on $[-3,3]$

The translation is hypercyclic

Theorem

Let
$$\psi(x) = x + 1$$
. The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Then

f = q₁ on [-1, 1]
C⁴_ψ(f) = q₂ on [-2, 2]

•
$$C_{\psi}^{10}(f) = q_3 \text{ on } [-3,3]$$

• $C_{\psi}^{a_n}(f) = q_n \text{ on } [-n,n]$

For a smooth function $\psi \colon \mathbb{R} \to \mathbb{R}$ TFAE:

- For all $x \in \mathbb{R}$ we have that $\psi(x) \neq x$ and $\psi'(x) \neq 0$.
- 2 The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is hypercyclic.
- **3** The operator $C_{\psi} : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is mixing.

$$\mathcal{S}(\mathbb{R}) = \{f \in \mathcal{C}^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} f^{(j)}(x) x^n = 0 \text{ for all } n, j \ge 0\}$$

Adam Przestacki Dynamics on $\mathcal{O}_M(\mathbb{R})$

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} f^{(j)}(x) x^n = 0 \text{ for all } n, j \ge 0 \}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \le j \le N} \sup_{x \in \mathbb{R}} \left(1 + x^2 \right)^n \left| f^{(i)}(x) \right|$$

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} f^{(j)}(x) x^n = 0 \text{ for all } n, j \ge 0 \}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$\mathcal{P}_N(f) := \max_{0 \le j \le N} \sup_{x \in \mathbb{R}} \left(1 + x^2\right)^n \left| f^{(i)}(x) \right|$$

Galbis, Jordá: a descritpion of well-defined compostion operators

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} f^{(j)}(x) x^n = 0 \text{ for all } n, j \ge 0 \}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$\mathcal{P}_{\mathcal{N}}(f) := \max_{0 \le j \le N} \sup_{x \in \mathbb{R}} \left(1 + x^2\right)^n \left| f^{(i)}(x) \right|$$

Galbis, Jordá: a descritpion of well-defined compostion operators

Let $f \in \mathcal{S}(\mathbb{R})$.

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} f^{(j)}(x) x^n = 0 \text{ for all } n, j \ge 0 \}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \le j \le N} \sup_{x \in \mathbb{R}} \left(1 + x^2\right)^n \left| f^{(i)}(x) \right|$$

Galbis, Jordá: a descritpion of well-defined compostion operators

Let $f \in \mathcal{S}(\mathbb{R})$. There is M with $|f(x)| \leq M$ for $x \in \mathbb{R}$.

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} f^{(j)}(x) x^n = 0 \text{ for all } n, j \ge 0 \}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \le j \le N} \sup_{x \in \mathbb{R}} \left(1 + x^2\right)^n \left| f^{(i)}(x) \right|$$

Galbis, Jordá: a descritpion of well-defined compostion operators

Let $f \in \mathcal{S}(\mathbb{R})$. There is M with $|f(x)| \leq M$ for $x \in \mathbb{R}$. For all n and all $x \in \mathbb{R}$ we have

 $|C_{\psi}^n(f)(x)| \leq M.$

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} f^{(j)}(x) x^n = 0 \text{ for all } n, j \ge 0 \}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \le j \le N} \sup_{x \in \mathbb{R}} \left(1 + x^2\right)^n \left| f^{(i)}(x) \right|$$

Galbis, Jordá: a descritpion of well-defined compostion operators

Let $f \in \mathcal{S}(\mathbb{R})$. There is M with $|f(x)| \leq M$ for $x \in \mathbb{R}$. For all n and all $x \in \mathbb{R}$ we have

 $|C_{\psi}^n(f)(x)| \leq M.$

There are no hypercyclic composition operators acting on $\mathcal{S}(\mathbb{R})$

Joint work with Thomas Kalmes (Chemnitz, Germany)

A ≥ ▶

$$\mathcal{O}_M(\mathbb{R}) = \{ f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R}) \}$$

▶ ∢ ≣ ▶

$$\mathcal{O}_M(\mathbb{R}) = \{ f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R}) \}$$

$$\mathcal{O}_M(\mathbb{R}) = \cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \le j \le m} (1+|x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

→ < ∃ →

$$\mathcal{O}_{\mathcal{M}}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R}) \}$$

$$\mathcal{O}_M(\mathbb{R}) = \cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \le j \le m} (1+|x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

→ < ∃ →</p>

$$\mathcal{O}_M(\mathbb{R}) = \{ f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R}) \}$$

$$\mathcal{O}_M(\mathbb{R}) = \cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \le j \le m} (1+|x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

• complete;

→ < ∃ →</p>

$$\mathcal{O}_{\mathcal{M}}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R}) \}$$

$$\mathcal{O}_M(\mathbb{R}) = \cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \le j \le m} (1+|x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

• complete; • non-metrizable.

