

A pair of monads

38th Summer Conference on Topology and its Applications. Coimbra, 8 - 12 July 2024.

Ando Razafindrakoto

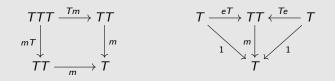
University of the Western Cape, South Africa

- 1. Motivation
- 2. Comparing algebras
- 3. Sequence of algebras
- 4. Split equalizers
- 5. Fakir construction and Stone duality

Motivation

Definition

A monad \mathbb{T} on a category **C** is a triple (T, m, e), where $m : TT \to T$ and $e : 1 \to T$ are natural transformations satisfying the identities



Example

If $(L \dashv R, \eta, \epsilon) : \mathbf{C} \to \mathbf{B}$ is an adjunction, then $(RL, R\epsilon L, \eta)$ is a monad on **C**, and $(LR, L\eta R, \epsilon)$ is a comonad on **B**.

Algebras

Definition

A T-algebra is a pair (X, a), where $X \in \mathbf{C}$ and $a : TX \to X$ a morphism such that

$$a \cdot Ta = a \cdot m_X$$
 and $a \cdot e_X = 1_X$.

Algebras

Definition

A \mathbb{T} -algebra is a pair (X, a), where $X \in \mathbf{C}$ and $a : TX \to X$ a morphism such that

$$a \cdot Ta = a \cdot m_X$$
 and $a \cdot e_X = 1_X$.

Definition

If (X, a) and (Y, b) are T-algebras, then a T-algebra homomorphism $f: (X, a) \to (Y, b)$ is a morphism $f: X \to Y$ in **C** such that $b \cdot Tf = f \cdot a$.

Algebras

Definition

A \mathbb{T} -algebra is a pair (X, a), where $X \in \mathbf{C}$ and $a : TX \to X$ a morphism such that

$$a \cdot Ta = a \cdot m_X$$
 and $a \cdot e_X = 1_X$.

Definition

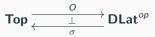
If (X, a) and (Y, b) are T-algebras, then a T-algebra homomorphism $f: (X, a) \to (Y, b)$ is a morphism $f: X \to Y$ in **C** such that $b \cdot Tf = f \cdot a$.

Definition

The category of \mathbb{T} -algebras and \mathbb{T} -algebra homomorphisms are denoted by $\mathbf{C}^{\mathbb{T}}$ or by $\mathbf{Alg}(\mathbb{T})$. The forgetful functor $G^{\mathbb{T}}: \mathbf{C}^{\mathbb{T}} \to \mathbf{C}: (X, a) \mapsto X$ admits a left adjoint $F^{\mathbb{T}}: \mathbf{C} \to \mathbf{C}^{\mathbb{T}}: X \mapsto (TX, m_X), f \mapsto Tf$.

A couple of triples (H. Simmons, 1982)

The adjunction

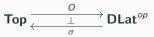


where $\sigma(L) = \mathbf{DLat}(L, 2)$ and $OX = \mathbf{Top}(X, 2)$, induces two monads

 $M : \mathbf{Top} \to \mathbf{Top} \text{ and } \mathfrak{I} : \mathbf{DLat} \to \mathbf{DLat}.$

A couple of triples (H. Simmons, 1982)

The adjunction



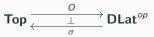
where $\sigma(L) = \mathbf{DLat}(L, 2)$ and $OX = \mathbf{Top}(X, 2)$, induces two monads

 $M : \mathbf{Top} \to \mathbf{Top} \text{ and } \mathfrak{I} : \mathbf{DLat} \to \mathbf{DLat}.$

- $MX = \{\mathcal{F} \mid \mathcal{F} \text{ open prime filter on } X\}.$
- $\Im L \cong \{I \mid I \text{ ideal on } L\}.$

A couple of triples (H. Simmons, 1982)

The adjunction



where $\sigma(L) = \mathbf{DLat}(L, 2)$ and $OX = \mathbf{Top}(X, 2)$, induces two monads

 $M : \mathbf{Top} \to \mathbf{Top} \text{ and } \mathfrak{I} : \mathbf{DLat} \to \mathbf{DLat}.$

- $MX = \{\mathcal{F} \mid \mathcal{F} \text{ open prime filter on } X\}.$
- $\Im L \cong \{I \mid I \text{ ideal on } L\}.$

Definition

A subset $J \subseteq D$ is an ideal if

- For any $a \in D$ and $i \in J$, if $a \leq i$ then $a \in J$.
- $0 \in J$ and for any $a, b \in J$, $a \lor b \in J$.

