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Motivation



Adjunctions and Monads

Definition

A monad T on a category C is a triple (T ,m, e), where m : TT → T and

e : 1 → T are natural transformations satisfying the identities

TTT
Tm //

mT
��

TT

m

��

T
eT //

1
!!

TT

m

��

T
Teoo

1
}}

TT
m

// T T

Example

If (L ⊣ R, η, ϵ) : C → B is an adjunction, then (RL,RϵL, η) is a monad on

C, and (LR, LηR, ϵ) is a comonad on B.
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Algebras

Definition

A T-algebra is a pair (X , a), where X ∈ C and a : TX → X a morphism

such that

a · Ta = a ·mX and a · eX = 1X .

Definition

If (X , a) and (Y , b) are T-algebras, then a T-algebra homomorphism

f : (X , a) → (Y , b) is a morphism f : X → Y in C such that b ·Tf = f · a.

Definition

The category of T-algebras and T-algebra homomorphisms are denoted

by CT or by Alg (T). The forgetful functor GT : CT → C : (X , a) 7→ X

admits a left adjoint FT : C → CT : X 7→ (TX ,mX ), f 7→ Tf .
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A couple of triples (H. Simmons, 1982)

The adjunction

Top
O

⊥
//
DLatop

σ
oo

where σ(L) = DLat(L, 2) and OX = Top(X , 2), induces two monads

M : Top → Top and I : DLat → DLat.

� MX = {F | F open prime filter on X}.
� IL ∼= {I | I ideal on L}.

Definition

A subset J ⊆ D is an ideal if

� For any a ∈ D and i ∈ J, if a ≤ i then a ∈ J.

� 0 ∈ J and for any a, b ∈ J, a ∨ b ∈ J.
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Distributive lattices and frames

Remark

The unit and multiplication that come with I : DLat → Dlat are given by

↓: D → ID and
⋃

: IID → ID

Definition

A distributive lattice L is a frame if and only if the following equation

holds: a ∧
∨
S =

∨
{a ∧ s | s ∈ S}.

Theorem

1. (H. Simmons, 1982) Alg(M) = StKSp.

2. (H. Simmons, 1982 - P. Johnstone, 1982) Alg(I) = Frm.
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Topological spaces and frames

The monad I induces a comonad on Frm:

Latop

σ

{{

Top FrmopΣoo

Top

M

OO

Ω
// Frmop

I

OO GI

``

Proposition

(B. Banaschewski, 1981) For a given distributive lattice D and a frame L:

Frm(ID, L) ∼= Lat(D, L).

In particular: completely prime filters on ID naturally correspond to prime

filters on D.
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Topological spaces and frames

How do we compare the algebras of M and the coalgebras of I if

M = Σ · I · Ω?

Proposition

(B. Banaschewski and G. C. L. Brümmer, 1988)

coAlg(I) ∼= StKFrm.
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Comparing algebras



Comparison functor

A monad T = (T ,m, e) on C and an adjunction (L ⊣ R, η, ϵ) : C → B

induces a monad M = (M, n, d) on B:

� M = RTL = RGTFTL;

� n = RmL · RT ϵTL;

� d = ReL · η.

There is a comparison functor K : Alg (T) → Alg (M):

Alg (T) K //

GT⊣

��

Alg (M)

GM⊣

��

C

FT

OO

R
// B

L

⊥
oo

FM

OO
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Existence of left adjoint

Theorem

If Alg (T) has coequalizers of reflexive pairs, then K admits a left adjoint.

Ref:

� P. Johnstone, Adjoint lifting theorems for categories of algebras,

Bull. London. Math. Soc. 7 (1975), 294 -297.

� F. E. J. Linton, Coequalizers in categories of algebras, in Seminar on

Triples and Categorical Homology Theory, Lecture Notes in

Mathematics 80, Springer Verlag, (1969), 75 -90.
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Existence of left adjoint

Theorem

Suppose that C is cocomplete and E-well-copowered, where E is part of

an (E ,M)-factorisation system. If T preserves E , that is Th ∈ E for all

h ∈ E , then Alg (T) is cocomplete.

Ref:

� F. E. J. Linton, Coequalizers in categories of algebras, in Seminar on

Triples and Categorical Homology Theory, Lecture Notes in

Mathematics 80, Springer Verlag, (1969), 75 -90.

� M. Barr, Coequalizers and free triples, Math. Z. 116 (1970), 307 -

322.

� J. Adámek, Colimits of algebras revisited, Bull. Austral. Math. Soc.

17, (1977), 433 - 450.
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Existence of left adjoint

Proposition

We have an adjunction StKSp
K∗

⊥
//
StKFrmop

K
oo

.

Proof.

� Frm is complete.

� Frm is M-well-powered, where M = {f | f is injective}.
� I preserves M.

Proposition

If LRT ∼= T , then:

� There are Alg (T) → Fix(LR) and Alg (M) → Fix(RL) that are

monadic.

� K is an equivalence.
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Equivalence

Proposition

If LRT ∼= T , then:

� There are Alg (T) → Fix(LR) and Alg (M) → Fix(RL) that are

monadic.

� K is an equivalence.

Remark

� ΩΣI ∼= I if and only if BUT holds. (Banaschewski, 1983)

� If ΩΣI ∼= I, then every stably compact frame is spatial.