/∄ ▶ ∢ ∃ ▶

$$\mathcal{O}_M(\mathbb{R}) = \{ f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R}) \}$$

$$\mathcal{O}_M(\mathbb{R}) = \cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \le j \le m} (1+|x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

• complete; • non-metrizable.

A fundamental system of seminorms:

$$p_{m,v}(f) = \sup_{x \in \mathbb{R}} \max_{0 \leq j \leq m} |v(x)f^{(j)}(x)|, \ f \in \mathcal{O}_M(\mathbb{R}), m \geq 0, v \in \mathcal{S}(\mathbb{R}).$$

< ロ > < 回 > < 回 > < 回 > < 回 >

TFAE:

- We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- **2** The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathbb{R})$ is well-defined and continuous.

< /₽ > < E >

TFAE:

- We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- **2** The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

▲ 伊 ▶ ▲ 王 ▶

TFAE:

- **1** We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- 2 The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

• Dynamical properties of C_ψ : power boundedness, mean ergodicity

TFAE:

- **1** We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- 2 The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_{ψ} is mixing.

TFAE:

- **1** We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- 2 The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_{ψ} is mixing.

Problems

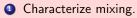
TFAE:

- **1** We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- 2 The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_{ψ} is mixing.

Problems



TFAE:

- **1** We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- **2** The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_{ψ} is mixing.

Problems

- Characterize mixing.
- Ooes mixing imply hypercyclicity?

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For $\psi : \mathbb{R} \to \mathbb{R}$:

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For
$$\psi : \mathbb{R} \to \mathbb{R}$$
:

•
$$\psi_0(x) = x;$$

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For $\psi : \mathbb{R} \to \mathbb{R}$: • $\psi_0(x) = x$; • for $n \in \mathbb{N}$: $\psi_n = \underbrace{\psi \circ \ldots \circ \psi}_{n-times}$;

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For $\psi : \mathbb{R} \to \mathbb{R}$: • $\psi_0(x) = x$; • for $n \in \mathbb{N}$: $\psi_n = \underbrace{\psi \circ \ldots \circ \psi}_{n-times}$; • if ψ is bijective, then for $n \in \mathbb{N}$ the function ψ_{-n} is the inverse of ψ_n .

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. If

- $\psi(x) \neq x$ for $x \in \mathbb{R}$,
- 2 $\psi'(x) \neq 0$ for $x \in \mathbb{R}$,
- **③** { $(\psi_n)'$: *n* ∈ \mathbb{Z} } is bounded in $\mathcal{O}_M(\mathbb{R})$,

then $C_{\psi} : \mathcal{O}_M(\mathbb{R}) \to \mathcal{O}_M(\mathbb{R})$ is hypercyclic.

∄ ▶ ∢ ∋

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. If

- $\psi(x) \neq x$ for $x \in \mathbb{R}$,
- 2 $\psi'(x) \neq 0$ for $x \in \mathbb{R}$,
- **③** { $(\psi_n)'$: *n* ∈ \mathbb{Z} } is bounded in $\mathcal{O}_M(\mathbb{R})$,

then $C_{\psi} : \mathcal{O}_M(\mathbb{R}) \to \mathcal{O}_M(\mathbb{R})$ is hypercyclic.

Corollary

For $\psi(x) = x + 1$ the operator $C_{\psi} : \mathcal{O}_M(\mathbb{R}) \to \mathcal{O}_M(\mathbb{R})$ is hypercyclic.

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

・ 御 ト ・ ヨ ト

э

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

1 The operator $C_{\psi} : \mathcal{O}_M(\mathbb{R}) \to \mathcal{O}_M(\mathbb{R})$ is mixing.

・日・ ・ ヨ・・

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

1 The operator $C_{\psi} : \mathcal{O}_M(\mathbb{R}) \to \mathcal{O}_M(\mathbb{R})$ is mixing.

2 There are $a, b \in \mathbb{R}$ such that for every $k \in \mathbb{N}$ and $v \in S(\mathbb{R})$ we have

$$\lim_{n\to\infty}\sup_{x\in\psi_{-n}([\min\{a,\psi(a)\},\max\{a,\psi(a)\}])}\left|v(x)(\psi_n)^{(k)}(x)\right|=0$$

and

$$\lim_{b\to\infty}\sup_{x\in\psi_n([\min\{b,\psi(b)\},\max\{b,\psi(b)\}])}\left|v(x)(\psi_{-n})^{(k)}(x)\right|=0.$$

A ≥ ▶

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

• The operator $C_{\psi} \colon \mathcal{O}_M(\mathbb{R}) \to \mathcal{O}_M(\mathbb{R})$ is mixing.