Remark

The unit and multiplication that come with $\Im: \textbf{DLat} \rightarrow \textbf{Dlat}$ are given by

```
\downarrow: D \to \Im D \text{ and } \bigcup: \Im \Im D \to \Im D
```

Definition

A distributive lattice *L* is a frame if and only if the following equation holds: $a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}.$

Remark

The unit and multiplication that come with $\Im: \textbf{DLat} \rightarrow \textbf{Dlat}$ are given by

```
\downarrow: D \to \Im D \text{ and } \bigcup: \Im \Im D \to \Im D
```

Definition

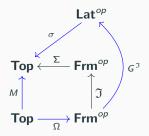
A distributive lattice *L* is a frame if and only if the following equation holds: $a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}.$

Theorem

- 1. (H. Simmons, 1982) Alg(M) = StKSp.
- 2. (H. Simmons, 1982 P. Johnstone, 1982) $Alg(\Im) = Frm$.

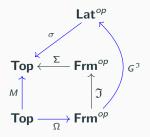
Topological spaces and frames

The monad $\ensuremath{\mathfrak{I}}$ induces a comonad on $\ensuremath{\textit{Frm}}$:



Topological spaces and frames

The monad $\ensuremath{\mathfrak{I}}$ induces a comonad on $\ensuremath{\textbf{Frm}}$:



Proposition

(B. Banaschewski, 1981) For a given distributive lattice D and a frame L:

 $\operatorname{Frm}(\Im D, L) \cong \operatorname{Lat}(D, L).$

In particular: completely prime filters on $\Im D$ naturally correspond to prime filters on D.

How do we compare the algebras of M and the coalgebras of \Im if $M=\Sigma\cdot\Im\cdot\Omega?$

How do we compare the algebras of M and the coalgebras of \Im if $M = \Sigma \cdot \Im \cdot \Omega?$

Proposition

(B. Banaschewski and G. C. L. Brümmer, 1988) $coAlg(\Im) \cong StKFrm.$

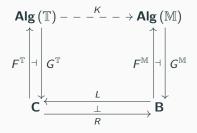
Comparing algebras

Comparison functor

A monad $\mathbb{T} = (T, m, e)$ on **C** and an adjunction $(L \dashv R, \eta, \epsilon) : \mathbf{C} \to \mathbf{B}$ induces a monad $\mathbb{M} = (M, n, d)$ on **B**:

- $M = RTL = RG^{T}F^{T}L;$
- $n = RmL \cdot RT \epsilon TL;$
- $d = ReL \cdot \eta$.

There is a comparison functor $K : \operatorname{Alg}(\mathbb{T}) \to \operatorname{Alg}(\mathbb{M})$:



Theorem

If Alg (\mathbb{T}) has coequalizers of reflexive pairs, then K admits a left adjoint.

Ref:

- P. Johnstone, Adjoint lifting theorems for categories of algebras, *Bull. London. Math. Soc.* **7** (1975), 294 -297.
- F. E. J. Linton, Coequalizers in categories of algebras, in *Seminar on Triples and Categorical Homology Theory*, Lecture Notes in Mathematics 80, Springer Verlag, (1969), 75 -90.

Theorem

Suppose that **C** is cocomplete and \mathcal{E} -well-copowered, where \mathcal{E} is part of an $(\mathcal{E}, \mathcal{M})$ -factorisation system. If T preserves \mathcal{E} , that is $Th \in \mathcal{E}$ for all $h \in \mathcal{E}$, then **Alg** (\mathbb{T}) is cocomplete.

Ref:

- F. E. J. Linton, Coequalizers in categories of algebras, in *Seminar on Triples and Categorical Homology Theory*, Lecture Notes in Mathematics 80, Springer Verlag, (1969), 75 -90.
- M. Barr, Coequalizers and free triples, *Math. Z.* **116** (1970), 307 322.
- J. Adámek, Colimits of algebras revisited, *Bull. Austral. Math. Soc.* **17**, (1977), 433 450.

Existence of left adjoint

Proposition

We have an adjunction
$$\mathbf{StKSp} \xrightarrow[]{K^*}{\underset{K}{\overset{\perp}{\longrightarrow}}} \mathbf{StKFrm}^{op}$$

Proof.

- Frm is complete.
- **Frm** is \mathcal{M} -well-powered, where $\mathcal{M} = \{f \mid f \text{ is injective}\}$.
- \mathfrak{I} preserves \mathcal{M} .