(Banaschewski, 1983)

� The left adjoint to the (non-full) embedding StKSp → Sob is the

restriction of Smyth’s T0 stable compactification.
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Problem

SinceM induces a comonad on StKSp, and I induces a monad on StKFrm,

can we compare the coalgebras and algebras? Do(es) the sequence(s) stop?

13



Sequence of algebras



Sequence of algebras and coalgebras

A monad T : C → C generates the following alternating sequence:

C

T

��

FT⊢

��

Alg(T1)

C1

��

G T1⊣

��

F C1

⊥ // coALg(C1)

T2

��G C1
oo

��Alg (T)

C

WW

GT

OO

FC
⊥ // coAlg(C)

T1

WW

F T1

OO

GC
oo

. . .

OO

Theorem

(M. Barr, 1969) The sequence “stops” for general (non-constant) monads

on sets, pointed sets and vector spaces over a field. In all cases, at least

the comparison functor C → coAlg(C) is an equivalence.
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Sequence of algebras and coalgebras

Theorem

(B. Jacobs, 2013) If T is a lax idempotent monad, then

Alg (T) ≃ Alg(T1).

In the sequence T,C,T1,C1, . . . , we have

(co)Monads (co)Algebras

T = (T ,m, e) a ⊣ eX and a · eX = 1

C = (T ,Te, a) c ⊣ a and a · c = 1

T1 = (T ,Ta, c) b ⊣ c and b · c = 1

· · · · · ·
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Proof

Proof.

� For a T1-algebra b ⊣ c ⊣ a ⊣ e construct the equalizer

Xc
ξ
// X

c //

e
// TX

� Xc is a T-algebra: there is α ⊣ eXc with α · eXc = 1.

� T (Xc) ∼= X and T (α) ⊣ T (eXc ) ⊣ mXc ⊣ eTXc corresponds to

b ⊣ c ⊣ a ⊣ e.

� This gives a functor Alg (T) → Alg(T1) that is an equivalence.

Remark

The equalizer in the proof is a split equalizer, and the assignment X 7→ Xc

is functorial.
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Split equalizers



Split coequalizers

Given a monad T = (T ,m, e), Alg (T) can be described as those objects

that are part of a split co-equalizer:

TTX
Ta //

mX

// TX

eT

]]
a // X

e

aa

� a ·mX = a · Ta;
� a · eX = 1 and mX · eT = 1; (e and eT are “splits”.)

� eX · a = Ta · eT .

Remark

Dual: split equalizers.
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Description of algebras and coalgebras

In the sequence of monads and comonads, the algebras and coalgebras

are described as follows

TTX
Ta //

mX

// TX

eT

]]
a // X

e

aa

(X , a)
c // (TX ,mX )

Tc //

Te
//

a

hh
(TTX ,mTX )

mX

ee

and

(TTX ,mTX ,TeTX )
Tb //

Ta
// (TX ,mX ,TeX )

Te

ii

b // (X , a, c)

c

ii
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Equivalence

Proposition

B. Jacobs’ construction of Xc is part of a split equalizer and a split

co-equalizer:

TX
b //

a
// X

e

[[
k // Xc

ξ

aa

ξ
// X

c //

e
//

k

cc
TX

b

[[

Theorem

(Modification of B. Jacobs’ proof) By Beck’s Theorem, Xc is a T-algebra
and we have (TXc ,mTXc ,T ξ,Tk) ∼= (X , a, c , b).
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Fakir construction and Stone

duality



Fakir construction

Given a monad T = (T ,m, e), construct the equalizer

Φ(X )
φ
// TX

Te //

eT
// TTX

Theorem

(S. Fakir, 1970) Φ : C → C underlies a monad M = (Φ,mφ, eφ).
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Natural equivalence

From the adjunction FT ⊣ GT, consider the two functors

θT : C → FT(C) and K : FT(C) → C

defined by

� θT (f : X → Y ) = Tf : (TX ,mX ) → (TY ,mY ).

� K (Tf : (TX ,mX ) → (TY ,mY )) = Φ(f ) : Φ(X ) → Φ(Y )

Proposition

If the monad M = (Φ,mφ, eφ) is idempotent, then θT ·K ∼= 1. If Φ is the

identity on C, then K · θT ∼= 1.
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Natural equivalence

Proof.

There are two natural transformations given by eφX : X → K (θT (X )) and

Teφ : θT (X ) → θT (K (θT (X ))), with K · θT = Φ and θT · K = FT · Φ.
� If M is idempotent, then Teφ is an isomorphism. (S. Fakir, 1970)

� If Φ fixes all objects in C, then eφX is an isomorphism.

Theorem

If M is the identity monad, then C ≃ FT(C).

Theorem

Since M restricts to the identity on Alg (T), then

Alg (T) ≃ FT(Alg (T)) ≃ Alg(T1).
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Distributive lattices and coherent frames

In the equalizer

E
ϕ
// ID

I(↓)
//

↓ID

// IID

� I(↓)(I ) = {J | J ≪ I}.
� ↓ID (I ) = {J | J ⊆ I}.

Therefore I ∈ E if and only if I ≪ I , if and only if I =↓ x for some x ∈ D.

Theorem

DLat ≃ CohFrm.

Theorem

(B. Banaschewski and S. B. Niefield, 1991) The downset functor induces

an equivalence between the category of meet-semilattices and that of su-

percoherent frames.
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