2 There are $a, b \in \mathbb{R}$ such that for every $k \in \mathbb{N}$ and $v \in S(\mathbb{R})$ we have

$$\lim_{n\to\infty}\sup_{x\in\psi_{-n}([\min\{a,\psi(a)\},\max\{a,\psi(a)\}])}\left|v(x)(\psi_n)^{(k)}(x)\right|=0$$

and

$$\lim_{n\to\infty}\sup_{x\in\psi_n([\min\{b,\psi(b)\},\max\{b,\psi(b)\}])}\left|v(x)(\psi_{-n})^{(k)}(x)\right|=0.$$

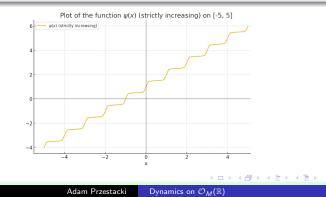
Can we calculate this?

Let $\widetilde{\psi}: [0,1] \to \mathbb{R}$ be a smooth function such that: $\widetilde{\psi}(x) = 3x + 1$ for $x \in [0,1/7]$, $\widetilde{\psi}(x) = 3x - 1$ for $x \in [6/7,1]$, $\widetilde{\psi}'(x) > 0$ for $x \in [0,1]$. The function $\psi: \mathbb{R} \to \mathbb{R}$ defined by the formula

$$\psi(x) = \widetilde{\psi}(x-n) + n$$
 if $x \in [n, n+1], n \in \mathbb{Z}$,

Let $\widetilde{\psi}: [0,1] \to \mathbb{R}$ be a smooth function such that: $\widetilde{\psi}(x) = 3x + 1$ for $x \in [0,1/7]$, $\widetilde{\psi}(x) = 3x - 1$ for $x \in [6/7,1]$, $\widetilde{\psi}'(x) > 0$ for $x \in [0,1]$. The function $\psi: \mathbb{R} \to \mathbb{R}$ defined by the formula

$$\psi(x) = \widetilde{\psi}(x-n) + n$$
 if $x \in [n, n+1], n \in \mathbb{Z}$,



Let $\widetilde{\psi}: [0,1] \to \mathbb{R}$ be a smooth function such that: $\widetilde{\psi}(x) = 3x + 1$ for $x \in [0,1/7]$, $\widetilde{\psi}(x) = 3x - 1$ for $x \in [6/7,1]$, $\widetilde{\psi}'(x) > 0$ for $x \in [0,1]$. The function $\psi: \mathbb{R} \to \mathbb{R}$ defined by the formula

$$\psi(x) = \widetilde{\psi}(x-n) + n$$
 if $x \in [n, n+1], n \in \mathbb{Z}$,

belongs to $\mathcal{O}_M(\mathbb{R})$, has no fixed points and a non-vanishing derivative.

• C_{ψ} is not mixing on $\mathcal{O}_{\mathcal{M}}(\mathbb{R})$.

Let $\widetilde{\psi}: [0,1] \to \mathbb{R}$ be a smooth function such that: $\widetilde{\psi}(x) = 3x + 1$ for $x \in [0,1/7]$, $\widetilde{\psi}(x) = 3x - 1$ for $x \in [6/7,1]$, $\widetilde{\psi}'(x) > 0$ for $x \in [0,1]$. The function $\psi: \mathbb{R} \to \mathbb{R}$ defined by the formula

$$\psi(x) = \widetilde{\psi}(x-n) + n$$
 if $x \in [n, n+1], n \in \mathbb{Z}$,

- C_{ψ} is not mixing on $\mathcal{O}_{\mathcal{M}}(\mathbb{R})$.
- C_ψ is not topologically transitive on O_M(ℝ). Hence is not hypercyclic.

Let $\widetilde{\psi}: [0,1] \to \mathbb{R}$ be a smooth function such that: $\widetilde{\psi}(x) = 3x + 1$ for $x \in [0,1/7]$, $\widetilde{\psi}(x) = 3x - 1$ for $x \in [6/7,1]$, $\widetilde{\psi}'(x) > 0$ for $x \in [0,1]$. The function $\psi: \mathbb{R} \to \mathbb{R}$ defined by the formula

$$\psi(x) = \widetilde{\psi}(x-n) + n$$
 if $x \in [n, n+1], n \in \mathbb{Z}$,

- C_{ψ} is not mixing on $\mathcal{O}_{\mathcal{M}}(\mathbb{R})$.
- C_ψ is not topologically transitive on O_M(ℝ). Hence is not hypercyclic.
- C_{ψ} is mixing on $C^{\infty}(\mathbb{R})$.