Existence of left adjoint

Proposition

We have an adjunction
$$\mathbf{StKSp} \xrightarrow[]{K^*}{\underset{\mathcal{K}}{\overset{\perp}{\longrightarrow}}} \mathbf{StKFrm}^{op}$$

Proof.

- Frm is complete.
- **Frm** is \mathcal{M} -well-powered, where $\mathcal{M} = \{f \mid f \text{ is injective}\}$.
- \mathfrak{I} preserves \mathcal{M} .

Proposition

If $LRT \cong T$, then:

- There are Alg (T) → Fix(LR) and Alg (M) → Fix(RL) that are monadic.
- K is an equivalence.

Equivalence

Proposition

If $LRT \cong T$, then:

- There are Alg (T) → Fix(LR) and Alg (M) → Fix(RL) that are monadic.
- K is an equivalence.

Remark

- $\Omega\Sigma\mathfrak{I}\cong\mathfrak{I}$ if and only if BUT holds. (Banaschewski, 1983)
- If $\Omega\Sigma\mathfrak{I}\cong\mathfrak{I}$, then every stably compact frame is spatial. (Banaschewski, 1983)

Equivalence

Proposition

If $LRT \cong T$, then:

- There are Alg (T) → Fix(LR) and Alg (M) → Fix(RL) that are monadic.
- K is an equivalence.

Remark

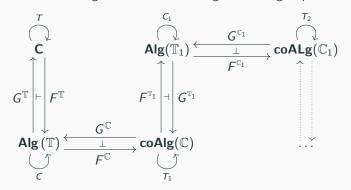
- $\Omega\Sigma\mathfrak{I}\cong\mathfrak{I}$ if and only if BUT holds. (Banaschewski, 1983)
- If $\Omega\Sigma\mathfrak{I}\cong\mathfrak{I}$, then every stably compact frame is spatial. (Banaschewski, 1983)
- The left adjoint to the (non-full) embedding ${\bf StKSp} \to {\bf Sob}$ is the restriction of Smyth's ${\cal T}_0$ stable compactification.

Since *M* induces a comonad on StKSp, and \Im induces a monad on StKFrm, can we compare the coalgebras and algebras? Do(es) the sequence(s) stop?

Sequence of algebras

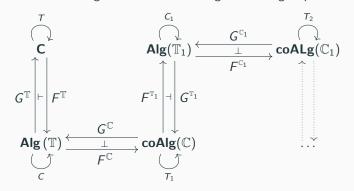
Sequence of algebras and coalgebras

A monad $T : \mathbf{C} \to \mathbf{C}$ generates the following alternating sequence:



Sequence of algebras and coalgebras

A monad $T : \mathbf{C} \rightarrow \mathbf{C}$ generates the following alternating sequence:



Theorem

(M. Barr, 1969) The sequence "stops" for general (non-constant) monads on sets, pointed sets and vector spaces over a field. In all cases, at least the comparison functor $\mathbf{C} \to \mathbf{coAlg}(\mathbb{C})$ is an equivalence.

Theorem

(B. Jacobs, 2013) If ${\mathbb T}$ is a lax idempotent monad, then

 $\operatorname{Alg}(\mathbb{T})\simeq\operatorname{Alg}(\mathbb{T}_1).$

Theorem

(B. Jacobs, 2013) If ${\mathbb T}$ is a lax idempotent monad, then

 $\operatorname{Alg}(\mathbb{T}) \simeq \operatorname{Alg}(\mathbb{T}_1).$

In the sequence $\mathbb{T},\mathbb{C},\mathbb{T}_1,\mathbb{C}_1,\ldots$, we have

(co)Monads	(co)Algebras
$\mathbb{T} = (T, m, e)$	$a\dashv e_X$ and $a\cdot e_X=1$
$\mathbb{C} = (T, Te, a)$	$c\dashv a$ and $a\cdot c=1$
$\mathbb{T}_1 = (T, Ta, c)$	$b\dashv c$ and $b\cdot c=1$

Proof

Proof.

• For a \mathbb{T}_1 -algebra $b\dashv c\dashv a\dashv e$ construct the equalizer

$$X_c \xrightarrow{\xi} X \xrightarrow{c} TX$$

- X_c is a T-algebra: there is $\alpha \dashv e_{X_c}$ with $\alpha \cdot e_{X_c} = 1$.
- $T(X_c) \cong X$ and $T(\alpha) \dashv T(e_{X_c}) \dashv m_{X_c} \dashv e_{TX_c}$ corresponds to $b \dashv c \dashv a \dashv e$.
- This gives a functor $Alg(\mathbb{T}) \to Alg(\mathbb{T}_1)$ that is an equivalence.

Proof

Proof.