Abel's equation

Adam Przestacki Dynamics on $\mathcal{O}_M(\mathbb{R})$

æ

▲ 御 ▶ ▲ 臣

 $H(\psi(x)) = H(x) + 1.$

▲御 ▶ ▲ 臣 ▶

э

 $H(\psi(x)) = H(x) + 1.$

Abel's equation is an important tool in:

▲ 同 ▶ → (目 ▶

 $H(\psi(x)) = H(x) + 1.$

Abel's equation is an important tool in:

• finding eigenvalues and spectra of composition operators

→ < ∃→

 $H(\psi(x)) = H(x) + 1.$

Abel's equation is an important tool in:

- finding eigenvalues and spectra of composition operators
- iteration semigrups theory

Let $\psi \in \mathcal{O}_M(\mathbb{R})$.

Adam Przestacki Dynamics on $\mathcal{O}_M(\mathbb{R})$

æ

・日・ ・ ヨ・・

Let $\psi \in \mathcal{O}_M(\mathbb{R})$. If there exists $H \in \mathcal{O}_M(\mathbb{R})$ such that $H'(x) \neq 0$ and

 $H(\psi(x)) = H(x) + 1.$

▲御▶ ▲ 陸▶ ▲ 陸▶

æ

Let $\psi \in \mathcal{O}_M(\mathbb{R})$. If there exists $H \in \mathcal{O}_M(\mathbb{R})$ such that $H'(x) \neq 0$ and

$$H(\psi(x)) = H(x) + 1.$$

then the diagram

$$\begin{array}{c} \mathcal{O}_{M}(\mathbb{R}) \xrightarrow{C_{x+1}} \mathcal{O}_{M}(\mathbb{R}) \\ \hline c_{H} & \qquad \qquad \downarrow c_{H} \\ \mathcal{O}_{M}(\mathbb{R}) \xrightarrow{C_{\psi}} \mathcal{O}_{M}(\mathbb{R}) \end{array}$$

commutes and C_H has dense range (H is necessarily bijective).

Let $\psi \in \mathcal{O}_M(\mathbb{R})$. If there exists $H \in \mathcal{O}_M(\mathbb{R})$ such that $H'(x) \neq 0$ and

$$H(\psi(x)) = H(x) + 1.$$

then the diagram

$$\begin{array}{ccc} \mathcal{O}_{M}(\mathbb{R}) & \xrightarrow{C_{x+1}} & \mathcal{O}_{M}(\mathbb{R}) \\ c_{H} & & \downarrow c_{H} \\ \mathcal{O}_{M}(\mathbb{R}) & \xrightarrow{C_{\psi}} & \mathcal{O}_{M}(\mathbb{R}) \end{array}$$

commutes and C_H has dense range (H is necessarily bijective).

Hence C_{ψ} is mixing and hypercyclic.

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

Adam Przestacki Dynamics on $\mathcal{O}_M(\mathbb{R})$

⊡ ► < ≣ ►

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

• There exists $H \in \mathcal{O}_M(\mathbb{R})$ with a non-vanishing derivative and which satisfies the equation $H(\psi(x)) = H(x) + 1$.

→ ∢ ≣ →

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

- There exists H ∈ O_M(ℝ) with a non-vanishing derivative and which satisfies the equation H(ψ(x)) = H(x) + 1.
- 2 The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathcal{R})$ is mixing and

for $v \in \mathcal{S}(\mathbb{R})$: $\lim_{n \to \infty} v(\psi_n(0)) \cdot n = 0$ and $\lim_{n \to \infty} v(\psi_{-n}(0)) \cdot n = 0$.

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

- There exists H ∈ O_M(ℝ) with a non-vanishing derivative and which satisfies the equation H(ψ(x)) = H(x) + 1.
- 2 The operator $C_{\psi} \colon \mathcal{O}_{\mathcal{M}}(\mathbb{R}) \to \mathcal{O}_{\mathcal{M}}(\mathcal{R})$ is mixing and

for $v \in \mathcal{S}(\mathbb{R})$: $\lim_{n \to \infty} v(\psi_n(0)) \cdot n = 0$ and $\lim_{n \to \infty} v(\psi_{-n}(0)) \cdot n = 0$.

Does the mixing property imply the red condition? If yes, then every mixing composition is hypercyclic.

Thanks for your attention!