• For a \mathbb{T}_1 -algebra $b\dashv c\dashv a\dashv e$ construct the equalizer

$$X_c \xrightarrow{\xi} X \xrightarrow{c} TX$$

- X_c is a T-algebra: there is $\alpha \dashv e_{X_c}$ with $\alpha \cdot e_{X_c} = 1$.
- $T(X_c) \cong X$ and $T(\alpha) \dashv T(e_{X_c}) \dashv m_{X_c} \dashv e_{TX_c}$ corresponds to $b \dashv c \dashv a \dashv e$.
- This gives a functor $Alg(\mathbb{T}) \to Alg(\mathbb{T}_1)$ that is an equivalence.

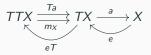
Remark

The equalizer in the proof is a split equalizer, and the assignment $X \mapsto X_c$ is functorial.

Split equalizers

Split coequalizers

Given a monad $\mathbb{T} = (T, m, e)$, Alg (\mathbb{T}) can be described as those objects that are part of a split co-equalizer:

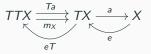


•
$$a \cdot m_X = a \cdot Ta;$$

- $a \cdot e_X = 1$ and $m_X \cdot eT = 1$; (e and eT are "splits".)
- $e_X \cdot a = Ta \cdot eT$.

Split coequalizers

Given a monad $\mathbb{T} = (T, m, e)$, Alg (\mathbb{T}) can be described as those objects that are part of a split co-equalizer:



•
$$a \cdot m_X = a \cdot Ta;$$

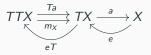
- $a \cdot e_X = 1$ and $m_X \cdot eT = 1$; (e and eT are "splits".)
- $e_X \cdot a = Ta \cdot eT$.

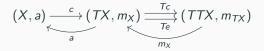
Remark

Dual: split equalizers.

Description of algebras and coalgebras

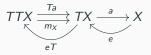
In the sequence of monads and comonads, the algebras and coalgebras are described as follows

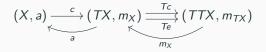




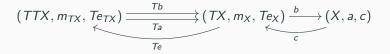
Description of algebras and coalgebras

In the sequence of monads and comonads, the algebras and coalgebras are described as follows



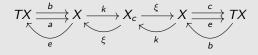


and



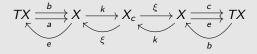
Proposition

B. Jacobs' construction of X_c is part of a split equalizer and a split co-equalizer:



Proposition

B. Jacobs' construction of X_c is part of a split equalizer and a split co-equalizer:



Theorem

(Modification of B. Jacobs' proof) By Beck's Theorem, X_c is a \mathbb{T} -algebra and we have $(TX_c, m_{TX_c}, T\xi, Tk) \cong (X, a, c, b)$.

Fakir construction and Stone duality

Given a monad $\mathbb{T} = (T, m, e)$, construct the equalizer

$$\Phi(X) \xrightarrow{\varphi} TX \xrightarrow{Te} TTX$$

Given a monad $\mathbb{T} = (T, m, e)$, construct the equalizer

$$\Phi(X) \xrightarrow{\varphi} TX \xrightarrow{Te} TTX$$

Theorem

(S. Fakir, 1970) $\Phi : \mathbf{C} \to \mathbf{C}$ underlies a monad $\mathbb{M} = (\Phi, m^{\varphi}, e^{\varphi})$.

From the adjunction $F^{\mathbb{T}} \dashv G^{\mathbb{T}}$, consider the two functors

$$\theta^{T}: \mathbf{C} \to F^{\mathbb{T}}(\mathbf{C}) \text{ and } K: F^{\mathbb{T}}(\mathbf{C}) \to \mathbf{C}$$

defined by

- $\theta^T(f:X \to Y) = Tf:(TX, m_X) \to (TY, m_Y).$
- $K(Tf:(TX,m_X) \rightarrow (TY,m_Y)) = \Phi(f):\Phi(X) \rightarrow \Phi(Y)$

From the adjunction $F^{\mathbb{T}} \dashv G^{\mathbb{T}}$, consider the two functors

$$\theta^{\,\mathsf{T}}:\mathsf{C}
ightarrow \mathsf{F}^{\mathbb{T}}(\mathsf{C}) ext{ and } \mathsf{K}:\mathsf{F}^{\mathbb{T}}(\mathsf{C})
ightarrow \mathsf{C}$$

defined by

•
$$\theta^T(f:X \to Y) = Tf:(TX, m_X) \to (TY, m_Y).$$

• $K(Tf:(TX,m_X) \rightarrow (TY,m_Y)) = \Phi(f):\Phi(X) \rightarrow \Phi(Y)$

Proposition

If the monad $\mathbb{M} = (\Phi, m^{\varphi}, e^{\varphi})$ is idempotent, then $\theta^T \cdot K \cong 1$. If Φ is the identity on **C**, then $K \cdot \theta^T \cong 1$.

Proof.

There are two natural transformations given by $e_X^{\varphi} : X \to K(\theta^T(X))$ and $Te^{\varphi} : \theta^T(X) \to \theta^T(K(\theta^T(X)))$, with $K \cdot \theta^T = \Phi$ and $\theta^T \cdot K = F^T \cdot \Phi$.

- If \mathbb{M} is idempotent, then Te^{φ} is an isomorphism. (S. Fakir, 1970)
- If Φ fixes all objects in **C**, then e_X^{φ} is an isomorphism.

Proof.

There are two natural transformations given by $e_X^{\varphi} : X \to K(\theta^T(X))$ and $Te^{\varphi} : \theta^T(X) \to \theta^T(K(\theta^T(X)))$, with $K \cdot \theta^T = \Phi$ and $\theta^T \cdot K = F^T \cdot \Phi$.

- If \mathbb{M} is idempotent, then Te^{φ} is an isomorphism. (S. Fakir, 1970)
- If Φ fixes all objects in **C**, then e_X^{φ} is an isomorphism.

Theorem

If \mathbb{M} is the identity monad, then $\mathbf{C} \simeq F^{\mathbb{T}}(\mathbf{C})$.

Proof.

There are two natural transformations given by $e_X^{\varphi} : X \to K(\theta^T(X))$ and $Te^{\varphi} : \theta^T(X) \to \theta^T(K(\theta^T(X)))$, with $K \cdot \theta^T = \Phi$ and $\theta^T \cdot K = F^T \cdot \Phi$.

- If \mathbb{M} is idempotent, then Te^{φ} is an isomorphism. (S. Fakir, 1970)
- If Φ fixes all objects in **C**, then e_X^{φ} is an isomorphism.

Theorem

If \mathbb{M} is the identity monad, then $\mathbf{C} \simeq F^{\mathbb{T}}(\mathbf{C})$.

Theorem

Since \mathbb{M} restricts to the identity on $Alg(\mathbb{T})$, then

 $\operatorname{Alg}(\mathbb{T}) \simeq F^{\mathbb{T}}(\operatorname{Alg}(\mathbb{T})) \simeq \operatorname{Alg}(\mathbb{T}_1).$

In the equalizer

$$E \xrightarrow{\phi} \Im D \xrightarrow{\Im(\downarrow)} \Im \Im D$$

•
$$\mathfrak{I}(\downarrow)(I) = \{J \mid J \ll I\}.$$

• $\downarrow_{\Im D} (I) = \{J \mid J \subseteq I\}.$

In the equalizer

$$E \xrightarrow{\phi} \Im D \xrightarrow{\Im(\downarrow)} \Im \Im D$$

•
$$\mathfrak{I}(\downarrow)(I) = \{J \mid J \ll I\}.$$

• $\downarrow_{\Im D} (I) = \{J \mid J \subseteq I\}.$

Therefore $I \in E$ if and only if $I \ll I$, if and only if $I = \downarrow x$ for some $x \in D$.

In the equalizer

$$E \xrightarrow{\phi} \Im D \xrightarrow{\Im(\downarrow)} \Im \Im D$$

•
$$\mathfrak{I}(\downarrow)(I) = \{J \mid J \ll I\}.$$

• $\downarrow_{\Im D} (I) = \{J \mid J \subseteq I\}.$

Therefore $I \in E$ if and only if $I \ll I$, if and only if $I = \downarrow x$ for some $x \in D$.

Theorem

 $\textbf{DLat} \simeq \textbf{CohFrm}.$

In the equalizer

$$E \xrightarrow{\phi} \Im D \xrightarrow{\Im(\downarrow)} \Im \Im D$$

•
$$\mathfrak{I}(\downarrow)(I) = \{J \mid J \ll I\}.$$

• $\downarrow_{\Im D} (I) = \{J \mid J \subseteq I\}.$

Therefore $I \in E$ if and only if $I \ll I$, if and only if $I = \downarrow x$ for some $x \in D$.

Theorem

 $\mathbf{DLat}\simeq\mathbf{CohFrm}.$

Theorem

(B. Banaschewski and S. B. Niefield, 1991) The downset functor induces an equivalence between the category of meet-semilattices and that of supercoherent frames.